

Deconstructing Reinforcement Learning in Sigma

Paul S. Rosenbloom

Department of Computer Science & Institute for Creative Technologies

University of Southern California
12015 Waterfront Drive, Playa Vista, CA 90094

rosenbloom@usc.edu

Abstract. This article describes the development of reinforcement learning
within the Sigma graphical cognitive architecture. Reinforcement learning has
been deconstructed in terms of the interactions among more basic mechanisms
and knowledge in Sigma, making it a derived capability rather than a de novo
mechanism. Basic reinforcement learning – both model-based and model-free
– are demonstrated, along with the intertwining of model learning.

Keywords: Reinforcement learning, cognitive architecture, graphical models.

1 Introduction

Reinforcement learning (RL) enables agents to learn effective policies for task
performance based on rewards received over a sequence of trials [1]. It is a key
concept in artificial general intelligence (AGI) – even being at the core of a proposal
for a universal artificial intelligence [2] – plays an important role in intelligent
robotics, and is increasingly important in conventional cognitive architectures [3-4].
This article describes the simple manner in which RL can be implemented within the
Sigma (Σ) cognitive architecture [5], with its grounding in factor graphs [6] – a
general form of graphical model [7] – and piecewise linear functions [8].

The goal of this effort has not been to implement from scratch a preselected RL
algorithm within Sigma, nor even necessarily, at least at first, to yield an RL
capability that is competitive with today’s best, but to: (1) explore whether some
variant of RL could emerge from how Sigma already works, and (2) analyze the
ensuing results to see what they can tell us about both Sigma and RL. This approach
to RL is driven by a key desideratum that is guiding Sigma’s development towards
general intelligence – functional elegance, which seeks to combine the broad range of
capabilities implicit in general intelligence with simplicity and theoretical elegance.
The ultimate aim is for something like a set of cognitive Newton’s laws that yield the
required diversity of behavior from interactions among a small set of very general
primitives. AIXI [2] can be viewed as an attempt at an extreme example of functional
elegance. The approach in Sigma is less ambitious, but still strongly in this direction.

This article explains how model-based RL can be engendered within Sigma from
the interactions among: (1) a more primitive gradient-descent learning mechanism
that is capable, among other things, of learning to predict; and (2) schematic

knowledge that determines what predictions are to be learned, what their initial values
should be, and how to propagate such values backwards over time. This effectively
deconstructs a form of model-based RL in terms of preexisting, more basic,
capabilities already in Sigma, plus knowledge. In contrast, no means was found
within Sigma’s existing capabilities of producing either model-free RL or the
intertwining of model learning with model-based RL. However, both do become
possible after a minimal further addition to the architecture. This overall approach, of
deconstructing capabilities in terms of existing architectural mechanisms when
possible, and of minimal changes to the architecture only when necessary, directly
supports functional elegance. It also reflects both a form of Occam’s razor and an
adherence to Allen Newell’s exhortation to “listen to the architecture” [9].

2 Reinforcement Learning (RL)

The central concept in reinforcement learning is that of (logically) propagating
rewards received later in performance backwards in time to assist in learning the
expected utility of earlier actions (for use in later trials). Ultimately the learning is
reflected in Q values – Q(s, a) – which capture the expected (discounted) cumulative
reward of choosing action a in state s, and which thus aid in selecting appropriate
actions. The particular approach taken in Sigma provides an on-policy learning
algorithm, which learns from the action taken rather than from the best action that
could have been taken, making it more akin to SARSA [10] than to Q-learning [11].
The learning update in SARSA is defined as Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1)
- Q(st, at)], where α is the learning rate and γ is the discount factor for future rewards.

Consider, for example, a one-dimensional, discrete, grid task in which the agent
may start at any location and is to reach a goal location via left and right actions
(Fig. 1). With no initial information concerning which operator to choose, behavior
begins with random choices. However, once the goal location is reached, a reward
will be received, and learning can begin. Over time, and future experiences, this
information propagates backwards across actions to yield Q values that predict higher
discounted cumulative rewards for choosing right when the agent is to the left of
the goal and left when it is to the right of the goal. This example task will be used
throughout the remainder of this article.

Fig. 1: 1D grid task with example goal (4), starting location (2), and actions (left
and right). The two extreme locations act as buffers to avoid end effects.

3 The Sigma Architecture

Sigma has been under development in some form since 2008, although until now it
lacked a name due to an ambivalence concerning whether what was being developed
was a specific graphical architecture or a general approach, based on graphical
models, for exploring the space of architectures. Although there remains room to
explore a broader range of architectures, it has become increasingly clear that a
specific architecture was being built, which now has a proper name: Sigma.

In general, graphical models provide an efficient means of computing with
complex multivariate functions by decomposing them into products of simpler
functions and then mapping them onto graphs. From these graphs, the marginals of
the individual variables – i.e., the function’s values when all other variables are
summarized out – can be computed efficiently, as can the function’s global mode.
Bayesian networks and Markov random fields are common forms of graphical
models, and some forms of neural networks map directly onto them. Factor graphs
are a variant of graphical models that map decompositions of arbitrary multivariate
functions onto undirected bipartite graphs of variable and factor nodes. Variables
map onto variable nodes while decomposed factors map onto factor nodes.
Undirected edges are defined between each factor node and its variables. Fig. 2
shows a factor graph for a simple multivariate algebraic function, along with its
solution via the summary product algorithm [6], as is used in Sigma.

