
ar
X

iv
:1

51
2.

06
98

9v
1

 [
cs

.D
C

]
 2

2
D

ec
 2

01
5

On the Impact of Identifiers on Local Decision⋆

Pierre Fraigniaud1⋆⋆, Magnús M. Halldórsson2⋆ ⋆ ⋆, and Amos Korman∗∗

1 CNRS and University Paris Diderot, France.

2 ICE-TCS, School of Computer Science, Reykjavik University, Iceland.

Abstract. The issue of identifiers is crucial in distributed computing.
Informally, identities are used for tackling two of the fundamental diffi-
culties that are inherent to deterministic distributed computing, namely:
(1) symmetry breaking, and (2) topological information gathering. In the
context of local computation, i.e., when nodes can gather information
only from nodes at bounded distances, some insight regarding the role
of identities has been established. For instance, it was shown that, for
large classes of construction problems, the role of the identities can be
rather small. However, for the identities to play no role, some other kinds
of mechanisms for breaking symmetry must be employed, such as edge-
labeling or sense of direction. When it comes to local distributed decision
problems, the specification of the decision task does not seem to involve
symmetry breaking. Therefore, it is expected that, assuming nodes can
gather sufficient information about their neighborhood, one could get rid
of the identities, without employing extra mechanisms for breaking sym-
metry. We tackle this question in the framework of the LOCAL model.

Let LD be the class of all problems that can be decided in a constant
number of rounds in the LOCAL model. Similarly, let LD∗ be the class
of all problems that can be decided at constant cost in the anonymous
variant of the LOCAL model, in which nodes have no identities, but each
node can get access to the (anonymous) ball of radius t around it, for any
t, at a cost of t. It is clear that LD∗ ⊆ LD. We conjecture that LD∗ = LD.
In this paper, we give several evidences supporting this conjecture. In
particular, we show that it holds for hereditary problems, as well as
when the nodes know an arbitrary upper bound on the total number
of nodes. Moreover, we prove that the conjecture holds in the context
of non-deterministic local decision, where nodes are given certificates
(independent of the identities, if they exist), and the decision consists in
verifying these certificates. In short, we prove that NLD∗ = NLD.

Keywords: Distributed complexity; locality; identities; decision prob-
lems; symmetry breaking; non-determinism.

⋆ This work is supported by the Jules Verne Franco-Icelandic bilateral scientific frame-
work.

⋆⋆ E-mail: {pierre.fraigniaud,amos.korman}@liafa.univ-paris-diderot.fr. Ad-
ditional support from ANR project DISPLEXITY, and INRIA project GANG.

⋆ ⋆ ⋆ Supported by Iceland Research Foundation grant-of-excellence 90032021. E-mail:
mmh@ru.is.

http://arxiv.org/abs/1512.06989v1

1 Introduction

1.1 Background and Motivation

The issue of identifiers is crucial in distributed computing [2,33]. Indeed, the
correct operation of deterministic protocols often relies on the assumption that
each processor u comes with with a unique identity, Id(u) [9]. Informally, in
network computing, such an identity assignment is crucial for tackling two of
the fundamental difficulties that are inherent to distributed computing, namely:
(1) symmetry breaking, and (2) topological information gathering.

The use of identities for tackling the above two difficulties is illustrated well in
the context of local algorithms [30,32]. Indeed, in the LOCAL model [35], an al-
gorithm that runs in t communication rounds, assuming an identity assignment,
can be viewed as composed of two parts: first, collecting at each node u, the ball
B(u, t) of radius t around it (together with the inputs of nodes), and second,
deciding the output at u based solely on the information in B(u, t). To achieve
these two tasks, one should first obtain the ball B(u, t), which may not be pos-
sible if the underlying graph is anonymous (i.e., without identities). Moreover,
even if obtaining the ball is possible, e.g., if the structure of the graph allows it,
the absence of unique identities given to the nodes may prevent the algorithm
from breaking symmetry. For example, in the absence of unique identities, it is
impossible to design a distributed deterministic coloring algorithm, even for the
symmetric connected graph composed of two nodes only. In fact, to the best of
our knowledge, all algorithms in the LOCAL model are designed assuming the
presence of pairwise distinct identities or some other type of node-labeling or
edge-labeling, including, e.g., sense of direction [5,22,29,31,33,34].

The seminal paper of Naor and Stockmeyer [33] provides an important insight
regarding the role of identities in local computation. Informally, they show that,
even though identities are necessary, in many cases the actual values of identities
is not crucial, and only their relative order matters. Specifically, [33] shows that
for a particular class of problems, called LCL (for Locally Checkable Languages),
if there exists a local algorithm that, for any identity assignment, constructs an
instance of a problem in LCL in constant number of rounds, then there exists
an order invariant3 algorithm for that problem that runs in the same number
of rounds. LCL restricts its concern to graphs with constant maximum degree,
and to problems with a constant number of inputs. The assumption on the size
of the inputs of problems in LCL was shown necessary in [21], by exhibiting
a natural problem that is locally checkable, has unbounded input size, can be
solved in 1 round with identities, but cannot be solved in constant time by any
order invariant algorithm. The role of identities can also be gauged by comparing
their impact to that of “orientation mechanisms”. For instance, Göös et al. [20]
have shown that for a large class of optimization problems, called PO-checkable

3 Essentially, an order invariant algorithm uses the actual values of the identities only
to impose an ordering between the nodes, that is, it behaves the same for any two
identity assignments that preserve the total order between the nodes. For more
details refer to [33].

problems, local algorithms do not benefit from any kind of identifiers: if a PO-
checkable optimization problem can be approximated with a local algorithm,
the same approximation factor can be achieved in anonymous networks if the
network is provided with a port-numbering and an orientation.

