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Abstract. Proximity sensors and 2D vision methods have shown to work 
robustly in particle filter-based Monte Carlo Locali-sation (MCL). It would be 
interesting however to examine whether modern 3D vision sensors would be 
equally efficient for localising a robotic wheelchair with MCL. In this work, we 
introduce a visual Region Locator Descriptor, acquired from a 3D map using 
the Kinect sensor to conduct localisation. The descriptor segments the Kinect’s 
depth map into a grid of 36 regions, where the depth of each column-cell is 
being used as a distance range for the measurement model of a particle filter. 
The experimental work concentrated on a comparison of three different 
localization cases. (a) an odometry model without MCL, (b) with MCL and 
sonar sensors only, (c) with MCL and the Kinect sensor only. The comparative 
study demonstrated the efficiency of a modern 3D depth sensor, such as the 
Kinect, which can be used reliably for wheelchair localisation. 
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1   Introduction 

The need for reliable wheelchair localisation has become a high priority need for 
the elderly and disabled. To provide adequate autonomous mobility, robotic 
wheelchairs can be used for transportation. This would require an efficient 
localisation method, and a depth sensor for coverage. In our effort to tackle the 
localisation problem with a robotic wheelchair, the Monte Carlo Localisation (MCL) 
method was used. The perception was undertaken by the Microsoft’s Kinect depth 
sensor, for the coverage of a 640×480 depth pixels in ~60º wide lens angle. The 
sensor's resolution along with its low cost, compared to 1D laser range finders, makes 
it an attractive apparatus for localisation.  

MCL is one of the most popular probabilistic methods for online robot localization, 
which is based on a particle filter algorithm. MCL was primarily introduced by [2], on 
their work in mobile robot localisation. MCL in its purest form tackles the global 
position estimation, and the local position tracking problem. To perform localisation, 
the robot’s state space is represented by a sample (particle) density, which 
approximates the robot’s position. The whole process is conducted in two phases; the 
prediction and update. In the prediction phase a motion model predicts the robot’s 



current pose with a Probability Density Function (PDF). Similarly, in the update 
phase a measurement (sensor) model is incorporated to evaluate each particle in the 
density, and sample with replacement those particles evaluated as good predictors. In 
[3], an alternative MCL method is proposed based on an adaptive particle density, 
which showed improved accuracy and less computation effort. A stereo vision based 
MCL was presented by [4], using a scale invariant feature transform descriptor, given 
a 3D map. The measurement model incorporated 3D features extracted from 
landmarks. The proposed method appeared to solve the 6 DOF motion, and perform 
accurate localisation with a motion model having sensor measurements only. Another 
MCL method that exploits visual features was introduced by [5], for the localisation 
of the Aibo dog-robots. Two MCL variants were proposed; a landmark, and a field 
line-based extraction. The MCL using the visual features performed fast and reactive 
localisation within a miniaturised football pitch. In [7] a landmark tree model is 
employed for self-localisation of an autonomous wheelchair. The method utilises an 
image retrieval technique and the Bayes rule to localise the wheelchair. In addition, a 
path planning algorithm is introduced, which exploits a treelike structure to locate 
landmarks and destination locations. Landmarks are recognised through an image by 
extracting the shape and structure, and localisation is conducted by traversing within 
the tree nodes to elicit an optimal path. A probabilistic odometry (motion) model was 
introduced by [8] for an autonomous wheelchair. The method constructs a set of 
frequency tables of the wheelchair’s pose stored in bins. A particle filter advises these 
tables to make predictions for localisation. 
  
The rest of the paper is organized as follows. Section 2 describes the classical Monte 
Carlo Localisation method, given a brief algorithm. Section 3 presents the Kinect 
sensor and a depth-based region locator descriptor used in MCL. The probabilistic 
models that implement the MCL’s structure are given in Section 4. Section 5 
demonstrates a tri-case experiment using a mobile robot, and Section 6 points out 
conclusions and future directions. 

2   Monte Carlo Localisation 

The general idea of MCL is the deployment of a particle density, designated to 
predict a robot’s position. The particles can be seen as virtual copies of the robot’s 
existence, incorporating 2D kinematics for locomotion (motion model), and a beam 
array for perception (measurement/sensor model). As stated, MCL is conducted in 
two main phases to perform localisation. In the prediction phase at every time step the 
particles’ kinematics is updated when the robot transits from state    to   . Each 
particle is assigned with a weighting fitness value that assesses how well the actual 
position of the robot is approximated. This accounts the actual (the robot’s) and the 
expected (the particle’s) sensory perception. In the update phase a subset of particles 
is drawn probabilistically with replacement to represent the new particle population. 
The resampling is based on the Darwinian principle of natural selection. Hence, high 
fitness particles have higher probability to be selected multiple times. Progressively, 
the whole particle population converges near the actual position of the robot. 
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Algorithm 1 Monte Carlo Localisation 
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Algorithm 1 describes briefly the MCL method in five steps. In the first, a particle 
distribution X is created with randomly chosen state vectors x ≡         from a 
Gaussian distribution N. The randomly chosen parameters are the robot’s pose at 
coordinates x, y,  , and the weight factor w. Step 2 initialises the particles weights 
with the factor 1/Q, where Q is the total number of particles. In step 3, the prediction 
takes place of the state   given the initial state   . At this step, the robot’s 
kinematics is applied at each particle. The weight estimation in step 4 is done by the 
product of the measurement probability shown as  , given the state   after applying 
a control command u, for particle q. Normalisation follows to scale the particle 
weights in the interval {0, 1}, so all add to 1. The update phase in step 5 samples with 
replacement a subset of particles based on their weight values   . The process is 
repeated recursively by looping back to step 2. 

3   Kinect Depth-Based Perception 

3.1   Kinect Sensor 

The main sensor apparatus utilised in this work is the Kinect sensor (see Fig. 1), 
produced by Microsoft. Kinect is a vision sensor providing a RGB and a depth image 
in a single device. It is being used by Microsoft’s game industry for games that do not 
require physical control devices such as joysticks. Basically, the user becomes the 
controller by using gestures and body movements. For using the sensor without the X-
Box, as it is the primary device to work with, several drivers have been released to 
access the device from a PC. For the current application we have used the CL-NUI-
Platform driver for Windows 7 (version 1.0.0.1121). 

 

 
Figure 1. Microsoft’s Kinect sensor. 
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The Kinect’s video frame rate is up to 30 Hz, with an 8-bit VGA resolution of 
640×480 pixels. The device provides 11-bit depth with 2,048 levels of intensity. The 
sensor's approximate ranging limit is between 0.5 to 6 m distance, while the angular 
field of view is 57° horizontally, and 43° vertically. There is also an embedded 
quadruple microphone array with a 16-bit audio and sampling rate of 16 kHz [6]. 

3.2   Region Locator Descriptor 

The sensor coverage of a significant angular range is a crucial factor for 
autonomous and safe transportation. Kinect’s specifications allow us to cover a large 
field of view from which information can be acquired. Such information regards the 
extraction of depth in local regions in this field. The local depth regions can play a 
twofold role; initially to harness them for the MCL’s sensor model to conduct 
localisation. Secondly, for obstacle avoidance and safe navigation. 

A local depth region acquisition method is being proposed to work for localisation 
purposes. For this reason, we generate a 6×6 depth matrix, which discretises the 
image in 36 depth regions as depicted in Fig. 2. The region matrix is given by matrix 
A in Eq. 1, with entry elements the regions represented by the matrix B. The elements 
of matrix B are the individual depth pixels indexing 107×80, as divided by 6 from the 
overall image resolution. For each region B the average depth is estimated, therefore 
matrix A now consists of the mean values for each region. The final region locator 
descriptor (rld) is a vector with 6 elements reflecting to the minimum distance from 
each column n (0, ..., 5) of matrix A. 

 
Figure 2. The Kinect sensor attached on a robotic wheelchair. The grid-matrix is extracted by the visual 

descriptor from the Kinect’s depth image. 
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4   Probabilistic Models 

There are four models required for the implementation of a Markov localisation 
method such as MCL. These models are being employed to represent mainly the 
particles’ pose and perception. A motion model expresses the probability for certain 
actions to move the robot to certain relative positions. A sensor model describes the 
probability for taking certain measurements at certain locations [5]. A noise model 
adds Gaussian noise to the motion model, so as to spread the particle density. Finally, 
an odometry model can be incorporated to conduct a waypoint navigation. The MCL’s 
particle filter obviously acts on the odometry model, refining its direction towards a 
predefined location. 

4.1   Motion Model 

The effects of actions on the robot’s pose are represented by a motion model [5]. 
At every time step the robot’s kinematics updates the particle’s kinematics. The 
kinematic update is instrumented by Eqs. 2, 3, and 4, with d denoting the delayed 
linear displacement, and   the delayed rotational one. The noise terms  are random 
Gaussian noise explained in Section 4.3. 

















++

++
++

=
















−

−

−

)(

sin)(

cos)(

1

1

1

θεϑθ
θε
θε

θ
k

yk

xk

k

k

k

dy

dx

y

x
                  (2) 

( ) ( )2
1

2
1 kkkk yyxxd −+−= −−                   (3) 

kk θθϑ −= −1                                  (4) 

 
In the current work, a priory virtual map M is provided for the interaction of the 

particles with their environment. The ones which violate the map’s boundaries are 
regenerated with a random pose within the map. The map is represented here by a pair 
of points, each defining the start-end coordinates of a line. Fig. 3 depicts the line 
representation. 

Algorithm 2 illustrates the map validation procedure. Step 1 describes a state 
estimate for the current particle q. The mapFlag at step 2 is set to true, as it decides 
later on whether the state of the evaluated particle violates the map’s boundaries. The 
for-loop in step 3 validates the particle’s x, y state coordinates with each line in the 
map. A newly random coordinate state is chosen for the particle which violates the 
boundaries, or, the particle is left intact otherwise. 
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Algorithm 2 Particle map (M) validator 
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          end if 
     end for 
4: if mapFlag = true 

       return rand( ]x[q ) 

    end if 
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Figure 3. Beam representation of a particle. 

4.2   Sensor Model 

The sensor model is described by the likelihood probability p(z|x) of Eq. 6. It is a 
probabilistic error between the particle’s virtual beam range z (Eq. 5), as shown in 
Fig. 1, and the real robot sensor range s, acquired from the visual depth descriptor. 
The product of the likelihood probabilistic error between virtual and real sensor 
ranges, for particle q, constitutes the particle’s goodness of fit (weight, Eq. 7). The 
weight is an assessment of how close the particle approximates the robot’s state 
vector x.  
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where  is the average of a measurement sample, and   the standard deviation. 
Ultimately, S is the max number of sensors, which has been defined primarily from 
the visual descriptor as 6 (region matrix A, Eq. 1). Here, for consistency the sensor 
model assigns six beam sensors to each particle with 10° angular difference. 

4.3   Noise Model 

The noise model is generated using a zero-mean Gaussian distribution. For the 
translational noise (see Eq. 8) the delayed distance d is multiplied with the Gaussian N 
to acquire a random noise scalar, which is added with d in the kinematic update of Eq. 
1. The exponent n is chosen for introducing more (=1) or less noise (>1). Similarly for 
the rotational noise. 
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The random Gaussian noise is sampled from a multivariate distribution N, which is 

characterised by a density function [1] with µ = 0 and σ = 1 (see Eq. 9). 
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where Σ is the covariance matrix, and v a random vector. 

4.4   Odometry Model 

An odometry model is particularly useful for waypoint localisation. The model 
describes the robot’s motion in a rotational and a translational displacement. The 
rotational displacement is estimated by the arctangent between the current (x, y) and 
the next (x', y') coordinate pairs. The translational displacement is given by the 
difference of the same coordinate pairs, estimated with the Euclidean distance. The 
model’s displacements are described by Eq. 8 
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The robot’s motion at (t-1, t] is approximated by a sequence of transitions as 

shown in Fig. 2 [1]. Initially, a rotational transition    is performed, followed by a 
translational transition,    and a consequent rotational    . The robot’s transitional 
displacements over a number of nodes completes the waypoint localisation. The 
purpose of the MCL’s particle filter is to act on the odometry model by refining the 
robot’s heading direction towards a designated node. 
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Figure 4. Representation of the odometry model in two rotational, and one translational transition. 

5   Experimental Results 

5.1   Experimental Setup 

The Essex robotic arena was the main experimental hall where the experimental 
procedure took place. The environmental setup illustrated in Fig. 5(a) was used for the 
conduction of the experimental cases. The experiments were separated in three 
different cases so as to show the efficiency of the visual descriptor when applied for 
MCL, and the Kinect sensor when compared to proximity sensor localisation. In 
addition, the initial experiments were taken by an Activmedia Pioneer robot (Fig. 
5(b)) for testing purposes before the actual wheelchair is used to carry human beings. 

We have used an odometry model to navigate the robot through 19 nodes 
(waypoints) as Fig. 5(a) also depicts. Lastly, Fig. 5(c) illustrates the region depth map 
using the robot’s onboard Kinect sensor. 
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Figure 5. (a) The experimental environment, (b) The Kinect-enabled mobile robot, (c) The grid depth 
map. 



5.1   Localisation Cases 

a) Odometry Model 
Employing an odometry model only, the robot is obviously lost so an incorporated 

obstacle avoidance undertakes to help the localisation. Fig. 6(a) presents an 
experimental trial for navigating with an odometry model. The trajectory seems rather 
unstable due to several maneuvers performed by the robot for the avoidance of the 
walls. From the poor localisation performance shown in this graph, we see the 
importance of how useful would be a probabilistic filter for the autonomous 
transportation of humans.  

b) Sonar-Based MCL 
The classical MCL method, as initially proposed by [2, 3], employed proximity 

sensors.  In this case, we performed MCL with an array of six sonar sensors. The 
resultant trajectory of Fig. 6(b) demonstrates a much smoother trajectory when we 
introduce the MCL method to the odometry model. A diminished use of the obstacle 
avoidance algorithm is observed, and the path now is drawn clearer. 

c) Kinect-Based MCL 
The proposed MCL method, enhanced with an incorporated region locator 

descriptor, shows in Fig. 6(c) to perform better than the sonar-based MCL, and 
apparently better than the odometry model on its own. The performance enhancement 
is owed to fact that the Kinect sensor utilises a complete coverage of the frontal view. 
This turns out to be essentially useful for the sensor model, as now the particles are 
evaluated more accurately. The Kinect’s depth coverage in x and y image coordinates, 
contrary to lasers acting in x only, is proven also to be safer and more robust for a 
robotic wheelchair use. 
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                                                                                                                      (c) 

Figure 6. Experimental trajectories. (a) Using an odometry model, (b) Using sonar-based MCL, 
(c) Using Kinect-based MCL 



6   Conclusions 

In this work an attempt has been made to introduce a region locator descriptor, 
through a depth image, to Monte Carlo Localisation method. The Microsoft’s Kinect 
sensor was the main apparatus incorporated to enhance the localisation performance. 
Indeed, the experimental work showed that the suggested descriptor can improve the 
localisation accuracy when compared with proximity sensors. 

Our future directions will focus on testing colour and edge histogram descriptors 
for MCL. Eventually, to test the performance of the current method on different 
wheelchair types for indoor and outdoor localisation. 
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