Skip to main content

Supervised Image Segmentation across Scanner Protocols: A Transfer Learning Approach

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7588))

Included in the following conference series:

Abstract

Supervised classification techniques are among the most powerful methods used for automatic segmentation of medical images. A disadvantage of these methods is that they require a representative training set and thus encounter problems when the training data is acquired e.g. with a different scanner protocol than the target segmentation data. We therefore propose a framework for supervised biomedical image segmentation across different scanner protocols, by means of transfer learning. We establish a transfer learning algorithm for classification, which can exploit a large amount of labeled samples from different sources in addition to a small amount of samples from the target source. The algorithm iteratively re-weights the contribution of training samples from these different sources based on classification by a weighted SVM classifier. We evaluate this technique by performing tissue classification on MRI brain data from four substantially different scanning protocols. For a small number of labeled samples from a single image obtained with the same protocol, the proposed transfer learning method outperforms classification on all available training data as well as classification based on the labeled target samples only. The classification errors for these cases can be reduced with up to 40 percent compared to traditional classification techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischl, B., Salat, D., van der Kouwe, A., Makris, N., Ségonne, F., Quinn, B., Dale, A.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69–S84 (2004)

    Google Scholar 

  2. Cocosco, C., Zijdenbos, A., Evans, A.: A fully automatic and robust brain MRI tissue classification method. Medical Image Analysis 7(4), 513–527 (2003)

    Article  Google Scholar 

  3. Mayer, A., Greenspan, H.: An adaptive mean-shift framework for MRI brain segmentation. IEEE Transactions on Medical Imaging 28(8), 1238–1250 (2009)

    Article  Google Scholar 

  4. Grabowski, T., Frank, R., Szumski, N., Brown, C., Damasio, H.: Validation of partial tissue segmentation of single-channel magnetic resonance images of the brain. NeuroImage 12(6), 640–656 (2000)

    Article  Google Scholar 

  5. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  6. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  7. Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 193–200. ACM (2007)

    Google Scholar 

  8. Chang, C., Lin, C.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

    Google Scholar 

  9. Hofman, A., Breteler, M., Van Duijn, C., Janssen, H., Krestin, G., Kuipers, E., Stricker, B., Tiemeier, H., Uitterlinden, A., Vingerling, J., et al.: The Rotterdam Study: 2010 objectives and design update. European Journal of Epidemiology 24(9), 553–572 (2009)

    Article  Google Scholar 

  10. Worth, A.: The Internet Brain Segmentation Repository (IBSR)

    Google Scholar 

  11. Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Opbroek, A., Ikram, M.A., Vernooij, M.W., de Bruijne, M. (2012). Supervised Image Segmentation across Scanner Protocols: A Transfer Learning Approach. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2012. Lecture Notes in Computer Science, vol 7588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35428-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35428-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35427-4

  • Online ISBN: 978-3-642-35428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics