Skip to main content

Offline and Online Activity Recognition on Mobile Devices Using Accelerometer Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7657))

Abstract

This paper presents a process for extracting knowledge for physical activity recognition, from accelerometer data provided by mobile devices. Starting from a dataset collected by three different users, knowledge discovery is performed through a phase of feature extraction from raw data, minimizing the number of statistical features and optimizing the classification process. The development and comparison of classifying models over this new dataset, using both offline and online algorithms, is also described. Phases of data acquisition, pre-processing and classification are detailed, and experimental results for different machine learning algorithms are provided. For these results, different evaluation criteria are used, and the best algorithm is selected according to these criteria. Final results show success rates around 98%, while other similar works offer rates around 87%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Buckland, M., Gey, F.: The relationship between recall and precision. Journal of the American Society for Information Science 45(1), 12–19 (1994)

    Article  Google Scholar 

  3. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20(1), 37–46 (1960)

    Article  Google Scholar 

  4. Dietterich, T.G.: Machine Learning for Sequential Data: A Review. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Ermes, M., Pärkka, J., Mantyjarvi, J., Korhonen, I.: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Transactions on Information Technology in Biomedicine: a Publication of the IEEE Engineering in Medicine and Biology Society 12(1), 20–26 (2008)

    Article  Google Scholar 

  6. Ermes, M., Parkka, J., Cluitmans, L.: Advancing from offline to online activity recognition with wearable sensors. In: Conference Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society, pp. 4451–4454 (2008)

    Google Scholar 

  7. Foerster, F., Smeja, M., Fahrenberg, J.: Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Computers in Human Behavior 15(5), 571–583 (1999)

    Article  Google Scholar 

  8. Gyrbr, N., Fbin, k., Homny, G.: An activity recognition system for mobile phones. Mobile Networks and Applications 14(1), 82–91 (2008)

    Article  Google Scholar 

  9. He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and SVM. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 5041–5044. IEEE (October 2009)

    Google Scholar 

  10. Hong, X., Nugent, C., Mulvenna, M., McClean, S., Scotney, B., Devlin, S.: Evidential fusion of sensor data for activity recognition in smart homes. Pervasive and Mobile Computing 5(3), 236–252 (2009)

    Article  Google Scholar 

  11. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data, pp. 10–18 (2010)

    Google Scholar 

  12. Lau, S.L., Knig, I., David, K., Parandian, B., Carius-Dssel, C., Schultz, M.: Supporting patient monitoring using activity recognition with a smartphone. In: The Seventh International Symposium on Wireless Communication Systems (ISWCS 2010) (September 2010)

    Google Scholar 

  13. Lin, W., Sun, M.T., Poovendran, R., Zhang, Z.: Human activity recognition for video surveillance. In: ISCAS, pp. 2737–2740. IEEE (2008)

    Google Scholar 

  14. Maurer, U., Rowe, A., Smailagic, A., Siewiorek, D.: Location and Activity Recognition Using eWatch: A Wearable Sensor Platform. In: Cai, Y., Abascal, J. (eds.) Ambient Intelligence in Everyday Life. LNCS (LNAI), vol. 3864, pp. 86–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Minnen, D., Starner, T.: Recognizing and discovering human actions from on-body sensor data. In: Proc. of the IEEE International Conference on Multimedia and Expo., pp. 1545–1548 (2005)

    Google Scholar 

  16. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-series data. International Journal of Computer Research 10, 49–61 (2001)

    Google Scholar 

  17. Olgún, D.O., Pentland, A.: Human activity recognition: Accuracy across common locations for wearable sensors. In: Proc. 10th Int. Symp. Wearable Computers, pp. 11–13 (2006)

    Google Scholar 

  18. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence(IAAI. pp. 1541–1546. AAAI Press (2005)

    Google Scholar 

  19. Wang, S., Yang, J., Chen, N., Chen, X., Zhang, Q.: Human Activity Recognition with User-Free Accelerometers in the Sensor Networks, vol. 2, pp. 1212–1217 (2005)

    Google Scholar 

  20. Yang, J.: Toward physical activity diary: Motion recognition using simple acceleration features with mobile phones. Data Processing, 1–9 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duque, A., Ordóñez, F.J., de Toledo, P., Sanchis, A. (2012). Offline and Online Activity Recognition on Mobile Devices Using Accelerometer Data. In: Bravo, J., Hervás, R., Rodríguez, M. (eds) Ambient Assisted Living and Home Care. IWAAL 2012. Lecture Notes in Computer Science, vol 7657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35395-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35395-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35394-9

  • Online ISBN: 978-3-642-35395-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics