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Abstract. Proximity sensors and 2D vision methods have sheoviwork
robustly in particle filter-based Monte Carlo Loesdition (MCL). It would be
interesting however to examine whether modern 3fori sensors would be
equally efficient for localising a robotic wheelohaith MCL. In this work, we
introduce a visual Region Locator Descriptor, acegiifrom a 3D map using
the Kinect sensor to conduct localisation. The dpetr segments the Kinect's
depth map into a grid of 36 regions, where the llegteach column-cell is
being used as a distance range for the measurenoael of a particle filter.
The experimental work concentrated on a comparigbrthree different
localization cases. (a) an odometry model witho®LM (b) with MCL and
sonar sensors only, (c) with MCL and the Kinect semsly. The comparative
study demonstrated the efficiency of a modern 3ptlieensor, such as the
Kinect, which can be used reliably for wheelchagdlisation.
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1 Introduction

The need for reliable wheelchair localisation hasdme a high priority need for
the elderly and disabled. To provide adequate ammus mobility, robotic
wheelchairs can be used for transportation. Thisuldvorequire an efficient
localisation method, and a depth sensor for coeerdg our effort to tackle the
localisation problem with a robotic wheelchair, tente Carlo Localisation (MCL)
method was used. The perception was undertakeméoyiicrosoft's Kinect depth
sensor, for the coverage of a 640x480 depth pixels60° wide lens angle. The
sensor's resolution along with its low cost, coregao 1D laser range finders, makes
it an attractive apparatus for localisation.

MCL is one of the most popular probabilistic methddr online robot localization,
which is based on a patrticle filter algorithm. M@fas primarily introduced by [2], on
their work in mobile robot localisation. MCL in itsurest form tackles the global
position estimation, and the local position tragkproblem. To perform localisation,
the robot's state space is represented by a sarfpaeticle) density, which
approximates the robot’s position. The whole predesonducted in two phases; the
prediction and update. In the prediction phase a motion model predibts fobot’s



current pose with a Probability Density FunctiorDE. Similarly, in the update
phase a measurement (sensor) model is incorporatedaluate each particle in the
density, and sample with replacement those pastiel@luated as good predictors. In
[3], an alternative MCL method is proposed basedanradaptive particle density,
which showed improved accuracy and less computatifort. A stereo vision based
MCL was presented by [4], using a scale invariaatidre transform descriptor, given
a 3D map. The measurement model incorporated 3Buréesa extracted from
landmarks. The proposed method appeared to sodvé DOF motion, and perform
accurate localisation with a motion model havingsee measurements only. Another
MCL method that exploits visual features was introed by [5], for the localisation
of the Aibo dog-robots. Two MCL variants were prepd; a landmark, and a field
line-based extraction. The MCL using the visuatdess performed fast and reactive
localisation within a miniaturised football pitcin [7] a landmark tree model is
employed for self-localisation of an autonomous &lbleair. The method utilises an
image retrieval technique and the Bayes rule talise the wheelchair. In addition, a
path planning algorithm is introduced, which exgdoa treelike structure to locate
landmarks and destination locations. Landmarksecegnised through an image by
extracting the shape and structure, and localisaiconducted by traversing within
the tree nodes to elicit an optimal path. A prolisii odometry (motion) model was
introduced by [8] for an autonomous wheelchair. Thethod constructs a set of
frequency tables of the wheelchair's pose stordalne. A particle filter advises these
tables to make predictions for localisation.

The rest of the paper is organized as follows.i&e@ describes the classical Monte
Carlo Localisation method, given a brief algorithBection 3 presents the Kinect
sensor and a depth-based region locator descrysied in MCL. The probabilistic

models that implement the MCL’s structure are givanSection 4. Section 5

demonstrates a tri-case experiment using a mobbety and Section 6 points out
conclusions and future directions.

2 MonteCarlo Localisation

The general idea of MCL is the deployment of a iplrtdensity, designated to
predict a robot’s position. The particles can bensas virtual copies of the robot’s
existence, incorporating 2D kinematics for locomnti{motion model), and a beam
array for perception (measurement/sensor model)staAted, MCL is conducted in
two main phases to perform localisation. In phediction phase at every time step the
particles’ kinematics is updated when the robondits from stat&,_, t&, . Each
particle is assigned with a weighting fitness vatlngt assesses how well the actual
position of the robot is approximated. This acceuhie actual (the robot’s) and the
expected (the particle’s) sensory perception. éufidate phase a subset of particles
is drawn probabilistically with replacement to regent the new particle population.
The resampling is based on the Darwinian princgfleatural selection. Hence, high
fitness particles have higher probability to beestedd multiple times. Progressively,
the whole particle population converges near thead@osition of the robot.



Algorithm 1 Monte Carlo Localisation
1: Generate ParticleX , ~N(y,, 07)

2: Initialise Particle Weightsw, =1/Q
3: Prediction X, ~ p(X, | X,_;)
4: Weight Estimation:
— — Q
W = P(Z | Xp W Wy o W = W, /Zq:lV\}kq}

5: Update X, ~ <x[kq], V\}kq}>Q .
o=

Algorithm 1 describes briefly the MCL method indisteps. In the first, a particle
distribution X is created with randomly chosen staectorsx =((x,y,8),w) from a
Gaussian distributiomN. The randomly chosen parameters are the robote @0
coordinates, y, 6, and the weight factown. Step 2 initialises the particles weights
with the factor 19, whereQ is the total number of particles. In step 3, thedfction
takes place of the stalg  given the initial stgte At this step, the robot's
kinematics is applied at each particle. The weggdtimation in step 4 is done by the
product of the measurement probability showg, agiven the statg, after applying
a control commandi, for particle g. Normalisation follows to scale the particle
weights in the interval {0, 1}, so all add to 1. bpdate phase in step 5 samples with
replacement a subset of particles based on theéghwvealuesw, . The process is
repeated recursively by looping back to step 2.

3  Kinect Depth-Based Per ception

3.1 Kinect Sensor

The main sensor apparatus utilised in this worthés Kinect sensor (see Fig. 1),
produced by Microsoft. Kinect is a vision sensaryiding a RGB and a depth image
in a single device. It is being used by Microsofiaame industry for games that do not
require physical control devices such as joystigasically, the user becomes the
controller by using gestures and body movementsuging the sensor without the X-
Box, as it is the primary device to work with, seledrivers have been released to
access the device from a PC. For the current ajait we have used the CL-NUI-
Platform driver for Windows 7 (version 1.0.0.1121).

Figure 1. Microsoft’s Kinect sensor.



The Kinect's video frame rate is up to 30 Hz, with 8-bit VGA resolution of
640x480 pixels. The device provides 11-bit deptth\#i,048 levels of intensity. The
sensor's approximate ranging limit is between 6.6 t distance, while the angular
field of view is 57° horizontally, and 43° vertibal There is also an embedded
guadruple microphone array with a 16-bit audio sachpling rate of 16 kHz [6].

3.2 Region Locator Descriptor

The sensor coverage of a significant angular raisgea crucial factor for
autonomous and safe transportation. Kinect's sjpatiébns allow us to cover a large
field of view from which information can be acqudreSuch information regards the
extraction of depth in local regions in this fielthe local depth regions can play a
twofold role; initially to harness them for the MGLsensor model to conduct
localisation. Secondly, for obstacle avoidance safé navigation.

A local depth region acquisition method is beinggmsed to work for localisation
purposes. For this reason, we generate a 6x6 depthix, which discretises the
image in 36 depth regions as depicted in Fig. 2 fgion matrix is given by matrix
A in Eqg. 1, with entry elements the regions represkby the matriB. The elements
of matrix B are the individual depth pixels indexing 107x89davided by 6 from the
overall image resolution. For each regi®rthe average depth is estimated, therefore
matrix A now consists of the mean values for each regitwe. final region locator
descriptor (Id) is a vector with 6 elements reflecting to the imimm distance from
each columm (O, ..., 5) of matriA.

Grid-Matrix

Figure 2. The Kinect sensor attached on a robdtieelchair. The grid-matrix is extracted by the gisu
descriptor from the Kinect's depth image.
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4  Probabilistic Models

There are four models required for the implemeotatf a Markov localisation
method such as MCL. These models are being emplayegpresent mainly the
particles’ pose and perception.motion model expresses the probability for certain
actions to move the robot to certain relative posg. A sensor model describes the
probability for taking certain measurements ataiartocations [5]. Anoise model
adds Gaussian noise to the motion model, so gzéad the particle density. Finally,
anodometry model can be incorporated to conduct a waypoint navegatfhe MCL's
particle filter obviously acts on the odometry mipdefining its direction towards a
predefined location.

41 Motion Model

The effects of actions on the robot's pose areespited by a motion model [5].
At every time step the robot's kinematics updates particle’s kinematics. The
kinematic update is instrumented by Egs. 2, 3, 4ndith d denoting the delayed
linear displacement, anfl  the delayed rotational @he noise tern& are random
Gaussian noise explained in Section 4.3.

Xk Xk—l + (d + gx )COSH

Y | =] Y H(d+ &, )sing (2)
O |Ga+@B+e,)
d= \/(Xk—l - Xk)2 + (yk—l ~ Yk )2 (3)
J = |9k—l - 9k| 4)

In the current work, a priory virtual map M is pided for the interaction of the
particles with their environment. The ones whicblaie the map’s boundaries are
regenerated with a random pose within the map.ridue is represented here by a pair
of points, each defining the start-end coordinates line. Fig. 3 depicts the line
representation.

Algorithm 2 illustrates the map validation proceeluStep 1 describes a state
estimate for the current particte The mapFlag at step 2 is set to true, as it @éscid
later on whether the state of the evaluated partidlates the map’s boundaries. The
for-loop in step 3 validates the particlelsy state coordinates with each line in the
map. A newly random coordinate state is chosertHerparticle which violates the
boundaries, or, the particle is left intact othesavi



Algorithm 2 Particle map (M) validator

1: Estimate X[kq]

2: mapFlag true
3:for i =1toMdo

i=(@+M-1%M
M >q) 2 (MY >q) &
(M -MmT)(q, - ML)

‘ . + MU

X [l — pplil X
(MY =MV
mapFlag= mapFlag
end if
end for
4:if mapFlag strue
return rand(q[X])
end if
P (X Y)

p(x,Y,6)

P, (X, Y)

Figure 3. Beam representation of a particle.

Sensor M odel

The sensor model is described by the likelihoodabdity p(z]x) of Eq. 6. It is a
probabilistic error between the particle’s virtimam range (Eq. 5), as shown in
Fig. 1, and the real robot sensor rasgacquired from the visual depth descriptor.
The product of the likelihood probabilistic erroettveen virtual and real sensor
ranges, for particle, constitutes the particle’s goodness of fit (weidbq. 7). The
weight is an assessment of how close the partipfgoximates the robot's state

_IP2(Y) ~ YL P, (%) = X,] =[P (%) — PLOITL PL(Y) — Vel (5)
[P2(Y) — Py (¥ )leosd —[ p,(X) — p, (X)]sing
1 if|s-2 >0,
PX) =1 |s-2 ©

——, otherwise
o

z

w, = |_||S:1 p(Z" |x) W (7)



whereZ is the average of a measurement samplegatie standard deviation.
Ultimately, S is the max number of sensors, which has been atefmimarily from
the visual descriptor as 6 (region matfix Eq. 1). Here, for consistency the sensor
model assigns six beam sensors to each partidel®it angular difference.

4.3 Noise Model

The noise model is generated using a zero-meansaudistribution. For the
translational noise (see Eq. 8) the delayed distdime multiplied with the Gaussiad
to acquire a random noise scalar, which is addéadhin the kinematic update of Eq.
1. The exponemnt is chosen for introducing more (=1) or less ngisB). Similarly for
the rotational noise.

g ~N(O o2)"xd
g, ~N(0, o))" xd (8)
g, ~N(@O, g;)"xd
The random Gaussian noise is sampled from a mriliteadistributionN, which is
characterised by a density function [1] witkr 0 ando = 1 (see Eq. 9).
N = detQ7z) ™2 exp{— % VTZ‘lv} 9)

whereX is the covariance matrix, anda random vector.

44  Odometry Model

An odometry model is particularly useful for waypbiocalisation. The model
describes the robot's motion in a rotational anttaaslational displacement. The
rotational displacement is estimated by the ar@ahgetween the currer, {y) and
the next X, y) coordinate pairs. The translational displacemengiven by the
difference of the same coordinate pairs, estimatitl the Euclidean distance. The
model’s displacements are described by Eq. 8

Oy = atar2(y'-y, x'-x)

Grans =V (X=X)2 = (y = ¥')? 8)
Oy = -0

The robot’s motion att{l, t] is approximated by a sequence of transitions as
shown in Fig. 2 [1]. Initially, a rotational tratisin g, is performed, followed by a
translational transitio,,, and a consequentiaatd,,, . The robot’s transitional
displacements over a number of nodes completeswthgoint localisation. The
purpose of the MCL's particle filter is to act dmetodometry model by refining the
robot’s heading direction towards a designated node
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Figure 4. Representation of the odometry modelimrbtational, and one translational transition.

5 Experimental Results

5.1 Experimental Setup

The Essex robotic arena was the main experimemataihere the experimental
procedure took place. The environmental setuptititisd in Fig. 5(a) was used for the
conduction of the experimental cases. The expetsnarere separated in three
different cases so as to show the efficiency ofvilseal descriptor when applied for
MCL, and the Kinect sensor when compared to prayirsensor localisation. In
addition, the initial experiments were taken by Ativmedia Pioneer robot (Fig.
5(b)) for testing purposes before the actual whestds used to carry human beings.

We have used an odometry model to navigate thetrtétmough 19 nodes
(waypoints) as Fig. 5(a) also depicts. Lastly, Bi@) illustrates the region depth map
using the robot’s onboard Kinect sensor.

@) (b) )(c

Figure 5. (a) The experimental environment, (b) Kireect-enabled mobile robot, (c) The grid depth
map.



5.1 Localisation Cases

a) Odometry Model

Employing an odometry model only, the robot is ogly lost so an incorporated
obstacle avoidance undertakes to help the localisatFig. 6(a) presents an
experimental trial for navigating with an odometnpdel. The trajectory seems rather
unstable due to several maneuvers performed byothet for the avoidance of the
walls. From the poor localisation performance shawnthis graph, we see the
importance of how useful would be a probabilistitef for the autonomous
transportation of humans.

b) Sonar-Based MCL

The classical MCL method, as initially proposed [By 3], employed proximity
sensors. In this case, we performed MCL with aayaof six sonar sensors. The
resultant trajectory of Fig. 6(b) demonstrates almamoother trajectory when we
introduce the MCL method to the odometry model.ikidished use of the obstacle
avoidance algorithm is observed, and the path sadvawn clearer.

¢) Kinect-Based MCL

The proposed MCL method, enhanced with an incotpdraegion locator
descriptor, shows in Fig. 6(c) to perform bettearththe sonar-based MCL, and
apparently better than the odometry model on its.okine performance enhancement
is owed to fact that the Kinect sensor utilise®mpglete coverage of the frontal view.
This turns out to be essentially useful for thessermodel, as now the particles are
evaluated more accurately. The Kinect's depth cyeinx andy image coordinates,
contrary to lasers acting only, is proven also to be safer and more roboistaf
robotic wheelchair use.

8000 8000
b - 00 ==
= B fnn N
= B /
—_ = \_—
E = £ V
£ 4000 E
=== S -
e —
000
1000 r
5 o
2000 0 2000 4000 6000 -2000 0 2000 4000 6000
X [mm] X[mm]
(a) b)
000
006 ==
T =
£ 000 |
= SRnEEE
000
o
2000 -1000 0 1000 2000 3000 4000 5000
X[mm]
(©)

Figure 6. Experimental trajectories. (a) Using doroetry model, (b) Using sonar-based MCL,
(c) Using Kinect-based MCL



6 Conclusions

In this work an attempt has been made to introducegion locator descriptor,
through a depth image, to Monte Carlo Localisatisethod. The Microsoft's Kinect
sensor was the main apparatus incorporated to eahthp localisation performance.
Indeed, the experimental work showed that the sstgdedescriptor can improve the
localisation accuracy when compared with proxirsgysors.

Our future directions will focus on testing colcamd edge histogram descriptors
for MCL. Eventually, to test the performance of tberrent method on different
wheelchair types for indoor and outdoor localigatio
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