The discussion above involved distributed construction tasks, including, e.g.,
graph coloring [5,29,30,33,34], maximal independent set [30,34], and maximal
matching [22,31]. When it comes to distributed decision tasks [13,14], symmetry
breaking issues do not however seem to play a role. Informally, a decision task
requires the nodes to “collectively decide” whether the given instance (i.e., a
graph with inputs to the nodes) satisfies some specific properties. For instance,
deciding coloring requires, given a colored graph, to check whether this graph is
properly colored. The meaning of “collectively decide” is as follows. On a legal
instance, all nodes should output “yes”, and on an illegal one, at least one node
should output “no”. Note that it is not really important whether this node is
unique or not; hence, this specification does not inherently require any symmetry
breaking. Therefore, assuming that each node u can obtain the ball B(u, t), it
makes sense that the assumption of having an identity assignment may not be
crucial for achieving correct decision.

1.2 Model and Objectives

We tackle the question of whether identities play a role in decision problems in
the framework of the aforementioned LOCAL model [35], which is a standard
distributed computing model capturing the essence of locality. Recall that, in
this model, processors are nodes of a connected network G = (V (G), E(G)),
have pairwise distinct identities, and have inputs. More formally, a configuration

is a triplet (G,x, Id) where G is a connected graph, every node v ∈ V (G) is
assigned as its local input a binary string x(v) ∈ {0, 1}∗, and Id(v) denotes
the identity of node v. (In some problems, the local input of every node is
empty, i.e., x(v) = ǫ for every v ∈ V (G), where ǫ denotes the empty binary
string). Processors are woken up simultaneously, and computation proceeds over
the input configuration (G,x, Id) in fault-free synchronous rounds during which
every processor exchanges messages of unlimited size with its neighbors in the
underlying network G, and performs arbitrary individual computations on its
data. In many cases, the running time of an algorithm is measured with respect
to the size n of G: the running time of an algorithm is defined as the maximum
number of rounds it takes to terminate at all nodes, over all possible n-node
networks. Similarly to [21,33], we consider algorithms whose running time is
independent of the size of the network, that is they run in constant time.

Let B(u, t) be the ball centered at u, of radius t, excluding the edges between
two nodes at distance exactly t from u. As mentioned before, without loss of
generality, any algorithm running in time t = O(1) in the LOCAL model consists
of:

1. Collecting (in t rounds) at every node u the structure of the ball B(u, t)
together with all the inputs x(v) and identities Id(v) of these nodes, and,

2. Performing some individual computation at every node.

We define the anonymous LOCAL model similarly to the LOCAL model, ex-
cept that nodes have no identities. More precisely, an input configuration in
the anonymous LOCAL model is just a pair (G,x). An algorithm running in
time t = O(1) in the anonymous LOCAL model consists of:

1. Getting at every node u a snapshot of the structure of the ball B(u, t) to-
gether with all the inputs of the nodes in this ball, and,

2. Performing some individual computation at every node.

Note that the anonymous LOCAL model does not explicitly involve communica-
tions between nodes. Instead, it implicitly assumes that the underlying network
supports the snapshot operation. Clearly, this model is not stronger than the
LOCAL model, and possibly even strictly weaker, since a node u can no longer
base its individual computation on the identities of the nodes in the ball B(u, t).
One can think of various other “anonymous” models, i.e., which do not involve
node identities. In particular, there is a large literature on distributed comput-
ing in networks without node identities, where symmetry breaking is enabled
thanks to locally disjoint port numbers (see, e.g., [18]). We consider the anony-
mous LOCAL model to isolate the role of node identities from other symmetry
breaking mechanisms.4 Our aim is to compare the power of the anonymous
LOCAL model with the standard LOCAL model in order to capture the impact
of identities on local distributed decision.

Recall from [13] that a distributed language is a decidable collection L of
configurations. (Since an undecidable collection of configurations remains unde-
cidable in the distributed setting too, we consider only decidable collections of
configurations). A typical example of a language is

Coloring = {(G,x) | ∀v ∈ V (G), ∀w ∈ N(v),x(v) 6= x(w)} ,

where N(v) denotes the (open) neighborhood of v, that is, all nodes at distance
exactly 1 from v. Still following the terminology from [13], we say that a dis-
tributed algorithm A decides a distributed language L if and only if for every
configuration (G,x), every node of G eventually terminates and outputs “yes”
or “no”, satisfying the following decision rules:

– if (G,x) ∈ L, then each node outputs “yes”;
– if (G,x) /∈ L, then at least one node outputs “no”.

In the (non-anonymous) LOCAL model, these two rules must be satisfied for
every identity assignment. That is, all processes must output “yes” on a legal
instance, independent of their identities. And, on an illegal instance, at least

4 In some sense, the anonymous LOCAL model is the strongest model among all mod-
els without node identities. Indeed, there are network problems that can be solved in
the anonymous LOCAL model which cannot be solved in the aforementioned model
that is based on locally disjoint port numbers. A simple example is to locally detect
the absence of a 3-node cycle.

one node must output “no”, for every identity assignment. Note that this node
may potentially differ according to the identity assignment. Some languages
can be decided in constant time (e.g., Coloring), while others can easily be
shown not to be decidable in constant time (e.g., “is the network planar?”).
In contrast to the above examples, there are some languages whose status is
unclear. To elaborate on this, consider the particular case where it is required
to decide whether the network belongs to some specified family F of graphs. If
this question can be decided in a constant number of communication rounds,
then this means, informally, that the family F can somehow be characterized
by relatively simple conditions. For example, a family F of graphs that can be
characterized as consisting of all graphs having no subgraph from C, where C
is some specified finite set of graphs, is obviously decidable in constant time.
However, the question of whether a family of graphs can be characterized as
above is often non-trivial. For example, characterizing cographs as precisely the
graphs with no induced P4, attributed to Seinsche [36], is not easy, and requires
nontrivial usage of modular decomposition.

We are now ready to define one of our main subjects of interest, the classes
LD and LD∗. Specifically, LD (for local decision) is the class of all distributed
languages that can be decided by a distributed algorithm that runs in a constant
number of rounds in the LOCAL model [13]. Similarly, LD∗, the anonymous
version of LD, is the class of all distributed languages that can be decided by a
distributed algorithm that runs in a constant number of rounds in the anonymous
LOCAL model. By definition, LD∗ ⊆ LD. We conjecture that

LD∗ = LD.

In this paper, we provide several evidences supporting this conjecture. In ad-
dition, we investigate the non-deterministic version of these classes, and prove
that they coincide. More specifically, a distributed verification algorithm is a
distributed algorithm A that gets as input, in addition to a configuration (G,x),
a global certificate vector y, i.e., every node v of a graph G gets as input two
binary strings, an input x(v) ∈ {0, 1}∗ and a certificate y(v) ∈ {0, 1}∗. A verifi-
cation algorithm A verifies L if and only if for every input configuration (G,x),
the following hold:

– if (G,x) ∈ L, then there exists a certificate y such that every node outputs
“yes”;

– if (G,x) /∈ L, then for every certificate y, at least one node outputs “no”.

Again, in the (non-anonymous) LOCAL model, these two rules must be satisfied
for every identity assignment, but the certificates must be the same regardless of
the identities. We now recall the class NLD, for non-deterministic local decision,
as defined in [13]: it is the class of all distributed languages that can be verified in
a constant number of rounds in the LOCAL model. Similarly, we define NLD∗,
the anonymous version of NLD, as the class of all distributed languages that can
be verified in a constant number of rounds in the anonymous LOCAL model.
By definition, NLD∗ ⊆ NLD.

1.3 Our Results

In this paper, we give several evidences supporting the conjecture LD∗ = LD. In
particular, we show that it holds for languages defined on paths, with a finite set
of input values. More generally, we show that the conjecture holds for hereditary
languages, that is, languages closed under node deletion. Regarding arbitrary
languages, and arbitrary graphs, we prove that the conjecture holds assuming
that every node knows an upper bound on the total number of nodes in the
input graph. (This upper bound can be arbitrary, and may not be the same for
all nodes).

Moreover, we prove that equality between non-anonymous decision and anony-
mous decision holds in the context of non-deterministic local decision, where
nodes are given certificates (independent of the identities, if they exist), and
the decision consists in verifying these certificates. More precisely, we prove that
NLD∗ = NLD. This latter result is obtained by characterizing both NLD and
NLD∗.

1.4 Related Work

The question of how to locally decide (or verify) languages has received quite a
lot of attention recently. Inspired by classical computation complexity theory, it
was suggested in [13] that the study of decision problems may lead to new struc-
tural insights also in the more complex distributed computing setting. Indeed,
following that paper, which focused on the LOCAL model, efforts were made
to form a fundamental computational complexity theory for distributed decision
problems in various other aspects of distributed computing [13,15,16,17].

The classes LD, NLD and BPLD defined in [13] are the distributed ana-
logues of the classes P, NP and BPP, respectively. The paper provides structural
results, developing a notion of local reduction and establishing completeness
results. One of the main results is the existence of a sharp threshold for ran-
domization, above which randomization does not help (at least for hereditary
languages). More precisely, the BPLD classes were classified into two: below and
above the randomization threshold. In [14], the authors show that the heredi-
tary assumption can be lifted if we restrict our attention to languages on path
topologies. These two results from [13,14] are used in the current paper in a
rather surprising manner. The authors in [14] then “zoom” into the spectrum of
classes below the randomization threshold, and defines a hierarchy of an infinite
set of BPLD classes, each of which is separated from the class above it in the
hierarchy.

The precise knowledge of the number of nodes n was shown in [13] to be of
large impact on non-deterministic decision. Indeed, with such a knowledge every
language can be decided non-deterministically in the model of NLD. We note,
however, that the knowledge of an arbitrary upper bound on n (as assumed here
in one of our results) seems to be a much weaker assumption, and, in particular,
will not suffice for non-deterministically deciding all languages. In the context

of construction problems, it was shown in [28] that in many case, the knowledge
of n (or an upper bound on n) is not essential.

The original theoretical basis for non-determinism in local computation was
laid by the theory of proof-labeling schemes (PLS) [19,24,25,26] originally defined
in [26]. As mentioned, this notion resembles the notion of NLD, but differs in
the role identities play. Specifically, in PLS the designer of the algorithm may
base the certificates’ (called labels in the terminology of PLS) construction on
the given identity assignment. In contrast, in the model of NLD, the certificates
must be the same regardless of the identities of nodes. Indeed, this difference is
significant: while every language can be verified by a proof labeling scheme, not
every language belongs to NLD [13]. These notions also bear some similarities
to the notions of local computation with advice [7,10,11,12], local detection [1],
local checking [4], or silent stabilization [8]. In addition, as shown later on, the
notion of NLD is related also to the theory of lifts or covers [2,3].

Finally, the classification of decision problems in distributed computing has
been studied in several other models. For example, [6] and [23] study specific
decision problems in the CONGEST model. In [25], the authors study MST
verification in the PLS sense but under the CONGEST model of communication.
In addition, decision problems have been studied in the asynchrony discipline
too, specifically in the framework of wait-free computation [16,17] and mobile

agents computing [15]. In the wait-free model, the main issues are not spatial
constraints but timing constraints (asynchronism and faults). The main focus of
[17] is deterministic protocols aiming at studying the power of the “decoder”,
i.e., the interpretation of the results. While this paper essentially considers the
AND-checker (since a global “yes” corresponds to all processes saying “yes”),
[17] deals with other interpretations, including more values (not only “yes” and
“no”), with the objective of designing checkers that use the smallest number of
values.

2 Deterministic Decision

We conjecture that LD = LD∗. A support to this conjecture is that it holds for
a large class of languages, namely for all hereditary languages, that is languages
closed under node deletion. For instance, Coloring and MIS are hereditary, as
well as all languages corresponding to hereditary graph families, such as planar
graphs, interval graphs, forests, chordal graphs, cographs, perfect graphs, etc.

Theorem 1. LD∗ = LD for hereditary languages.

To prove the theorem, it is sufficient to show that LD ⊆ LD∗ for hereditary
languages. This immediately follows from the statement and proof of Theo-
rem 3.3 in [13]. Indeed, let A be a non-anonymous local algorithm deciding L.
This deterministic algorithm is in particular a randomized algorithm, with suc-
cess probabilities p = 1 for legal instances, and q = 1 for illegal instance. That
is, algorithm A is a (1, 1)-decider for L, according to the definition in [13]. Since
L is hereditary, and since p2+q > 1, the existence of A implies the existence of a

specific deterministic anonymous local algorithm D for L. Indeed, the algorithm
D described in the proof of Theorem 3.3 in [13] is in fact anonymous: it simply
collects the ball B(u, t) of radius t around each node u for some constant t, and
u then decides “yes” or “no” according to whether B(u, t) ∈ L or not, regardless
of the identities.

A similar proof, based on Theorem 4.1 in [14], enables to establish the fol-
lowing:

Theorem 2. LD∗ = LD for languages defined on the set of paths, with a finite

set of input values.

Another evidence supporting the conjecture LD = LD∗ is that it holds assum-
ing that nodes have access to a seemingly weak oracle. Specifically, this oracle,
denoted N, simply provides each node with an arbitrarily large upper bound on
the total number of nodes in the actual instance. (It is not assumed that all the

upper bounds provided to nodes are the same). We denote by LD∗N the class of
languages that can be decided by an anonymous local algorithm having access
to oracle N, and we prove the following:

Theorem 3. LD∗ ⊆ LD ⊆ LD∗N.

Proof. We just need to prove that LD ⊆ LD∗N. Let L ∈ LD, and let A be a
local (non-anonymous) algorithm deciding L. Assume that the running time of
A is t. We transform A into an anonymous algorithm A′ deciding L in time t,
assuming each node u in a given input G has an access to the oracle N, i.e., it
knows an arbitrary upper bound nu on the number of nodes in G. Algorithm
A′ works as follows. Each node u collects the ball B(u, t) of radius t around it.
Then, for every possible assignment of identities to the nodes of B(u, t) taken
from the range [1, nu], node u simulates the behavior of the non-anonymous
algorithm A on the ball B(u, t) with the corresponding identities. If, in one of
these simulations, algorithm A decides “no”, then A′ decides “no”. Otherwise,
A′ decides “yes”.

We now prove the correctness of A′. If the input (G,x) ∈ L, then A accepts
it for every identity assignment to the nodes of G. Therefore, since, for every
node u, every possible identity assignment to the nodes of the ball B(u, t) can
be extended to an identity assignment to all the nodes of G, all the simulations
of A by u return “yes”, and hence A′ accepts L as well. On the other hand, if
(G,x) /∈ L then A rejects it for every identity assignment to the nodes of G.
That is, for every identity assignment to the nodes of G, at least one node u
decides “no”. (Note that, this node u may be different for two different identity
assignments). Let us fix one identity assignment Id to the nodes of G, in the
range [1, n], and let u be one node that decides “no” for Id. Let BId(u, t) be
the ball B(u, t) with the identities of the nodes given by Id. In A′, since u tries
all possible identity assignments of the ball B(u, t) in the range [1, nu] with
n ≤ nu, in one of its simulations of A, node u will simulate A on BId(u, t).
In this simulation, node u decides “no”, and hence algorithm A′ rejects L as
well. ⊓⊔

Note that the inclusion LD ⊆ LD∗N holds when one imposes no restrictions
on the individual sequential running time. However, the transformation of a (non-
anonymous) local algorithm into an anonymous local algorithm as described in
the proof of Theorem 3 is very expensive in terms of individual computation.
Indeed, the number of simulations of the original local algorithm A by each
node u can be as large as

(

nu

nB

)

where nu is the upper bound on n given by
the oracle N, and nB is the number of nodes in the ball B(u, t). This bound
can be exponential in n even if the oracle provides a good approximation of

n (even if it gives precisely n). It would be nice to establish LD ⊆ LD∗N by
using a transformation not involving a huge increase in the individual sequential
computation time.

3 Non-deterministic Decision

In the previous section, we have seen several evidences supporting the conjecture
that LD∗ = LD, but whether it holds or not remains to be proved. In this section,
we turn our attention to the non-deterministic variants of these two classes, and
show that they coincide. More formally, we have:

Theorem 4. NLD∗ = NLD.

Proof. To prove NLD∗ = NLD, it is sufficient to prove NLD ⊆ NLD∗. To estab-
lish this inclusion, we provide a sufficient condition for NLD∗-membership, and
prove that it is a necessary condition for NLD-membership.

Let I = (G,x) and I ′ = (G′,x′) be two input instances. A homomorphism

from I to I ′ is a function f : V (G) → V (G′) that preserves the edges of G as
well as the inputs to the nodes. Specifically,

{u, v} ∈ E(G) ⇒ {f(u), f(v)} ∈ E(G′),

and f maps every node u ∈ V (G) to a node f(u) ∈ V (G′) satisfying

x′(f(u)) = x(u).

For instance, assuming the nodes have no inputs, and labeling the nodes of the
n-node cycle Cn by consecutive integers from 0 to n − 1, modulo n, then the
map f : C8 → C4 defined by f(u) = u mod 4 is a homomorphism. The trivial
map g : C8 → K2 defined by g(u) = u mod 2, where K2 is the 2-node clique, is
also a homomorphism. To establish conditions for NLD- and NLD∗-membership,
we require the involved homomorphisms to preserve the local neighborhood of a
node, and define the notion of t-local isomorphism.

Let t be a positive integer. We say that I is t-local isomorphic to I ′ if and only
if there exists an homomorphism f from I to I ′ such that, for every node v ∈
V (G), f restricted to BG(v, t) is an isomorphism from BG(v, t) to BG′(f(v), t).
We call such a homomorphism f a t-local isomorphism.

Note that a homomorphism is not necessarily a 1-local isomorphism. For
instance, the aforementioned map f : C8 → C4 defined by f(u) = u mod 4 is a

1-local isomorphism, but the map g : C8 → K2 defined by g(u) = u mod 2 is not
a 1-local isomorphism. To be a 1-local isomorphism, a homomorphism should
also insure isomorphism between the balls of radius 1. Also observe that any
t-local isomorphism f : G → G′ is onto (because if a node of G′ has no pre-
image, then neither do its neighbors have a pre-image, since homomorphisms
preserve edges, and so forth). To avoid confusion, it is thus useful to keep in
mind that, informally, a t-local isomorphism goes from a “larger” graph to a
“smaller” graph.

Definition 1. For positive integer t, we say that L is t-closed under lift if, for
every two instances I, I ′ such that I is t-local isomorphic to I ′, we have:

I ′ ∈ L ⇒ I ∈ L.

So, informally, Defintion 1 states that, for a language L to be t-closed under
lift, if a “smaller” instance I ′ is in L then any “larger” instance I that is a lift
of I ′, i.e., satisfying that I is t-local isomorphic to I ′, must also be in L. The
following lemma gives a sufficient condition for NLD∗-membership.

Lemma 1. Let L be a language. If there exists t ≥ 1 such that L is t-closed
under lift, then L ∈ NLD∗.

Proof. Let L be a language, and assume that there exists t ≥ 1 such that L is
t-closed under lift. We describe an anonymous non-deterministic local algorithm
A deciding L, and performing in t rounds. The certificate of each node v is
a triple y(v) = (i, G′,x′) where G′ is an n-node graph with nodes labeled by
distinct integers in [1, n] = {1, . . . , n}, i ∈ [1, n], and x′ is an n-dimensional
vector. Informally, the certificates are interpreted by A as follows. The graph G′

is supposed to be a “map” of G, that is, G′ is interpreted as an isomorphic copy
of G. The integer i is the label of the node in G′ corresponding to node v in G.
Finally, x′ is interpreted as the input of the nodes in G′.

The algorithm A performs as follows. Every node v gets BG(v, t), the ball of
radius t around it; hence, in particular, it collects all the certificates of all the
nodes at distance at most t from it. Then, by comparing its own certificate with
the ones of its neighbors, it checks that the graph G′, and the input x′ in its
certificate, are identical to the ones in the certificates of its neighbors. It also ver-
ifies consistency between the labels and the nodes in its ball of radius t. That is,
it checks whether the labels and inputs in the certificate of the nodes in BG(v, t)
are as described by its certificate. Whenever a node fails to pass any of these
tests, it outputs “no”. Otherwise it output “yes” or “no” according to whether
(G′,x′) ∈ L or not, respectively. (This is doable because we are considering
languages that are decidable in the usual sense of sequential computation).

We show that A performs correctly. If (G,x) ∈ L, then by labeling the
nodes in G by distinct integers from 1 to |V (G)|, and by providing the node v
labeled i with y(v) = (i, G,x), the algorithm A output “yes” at all nodes, as
desired. Consider now a instance I = (G,x) /∈ L. Assume, for the purpose of
contradiction that there exists a certificate y leading all nodes to output “yes”.

Let f : V (G) → V (G′) be defined by f(v) = i where i is the label of v in
its certificate. Since y passes all tests of A, it means that (1) y(v) = (i, G′,x′)
where the instance I ′ = (G′,x′) is the same for all nodes, (2) f restricted to
BG(v, t) is an isomorphism from BG(v, t) to BG′(f(v), t), for every node v, and
(3) (G′,x′) ∈ L. In view of (2), I is t-local isomorphic to I ′. Therefore, (3) implies
that I = (G,x) ∈ L, because L is t-closed under lift. This is in contradiction with
the actual hypothesis (G,x) /∈ L. Thus, for each certificate y, there must exist
at least one node that outputs “no”. As a consequence, A is a non-deterministic
algorithm deciding L, and thus L ∈ NLD∗. ⋄

The following lemma shows that the aforementioned sufficient condition for
NLD∗-membership is a necessary condition for NLD-membership.

Lemma 2. Let L be a language. If L ∈ NLD, then there exists t ≥ 1 such that

L is t-closed under lift.

Proof. Let L be a language in NLD, and let A be a non-deterministic (non-
anonymous) local algorithm deciding L. Assume, for the purpose of contradiction
that, for any integer t ≥ 1, L is not t-closed under lift. That is, for any t, there
exist two input instances I, I ′ such that I is t-local isomorphic to I ′, with I /∈ L
and I ′ ∈ L. Assume that A runs in t rounds. Without loss of generality, we can
assume that t ≥ 1. Let I = (G,x) /∈ L and I ′ = (G′,x′) ∈ L satisfying I is
t-local isomorphic to I ′. Since I ′ ∈ L, there exists a certificate y′ such that when
A is running on I ′ with certificate y′, every node output “yes” for every identity
assignment. Since I is t-local isomorphic to I ′, there exists an homomorphism
f : I → I ′ such that, for every node v ∈ G, f restricted to BG(v, t) is an
isomorphism from BG(v, t) to BG′(f(v), t). Let y be the certificate for I defined
by y(v) = y′(f(v)). Consider the execution of A running on I with certificate y,
and some arbitrary identity assignment Id.

Since A performs in t rounds, the decision at each node v is taken accord-
ing to the inputs, certificates, and identities in the ball BG(v, t), as well as the
structure of this ball. By the nature of the homomorphism f , and by the defi-
nition of certificate y, the structure, inputs and certificates of the ball BG(v, t),
are identical to the corresponding structure, inputs and certificates of the ball
BG′(f(v), t). Balls may however differ in the identities of their nodes. So, let v0
be the node in G deciding “no” for (G,x) with certificate y. There exists such
a node since I /∈ L. Let v′

0
= f(v0), and assign the same identities to the nodes

in BG′(v′0, t) as their corresponding nodes in BG(v0, t). Arbitrarily extend this
identities to an identity assignment Id′ to the whole graph G′. By doing so, the
two balls are not only isomorphic, but every node in BG(v0, t) has the same
input, certificate and identity as its image in BG′(v′0, t). Therefore, the decision
taken by A at v0 ∈ G under Id is the same as its decision at v′

0
∈ G′ under Id′.

This is in contradiction to the fact that v0 decides “no” while v′0 decides “yes”.
⋄

Lemmas 1 and 2 together establish the theorem. ⊓⊔

The proof of Lemma 1 also provides an upper bound on the size of the
certificates for graph languages in NLD, that is, for languages in NLD with no

input. (This includes, e.g., recognition of interval graphs, and recognition of
chordal graphs). Indeed, given L ∈ NLD, Algorithm A in the proof of Lemma 1
verifies L using a certificate at each node which is essentially an isomorphic copy
of the input instance (G,x), with nodes labeled by consecutive integers in [1, n].
If L is a graph language, then there is no input x, and thus the size of the
certificates depends only on the size of the graph. More precisely, we have:

Corollary 1. Let L ∈ NLD be a graph language. There exists an algorithm

verifying L using certificates of size O(n2) bits at each node of every n-node
graph in L.

We now argue that the above bound is tight, that is, we prove the following.

Proposition 1. There exists a graph language L ∈ NLD such that every algo-

rithm verifying L requires certificates of size Ω(n2) bits.

Proof. Recall that [26] showed that there exists a graph language for which every
proof labeling scheme (PLS) requires labels of size Ω(n2) bits (the proof of this
latter result appears in a detailed version [27]). Still in the context of PLS, [19]
showed that this lower bound holds for two natural graph families: specifically,
[19] showed that verifying symmetric graphs requires labels of size Ω(n2) bits,
and verifying non-3 colorable graphs requires almost the same size of labels,
specifically, Ω(n2/ logn) bits. Note that the certificate size required for verifying
a language in NLD is at least as large as the minimum label size required for
verifying the language via a proof labeling scheme. Unfortunately, however, one
cannot obtain our claim directly from the aforementioned results since it turns
out that neither of the two graph languages (namely, symmetric graphs and
non-3 colorable graphs) belongs to NLD.

We therefore employ an indirect approach. Specifically, consider a graph G.
We say that H is a seed of G if there exists a 1-local isomorphism from G to H .
Suppose F is a family of graphs. Let Seed-F denote the family of graphs G, for
which there exists a seed of G that belongs to F . Then, by definition, Seed-F is
1-closed under lift. Indeed, assume that there is a 1-local isomorphism g from G′

to G, and let H ∈ F be a seed of G that belongs to F . Then let f be the 1-local
isomorphism from G to H . We have that f ◦ g is a 1-local isomorphism from
G′ to H , because, for every u ∈ V (G′), BG′(u, 1) is isomorphic to BG(g(u), 1),
which in turn is isomorphic to BH(f(g(u)), 1). Thus H is also a seed of G′. Seed-
F is therefore in NLD. Now, in the proof of corollary 2.2 in [27], the authors
construct, for every integer n, a family Fn of n-node graphs that requires proof
labels of size Ω(n2). Note that for every prime integer n′, a graph G of size n′

belongs to Fn′ if and only if it belongs to Seed-Fn′ . Therefore, there exists a
graph language, namely, Seed-Fn, that requires certificates of size Ω(n2) bits (at
least for prime n’s). ⊓⊔

4 Conclusion

Again, in this paper, we provide some evidences supporting the conjecture LD∗ =
LD. For instance, Theorem 3 shows that if every node knows any upper bound

on the number of nodes n, then all languages in LD can be decided in the
anonymous LOCAL model. One interesting remark about the LOCAL model
is that it is guaranteed that at least one node has an upper bound on n. This
is for instance the case of the node with the largest identity. In the anonymous
LOCAL model, however, there is no such guarantee. Finding a language whose
decision would be based on the fact that one node has an upper bound on n
would disprove the conjecture LD∗ = LD. Nevertheless, it is not clear whether
such a problem exists.

In this paper, we also prove that NLD∗ = NLD, that is, our conjecture holds
for the non-deterministic setting. It is worth noticing that [13] proved that there
exists an NLD-complete problem under the local one-to-many reduction. It is
not clear whether such a problem exists for NLD∗. Indeed, the reduction in the
completeness proof of [13] relies on the aforementioned guarantee that, in the
LOCAL model, at least one node has an upper bound on n.

References

1. Y. Afek, S. Kutten, and M. Yung. The local detection paradigm and its applications
to self stabilization. Theoretical Computer Science, 186(1-2):199–230, 1997.

2. D. Angluin. Local and Global Properties in Networks of Processors. In Proc.
Twelfth ACM Symp. on Theory of Computing (STOC), 82–93, 1980.

3. A. Amit, N. Linial, J. Matousek, and E. Rozenman. Random lifts of graphs. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), 883–894, 2001.

4. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-Stabilization By Local Check-
ing and Correction. In Proc. IEEE Symp. on the Foundations of Computer Science
(FOCS), 1991, 268–277.

5. L. Barenboim and M. Elkin. Distributed (∆+1)-coloring in linear (in delta) time.
In Proc. 41st ACM Symp. on Theory of computing (STOC), 111–120, 2009.

6. A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D.
Peleg and R. Wattenhofer. Distributed Verification and Hardness of Distributed
Approximation. In Proc. 43rd ACM Symp. on Theory of Computing (STOC),
2011.

