Skip to main content

Channel Analysis and Dynamic Adaptation for Energy-Efficient WBSNs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7656))

Abstract

Wireless Sensor Networks (WSNs) have recently emerged as a premier research topic, while the increasing use of this technology has empowered the development of Wireless Body Sensor Networks (WBSNs). In this environment, the power consumption of the sensor nodes has to be optimized in order to extend the battery duration but, at the same time, several factors like the body position and movement impact on the quality of the communication and the power transmission. In this paper, we analyze the effect of body positioning, body movement and body type in the wireless communication and the power requirements. The obtained results for real subjects performing common tasks has allowed the envisioning of a reactive mechanism to alleviate the negative effect of these factors and minimize the power consumption of the radio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. García-Hernández, C.F., Ibargüengoytia-González, P.H., García-Hernández, J., Pérez-Díaz, J.A.: Wireless sensor networks and applications: a survey. International Journal of Computer Science and Network Security 7(3) (2007)

    Google Scholar 

  2. Latré, B., Braem, B., Moerman, I., Blondia, C., Demeester, P.: A survey on wireless body area networks. Wirel. Netw. 17(1), 1–18 (2011)

    Article  Google Scholar 

  3. Timmons, N., Scanlon, W.: Analysis of the performance of ieee 802.15.4 for medical sensor body area networking. In: First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2004, pp. 16–24 (October 2004)

    Google Scholar 

  4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine (2002)

    Google Scholar 

  5. Fort, A., Desset, C., De Doncker, P., Wambacq, P., Van Biesen, L.: An ultra-wideband body area propagation channel model-from statistics to implementation. IEEE Transactions on Microwave Theory and Techniques 54(4), 1820–1826 (2006)

    Article  Google Scholar 

  6. Tang, Q., Tummala, N., Gupta, S., Schwiebert, L.: Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Transactions on Biomedical Engineering 52(7), 1285–1294 (2005)

    Article  Google Scholar 

  7. Washington, A.N., Iziduh, R.: Modeling of military networks using group mobility models. In: ITNG, pp. 1670–1671 (2009)

    Google Scholar 

  8. Marin-Perianu, R., Marin-Perianu, M., Rouffet, D., Taylor, S., Havinga, P., Begg, R., Palaniswami, M.: Body area wireless sensor networks for the analysis of cycling performance. In: Proceedings of the Fifth International Conference on Body Area Networks, BodyNets 2010, pp. 1–7. ACM, New York (2010)

    Google Scholar 

  9. Sivaraman, V., Grover, S., Kurusingal, A., Dhamdhere, A., Burdett, A.: Experimental study of mobility in the soccer field with application to real-time athlete monitoring. In: WiMob, pp. 337–345 (2010)

    Google Scholar 

  10. LAN Man and Standards Committee. IEEE standard for information technology- telecommunications and information exchange between systems- local and metropolitan area networks- specific requirements–part 15.4: Wireless mac and phy specifications for low-rate wpans. Control, 1–305 (September 2006)

    Google Scholar 

  11. Ren, H., Meng, M., Cheung, C.: Experimental evaluation of on-body transmission characteristics for wireless biosensors. In: IEEE International Conference on Integration Technology, ICIT 2007, pp. 745–750 (March 2007)

    Google Scholar 

  12. D’Errico, R., Rosini, R., Maman, M.: A performance evaluation of cooperative schemes for on-body area networks based on measured time-variant channels. In: 2011 IEEE International Conference on Communications (ICC), pp. 1–5 (June 2011)

    Google Scholar 

  13. Shah, R., Yarvis, M.: Characteristics of on-body 802.15.4 networks. In: 2nd IEEE Workshop on Wireless Mesh Networks, WiMesh 2006, pp. 138–139 (September 2006)

    Google Scholar 

  14. Smith, D., Miniutti, D., Hanlen, L.: Characterization of the body-area propagation channel for monitoring a subject sleeping. IEEE Transactions on Antennas and Propagation 59(11), 4388–4392 (2011)

    Article  Google Scholar 

  15. Di Renzo, M., Buehrer, R., Torres, J.: Pulse shape distortion and ranging accuracy in uwb-based body area networks for full-body motion capture and gait analysis. In: Global Telecommunications Conference, GLOBECOM 2007, pp. 3775–3780. IEEE (November 2007)

    Google Scholar 

  16. Neirynck, D.: Channel characterisation and physical layer analysis for body and personal area network development. PhD thesis, University of Bristol (2006)

    Google Scholar 

  17. Maman, M., Dehmas, F., D’Errico, R., Ouvry, L.: Evaluating a tdma mac for body area networks using a space-time dependent channel model. In: 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2101–2105 (September 2009)

    Google Scholar 

  18. Hall, P., Hao, Y., Nechayev, Y., Alomalny, A., Constantinou, C., Parini, C., Kamarudin, M., Salim, T., Hee, D., Dubrovka, R., Owadally, A., Song, W., Serra, A., Nepa, P., Gallo, M., Bozzetti, M.: Antennas and propagation for on-body communication systems. IEEE Antennas and Propagation Magazine 49(3), 41–58 (2007)

    Article  Google Scholar 

  19. Prabh, K.S., Hauer, J.H.: Opportunistic Packet Scheduling in Body Area Networks. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567, pp. 114–129. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Srinivasan, K., Levis, P.: Rssi is under appreciated. In: Proceedings of the Third Workshop on Embedded Networked Sensors, EmNets (2006)

    Google Scholar 

  21. Burns, A., Greene, B., McGrath, M., O’Shea, T., Kuris, B., Ayer, S., Stroiescu, F., Cionca, V.: Shimmer #x2122; #x2013; a wireless sensor platform for noninvasive biomedical research. IEEE Sensors Journal 10(9), 1527–1534 (2010)

    Article  Google Scholar 

  22. Corporation, C.: Cc2420 2.4 ghz ieee 802.15.4 / zigbee-ready rf transceiver, http://www.ti.com/lit/gpn/cc2420

  23. Freertos real-time operating system, http://www.freertos.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vallejo, M., Recas, J., Ayala, J.L. (2012). Channel Analysis and Dynamic Adaptation for Energy-Efficient WBSNs. In: Bravo, J., López-de-Ipiña, D., Moya, F. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2012. Lecture Notes in Computer Science, vol 7656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35377-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35377-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35376-5

  • Online ISBN: 978-3-642-35377-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics