

Kinect Enabled Monte Carlo Localisation for a Robotic
Wheelchair

Theodoros Theodoridis, Huosheng Hu, Klaus McDonald-Maier, and Dongbing Gu
School of Computer Science and Electronic Engineering

University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
{ttheod, hhu, kdm, dgu}@essex.ac.uk

Abstract. Proximity sensors and 2D vision methods have shown to work
robustly in particle filter-based Monte Carlo Locali-sation (MCL). It would be
interesting however to examine whether modern 3D vision sensors would be
equally efficient for localising a robotic wheelchair with MCL. In this work, we
introduce a visual Region Locator Descriptor, acquired from a 3D map using
the Kinect sensor to conduct localisation. The descriptor segments the Kinect’s
depth map into a grid of 36 regions, where the depth of each column-cell is
being used as a distance range for the measurement model of a particle filter.
The experimental work concentrated on a comparison of three different
localization cases. (a) an odometry model without MCL, (b) with MCL and
sonar sensors only, (c) with MCL and the Kinect sensor only. The comparative
study demonstrated the efficiency of a modern 3D depth sensor, such as the
Kinect, which can be used reliably for wheelchair localisation.

Keywords: Monte Carlo Localisation, Particle Filter Localisation, Region
Locator Descriptors, Kinect sensor

1 Introduction

The need for reliable wheelchair localisation has become a high priority need for
the elderly and disabled. To provide adequate autonomous mobility, robotic
wheelchairs can be used for transportation. This would require an efficient
localisation method, and a depth sensor for coverage. In our effort to tackle the
localisation problem with a robotic wheelchair, the Monte Carlo Localisation (MCL)
method was used. The perception was undertaken by the Microsoft’s Kinect depth
sensor, for the coverage of a 640×480 depth pixels in ~60º wide lens angle. The
sensor's resolution along with its low cost, compared to 1D laser range finders, makes
it an attractive apparatus for localisation.

MCL is one of the most popular probabilistic methods for online robot localization,
which is based on a particle filter algorithm. MCL was primarily introduced by [2], on
their work in mobile robot localisation. MCL in its purest form tackles the global
position estimation, and the local position tracking problem. To perform localisation,
the robot’s state space is represented by a sample (particle) density, which
approximates the robot’s position. The whole process is conducted in two phases; the
prediction and update. In the prediction phase a motion model predicts the robot’s

current pose with a Probability Density Function (PDF). Similarly, in the update
phase a measurement (sensor) model is incorporated to evaluate each particle in the
density, and sample with replacement those particles evaluated as good predictors. In
[3], an alternative MCL method is proposed based on an adaptive particle density,
which showed improved accuracy and less computation effort. A stereo vision based
MCL was presented by [4], using a scale invariant feature transform descriptor, given
a 3D map. The measurement model incorporated 3D features extracted from
landmarks. The proposed method appeared to solve the 6 DOF motion, and perform
accurate localisation with a motion model having sensor measurements only. Another
MCL method that exploits visual features was introduced by [5], for the localisation
of the Aibo dog-robots. Two MCL variants were proposed; a landmark, and a field
line-based extraction. The MCL using the visual features performed fast and reactive
localisation within a miniaturised football pitch. In [7] a landmark tree model is
employed for self-localisation of an autonomous wheelchair. The method utilises an
image retrieval technique and the Bayes rule to localise the wheelchair. In addition, a
path planning algorithm is introduced, which exploits a treelike structure to locate
landmarks and destination locations. Landmarks are recognised through an image by
extracting the shape and structure, and localisation is conducted by traversing within
the tree nodes to elicit an optimal path. A probabilistic odometry (motion) model was
introduced by [8] for an autonomous wheelchair. The method constructs a set of
frequency tables of the wheelchair’s pose stored in bins. A particle filter advises these
tables to make predictions for localisation.

The rest of the paper is organized as follows. Section 2 describes the classical Monte
Carlo Localisation method, given a brief algorithm. Section 3 presents the Kinect
sensor and a depth-based region locator descriptor used in MCL. The probabilistic
models that implement the MCL’s structure are given in Section 4. Section 5
demonstrates a tri-case experiment using a mobile robot, and Section 6 points out
conclusions and future directions.

2 Monte Carlo Localisation

The general idea of MCL is the deployment of a particle density, designated to
predict a robot’s position. The particles can be seen as virtual copies of the robot’s
existence, incorporating 2D kinematics for locomotion (motion model), and a beam
array for perception (measurement/sensor model). As stated, MCL is conducted in
two main phases to perform localisation. In the prediction phase at every time step the
particles’ kinematics is updated when the robot transits from state to . Each
particle is assigned with a weighting fitness value that assesses how well the actual
position of the robot is approximated. This accounts the actual (the robot’s) and the
expected (the particle’s) sensory perception. In the update phase a subset of particles
is drawn probabilistically with replacement to represent the new particle population.
The resampling is based on the Darwinian principle of natural selection. Hence, high
fitness particles have higher probability to be selected multiple times. Progressively,
the whole particle population converges near the actual position of the robot.

1x −k kx

Algorithm 1 Monte Carlo Localisation

1: Generate Particles),(~ 2
xxx σµNΧ

2: Initialise Particle Weights Qwk /1=

3: Prediction)x|x(~x 1−kkk p

4: Weight Estimation:

1),x|(−= kkkk wuzpw , ∑ =

= Q

q

q
kkk www

1

][/

5: Update
Q

q

q
k

q
kk w

1

][][,x~
=

Χ

Algorithm 1 describes briefly the MCL method in five steps. In the first, a particle
distribution X is created with randomly chosen state vectors x ≡ from a
Gaussian distribution N. The randomly chosen parameters are the robot’s pose at
coordinates x, y, , and the weight factor w. Step 2 initialises the particles weights
with the factor 1/Q, where Q is the total number of particles. In step 3, the prediction
takes place of the state given the initial state . At this step, the robot’s
kinematics is applied at each particle. The weight estimation in step 4 is done by the
product of the measurement probability shown as , given the state after applying
a control command u, for particle q. Normalisation follows to scale the particle
weights in the interval {0, 1}, so all add to 1. The update phase in step 5 samples with
replacement a subset of particles based on their weight values . The process is
repeated recursively by looping back to step 2.

3 Kinect Depth-Based Perception

3.1 Kinect Sensor

The main sensor apparatus utilised in this work is the Kinect sensor (see Fig. 1),
produced by Microsoft. Kinect is a vision sensor providing a RGB and a depth image
in a single device. It is being used by Microsoft’s game industry for games that do not
require physical control devices such as joysticks. Basically, the user becomes the
controller by using gestures and body movements. For using the sensor without the X-
Box, as it is the primary device to work with, several drivers have been released to
access the device from a PC. For the current application we have used the CL-NUI-
Platform driver for Windows 7 (version 1.0.0.1121).

Figure 1. Microsoft’s Kinect sensor.

wyx ,,, θ

θ

kx 1x −k

kz kx

kw

The Kinect’s video frame rate is up to 30 Hz, with an 8-bit VGA resolution of
640×480 pixels. The device provides 11-bit depth with 2,048 levels of intensity. The
sensor's approximate ranging limit is between 0.5 to 6 m distance, while the angular
field of view is 57° horizontally, and 43° vertically. There is also an embedded
quadruple microphone array with a 16-bit audio and sampling rate of 16 kHz [6].

3.2 Region Locator Descriptor

The sensor coverage of a significant angular range is a crucial factor for
autonomous and safe transportation. Kinect’s specifications allow us to cover a large
field of view from which information can be acquired. Such information regards the
extraction of depth in local regions in this field. The local depth regions can play a
twofold role; initially to harness them for the MCL’s sensor model to conduct
localisation. Secondly, for obstacle avoidance and safe navigation.

A local depth region acquisition method is being proposed to work for localisation
purposes. For this reason, we generate a 6×6 depth matrix, which discretises the
image in 36 depth regions as depicted in Fig. 2. The region matrix is given by matrix
A in Eq. 1, with entry elements the regions represented by the matrix B. The elements
of matrix B are the individual depth pixels indexing 107×80, as divided by 6 from the
overall image resolution. For each region B the average depth is estimated, therefore
matrix A now consists of the mean values for each region. The final region locator
descriptor (rld) is a vector with 6 elements reflecting to the minimum distance from
each column n (0, ..., 5) of matrix A.

Figure 2. The Kinect sensor attached on a robotic wheelchair. The grid-matrix is extracted by the visual

descriptor from the Kinect’s depth image.

 (1)





















=





















=⇐

































=

107,80107,1107,0

1,801,11,0

0,800,10,0

5,55,15,0

1,51,11,0

0,50,10,0

,5

,4

,3

,2

,1

,0

B,

BBB

BBB

BBB

A

Aargmin

Aargmin

Aargmin

Aargmin

Aargmin

Aargmin

ppp

ppp

ppp

rld

m
m

m
m

m
m

m
m

m
m

m
m

L

MOMM

L

L

L

MOMM

L

L

4 Probabilistic Models

There are four models required for the implementation of a Markov localisation
method such as MCL. These models are being employed to represent mainly the
particles’ pose and perception. A motion model expresses the probability for certain
actions to move the robot to certain relative positions. A sensor model describes the
probability for taking certain measurements at certain locations [5]. A noise model
adds Gaussian noise to the motion model, so as to spread the particle density. Finally,
an odometry model can be incorporated to conduct a waypoint navigation. The MCL’s
particle filter obviously acts on the odometry model, refining its direction towards a
predefined location.

4.1 Motion Model

The effects of actions on the robot’s pose are represented by a motion model [5].
At every time step the robot’s kinematics updates the particle’s kinematics. The
kinematic update is instrumented by Eqs. 2, 3, and 4, with d denoting the delayed
linear displacement, and the delayed rotational one. The noise terms are random
Gaussian noise explained in Section 4.3.

















++

++
++

=
















−

−

−

)(

sin)(

cos)(

1

1

1

θεϑθ
θε
θε

θ
k

yk

xk

k

k

k

dy

dx

y

x
 (2)

() ()2
1

2
1 kkkk yyxxd −+−= −− (3)

kk θθϑ −= −1 (4)

In the current work, a priory virtual map M is provided for the interaction of the

particles with their environment. The ones which violate the map’s boundaries are
regenerated with a random pose within the map. The map is represented here by a pair
of points, each defining the start-end coordinates of a line. Fig. 3 depicts the line
representation.

Algorithm 2 illustrates the map validation procedure. Step 1 describes a state
estimate for the current particle q. The mapFlag at step 2 is set to true, as it decides
later on whether the state of the evaluated particle violates the map’s boundaries. The
for-loop in step 3 validates the particle’s x, y state coordinates with each line in the
map. A newly random coordinate state is chosen for the particle which violates the
boundaries, or, the particle is left intact otherwise.

εϑ

Algorithm 2 Particle map (M) validator

1: Estimate
][x q

k

2: mapFlag = true
3: for i = 1 to M do

 if

mapFlagmapFlag

M
)MM(

)M)(MM(

&)(M)(M

%)1(

][
][][

][][][

][][

=



















+
−

−−
<

>≠>

Μ−Μ+=

i
xi

y
j

y

i
yy

i
x

j
x

x

y
j

yy
i
y

q
q

qq

ij

 end if
 end for
4: if mapFlag = true

 return rand(]x[q)

 end if

),(1 yxp

),(2 yxp

),,(θyxp z

θ

Figure 3. Beam representation of a particle.

4.2 Sensor Model

The sensor model is described by the likelihood probability p(z|x) of Eq. 6. It is a
probabilistic error between the particle’s virtual beam range z (Eq. 5), as shown in
Fig. 1, and the real robot sensor range s, acquired from the visual depth descriptor.
The product of the likelihood probabilistic error between virtual and real sensor
ranges, for particle q, constitutes the particle’s goodness of fit (weight, Eq. 7). The
weight is an assessment of how close the particle approximates the robot’s state
vector x.

θθ sin)]()([cos)]()([

])()][()([])()][()([

1212

112112

xpxpypyp

yypxpxpxxpypyp
z qq

−−−
−−−−−

= (5)









−

>
=

otherwise,
-

1

-if,1

)x|(

z

z

zs

zs

zp

σ

σ
 (6)

∏ =
⋅= S

i

ii
q wzpw

1

][][)x|((7)

where is the average of a measurement sample, and the standard deviation.
Ultimately, S is the max number of sensors, which has been defined primarily from
the visual descriptor as 6 (region matrix A, Eq. 1). Here, for consistency the sensor
model assigns six beam sensors to each particle with 10° angular difference.

4.3 Noise Model

The noise model is generated using a zero-mean Gaussian distribution. For the
translational noise (see Eq. 8) the delayed distance d is multiplied with the Gaussian N
to acquire a random noise scalar, which is added with d in the kinematic update of Eq.
1. The exponent n is chosen for introducing more (=1) or less noise (>1). Similarly for
the rotational noise.

ϑσε

σε
σε

θθ ×

×

×

n

n
yy

n
xx

N

dN

dN

),0(~

),0(~

),0(~

2

2

2

 (8)

The random Gaussian noise is sampled from a multivariate distribution N, which is

characterised by a density function [1] with µ = 0 and σ = 1 (see Eq. 9).







 Σ−Σ= −− vv

2

1
exp)2det(1T2/1πN (9)

where Σ is the covariance matrix, and v a random vector.

4.4 Odometry Model

An odometry model is particularly useful for waypoint localisation. The model
describes the robot’s motion in a rotational and a translational displacement. The
rotational displacement is estimated by the arctangent between the current (x, y) and
the next (x', y') coordinate pairs. The translational displacement is given by the
difference of the same coordinate pairs, estimated with the Euclidean distance. The
model’s displacements are described by Eq. 8

θθδ
δ

δ

−=
−−−=

−−=

'

)'()'(

)','(2atan

2

22

1

rot

trans

rot

yyxx

xxyy

 (8)

The robot’s motion at (t-1, t] is approximated by a sequence of transitions as

shown in Fig. 2 [1]. Initially, a rotational transition is performed, followed by a
translational transition, and a consequent rotational . The robot’s transitional
displacements over a number of nodes completes the waypoint localisation. The
purpose of the MCL’s particle filter is to act on the odometry model by refining the
robot’s heading direction towards a designated node.

z zσ

1rotδ
transδ 2rotδ

1rotδ

2rotδ

tra
ns

δ

Figure 4. Representation of the odometry model in two rotational, and one translational transition.

5 Experimental Results

5.1 Experimental Setup

The Essex robotic arena was the main experimental hall where the experimental
procedure took place. The environmental setup illustrated in Fig. 5(a) was used for the
conduction of the experimental cases. The experiments were separated in three
different cases so as to show the efficiency of the visual descriptor when applied for
MCL, and the Kinect sensor when compared to proximity sensor localisation. In
addition, the initial experiments were taken by an Activmedia Pioneer robot (Fig.
5(b)) for testing purposes before the actual wheelchair is used to carry human beings.

We have used an odometry model to navigate the robot through 19 nodes
(waypoints) as Fig. 5(a) also depicts. Lastly, Fig. 5(c) illustrates the region depth map
using the robot’s onboard Kinect sensor.

 (a) (b) (c)

Figure 5. (a) The experimental environment, (b) The Kinect-enabled mobile robot, (c) The grid depth
map.

5.1 Localisation Cases

a) Odometry Model
Employing an odometry model only, the robot is obviously lost so an incorporated

obstacle avoidance undertakes to help the localisation. Fig. 6(a) presents an
experimental trial for navigating with an odometry model. The trajectory seems rather
unstable due to several maneuvers performed by the robot for the avoidance of the
walls. From the poor localisation performance shown in this graph, we see the
importance of how useful would be a probabilistic filter for the autonomous
transportation of humans.

b) Sonar-Based MCL
The classical MCL method, as initially proposed by [2, 3], employed proximity

sensors. In this case, we performed MCL with an array of six sonar sensors. The
resultant trajectory of Fig. 6(b) demonstrates a much smoother trajectory when we
introduce the MCL method to the odometry model. A diminished use of the obstacle
avoidance algorithm is observed, and the path now is drawn clearer.

c) Kinect-Based MCL
The proposed MCL method, enhanced with an incorporated region locator

descriptor, shows in Fig. 6(c) to perform better than the sonar-based MCL, and
apparently better than the odometry model on its own. The performance enhancement
is owed to fact that the Kinect sensor utilises a complete coverage of the frontal view.
This turns out to be essentially useful for the sensor model, as now the particles are
evaluated more accurately. The Kinect’s depth coverage in x and y image coordinates,
contrary to lasers acting in x only, is proven also to be safer and more robust for a
robotic wheelchair use.

 (a) (b)

 (c)

Figure 6. Experimental trajectories. (a) Using an odometry model, (b) Using sonar-based MCL,
(c) Using Kinect-based MCL

6 Conclusions

In this work an attempt has been made to introduce a region locator descriptor,
through a depth image, to Monte Carlo Localisation method. The Microsoft’s Kinect
sensor was the main apparatus incorporated to enhance the localisation performance.
Indeed, the experimental work showed that the suggested descriptor can improve the
localisation accuracy when compared with proximity sensors.

Our future directions will focus on testing colour and edge histogram descriptors
for MCL. Eventually, to test the performance of the current method on different
wheelchair types for indoor and outdoor localisation.

Acknowledgements

This research has been financially supported by the EU Interreg IV A 2 Mers Seas
Zeeën Cross-border Cooperation Programme – SYSIASS: Autonomous and
Intelligent Healthcare System. More details can be found at the project’s website
http://www.sysiass.eu/. We would also like to thank Robin Dowling for the technical
support.

References

1. S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics,” MIT Press,
Cambridge, MA, 2005.

2. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo Localization for
Mobile Robots,” IEEE International Conference on Robotics and Automation,
1999, pp. 1322-1328.

3. D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots,” Proceedings of the Sixteenth
National Conference on Artificial Intelligence, 1999, pp. 343-349.

4. P. Elinas and J. J. Little, “sMCL: Monte-Carlo Localization for Mobile Robots
with Stereo Vision,” In Proceedings of Robotics: Science and Systems, 2005, pp.
373-380.

5. T. Rofer and M. Jungel, “Vision-Based Fast and Reactive Monte-Carlo
Localization,” IEEE International Conference on Robotics and Automation,
2003, pp. 856-861.

6. Wikipedia contributors, “Kinect,” Wikipedia: The Free Encyclopedia. Wikimedia
Foundation, 2004 [Online]. Available: http://en.wiki pedia.org/wiki/Kinect.

7. X. Zhao, X. Li, and T. Tan, “A Novel Landmark Tree Based Self-Localization
and Path-Planning Method for an Intelligent Wheelchair,” Proceedings of the 9th
IEEE International Workshop on Robot and Human Interactive Communication,
2000, pp. 84-89.

8. T. Yaqub, M. J. Tordon, and J. Katupitiya, “A Procedure to Make the
Probabilistic Odometry Motion Model of an Autonomous Wheelchair,”
Proceedings of the 2006 IEEE International Conference on Mechatronics and
Automation, 2006, pp. 526-531.