7. D. Dereniowski and A. Pelc. Drawing maps with advice. Journal of Parallel and
Distributed Computing,72:132-143, 2012.

8. S. Dolev, M. Gouda, and M. Schneider. Requirements for silent stabilization. Acta
Informatica, 36(6), 447–462, 1999.

9. R.G. Gallager, P.A. Humblet, P.M. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Trans. on Programming Languages and Systems, 5
(1983) 66–77.

10. P. Fraigniaud, C. Gavoille, D. Ilcinkas and A. Pelc. Distributed Computing with
Advice: Information Sensitivity of Graph Coloring. In Proc. 34th Colloq. on Au-
tomata, Languages and Programming (ICALP), 231–242, 2007.

11. P. Fraigniaud, D. Ilcinkas, and A. Pelc. Communication algorithms with advice.
J. Comput. Syst. Sci., 76(3-4):222–232, 2008.

12. P. Fraigniaud, A. Korman, and E. Lebhar. Local MST computation with short
advice. In Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), 154–160, 2007.

13. P. Fraigniaud, A. Korman, and D. Peleg. Local Distributed Decision. In Proc. 52nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 708–717,
2011.

14. P. Fraigniaud, A. Korman, M. Parter and D. Peleg. Randomized Distributed
Decision. http://arxiv.org/abs/1207.0252

15. P. Fraigniaud and A. Pelc. Decidability Classes for Mobile Agents Computing. In
Proc. LATIN 2012: Theoretical Informatics - 10th Latin American Symposium,
2012.

16. P. Fraigniaud, S. Rajsbaum, and C. Travers. Locality and Checkability in Wait-
free Computing. In Proc. 25th International Symposium on Distributed Computing
(DISC), 2011.

17. P. Fraigniaud, S. Rajsbaum, and C. Travers. Universal Distributed Checkers and
Orientation-Detection Tasks. Submitted, 2012.

18. E. Fusco and A. Pelc. Communication complexity of consensus in anonymous
message passing systems. In Proc. 15th International Conference on Principles of
Distributed Systems (OPODIS 2011), LNCS 7109, 191–206.

19. M. Göös and J. Suomela. Locally checkable proofs. Proc. 30th ACM Symp. on
Principles of Distributed Computing (PODC), 2011.

20. M. Göös, J. Hirvonen, and J. Suomela. Lower bounds for local approximation. In
Proc. 31st Symposium on Principles of Distributed Computing (PODC), 2012.

21. H. Hasemann, J. Hirvonen, J. Rybicki, and J. Suomela. Deterministic Local Al-
gorithms, Unique Identifiers, and Fractional Graph Colouring. In Proc. 19th In-
ternational Colloquium on Structural Information and Communication Complexity
(SIROCCO), 2012.

22. M. Hanckowiak, M. Karonski, and A. Panconesi. On the Distributed Complexity
of Computing Maximal Matchings. SIAM J. Discrete Math. 15(1): 41–57 (2001).

23. L. Kor, A. Korman and D. Peleg. Tight Bounds For Distributed MST Verification.
In Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science (STACS),
2011.

24. A. Korman and S. Kutten. Distributed verification of minimum spanning trees.
Distributed Computing, 20:253–266, 2007.

25. A. Korman, S. Kutten, and T. Masuzawa. Fast and Compact Self-Stabilizing
Verification, Computation, and Fault Detection of an MST. In Proc. 30th ACM
Symp. on Principles of Distributed Computing (PODC), 2011.

26. A. Korman, S. Kutten, and D. Peleg. Proof labeling schemes. Distributed Com-
puting, 22:215–233, 2010.

27. A. Korman, S. Kutten, and D. Peleg. Proof labeling schemes. Detailed version.
See: http://ie.technion.ac.il/∼kutten/ps-links/ProofLabelingSchemes.ps

28. A. Korman, J.S. Sereni, and L. Viennot. Toward More Localized Local Algorithms:
Removing Assumptions Concerning Global Knowledge. In Proc. 30th ACM Symp.
on Principles of Distributed Computing (PODC), 49–58, 2011.

29. F. Kuhn. Weak graph colorings: distributed algorithms and applications. In Proc.
21st ACM Symp. on Parallel Algorithms and Architectures (SPAA), 138–144, 2009.

30. N. Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–
201, 1992.

31. Z. Lotker, B. Patt-Shamir and A. Rosen. Distributed Approximate Matching.
SIAM J. Comput. 39(2): 445–460, (2009).

32. M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput., 15:1036–1053, 1986.

33. M. Naor and L. Stockmeyer. What can be computed locally? SIAM J. Comput.
24(6): 1259–1277 (1995).

http://arxiv.org/abs/1207.0252
http://ie.technion.ac.il/~kutten/ps-links/ProofLabelingSchemes.ps

34. A. Panconesi and A. Srinivasan. On the Complexity of Distributed Network De-
composition. J. Algorithms 20(2): 356–374, (1996).

35. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
36. D. Seinsche. On a property of the class of n-colorable graphs. J. Combinatorial

Theory, Ser. B, 16, pages 191–193, 1974.

	On the Impact of Identifiers on Local Decision