Given evidence about a
subset of the variables,
messages are passed along the
links and processed at the nodes
to yield new messages. Each
message along a link provides
information about the
distribution of values for the
link’s variable. Incoming
messages at variable nodes are
combined via pointwise product
– like an inner product without
the final summation – to yield
outgoing messages, but with
each outgoing message omitting
from its product the incoming
message on its link. Similar
pointwise products occur at
factor nodes, but with the factor’s function also included in the product; and then all
variables not in the outgoing message are summarized out. Summarization typically
occurs via summation – or integration for continuous functions – to yield marginals,
or via maximum to yield the mode. Message passing terminates when a stopping
criterion is hit, such as that no new message is significantly different from the
previous message along the same link.

Fig. 2: Summary product computation over the factor
graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) =
fi(x,y)f2(y,z) of the marginal on y given evidence
concerning x and z. Only the messages (and link
directions) involved in computing y are shown.

The generality and efficiency of the
summary product algorithm depends
critically on the representation used for the
factor functions and messages. In Sigma,
a multidimensional piecewise linear
representation is used, with one dimension
per variable (Fig. 3) [8]. This enables
approximating arbitrary continuous
functions as closely as desired, plus
specialization to discrete representations –
such as probability distributions – by
mapping integers in the function’s domain
to unit regions while limiting the region

functions to constants, and to symbolic representations by further limiting the
constant functions to Boolean (0/T and 1/F) while assigning symbols to domain
integers. A form of hybrid mixed representation is thus proffered.

Knowledge fragments in Sigma are specified via conditionals, such as the one in
Fig. 4, which compile into subgraphs of long-term memory. What is normally viewed
as evidence in graphical models appears in working memory nodes in Sigma. The
conditional in
Fig. 4 consists of
two conditions
and an action,
thus amounting
to a classical
rule.

The expression x-1 in the conditional’s action indicates the use of an offset [12],
part of Sigma’s mechanism for affine transformations (in support of mental imagery)
[13]. In general, a variable in a condition or an action may include a coefficient and
an offset, where the coefficient must be a constant and the offset may be either a
constant or a variable. This isn’t simply a matter of multiplication and addition of
values though, as an offset shifts a whole piecewise linear function along a variable’s
dimension by modifying the region boundaries, while a coefficient may – once again
by modifying region boundaries – expand, contract, or invert a dimension. The
combination of coefficients and offsets enables mental imagery to be translated,
scaled and reflected. When combined with variable interchanges, they also enable
limited forms of rotation.

When the offset is a variable rather than a constant, two random variables must be
added, implicating a convolution in general. Although convolutions have not yet been
implemented in Sigma, when the offset variable only has a single nonzero value, it
can simply be extracted and used like a constant. Such an approach is exploited in RL
to add the current reward to the (distribution over the) discounted future reward.

Another feature of Sigma that is relevant to the implementation of RL is a
generalization from the use of constants in conditions and actions – such as left in
Fig. 4 – to the use of filters. A constant in this context is essentially a filter that only
passes through portions of messages that match it via a factor function that is nonzero
only for the constant. This has been generalized to allow arbitrary piecewise linear

CONDITIONAL Move-Left
 Conditions: (Selected state:s operator:left)
 (Location state:s x:x)

 Actions: (Location state:s x:x-1)

Fig. 4: Grid conditional for executing action of moving left.

Fig. 3: Bivariate function as a 2D array of
regions with linear functions.

functions to
appear where
previously only
constant tests
could. Fig.5, for
example, shows a
conditional with a
filter – in square

brackets to distinguish it from an affine transform – that converts distributions over
the possible Q values for the operators, ranging in [0, 10), into an expected Q value
for each operator. Q’s domain values are multiplied by .1, with the result then
multiplied by the incoming message. The variable q is summarized out via
integration prior to the action, weighting each operator by its expected Q value.

Conditions and actions in Sigma limit the direction in which messages are passed –
those within condition subgraphs only move away from working memory while those
within action subgraphs only move towards it. This provides the forward momentum
central to procedural memory. Condacts – a neologism for conditions and actions –
provide the bidirectional message passing required for the full generality of factor
graphs, as used for example in probabilistic reasoning, constraint satisfaction, signal
processing, and (partial match in) declarative memory [14]. The conditional in Fig. 6
defines a transition function – i.e., an action model – using two conditions, a condact,
and a function to specify an initial uniform distribution over the next location given
the current location and operator. The stars (*) in the function denote that the value
specified (.125)
applies to all triples
of current location,
selected operator, and
next location. The
variable nx for the
next state is
underlined to denote
normalization over it during learning.

The core cognitive (or decision) cycle in Sigma involves message passing until
quiescence, with the results then used in deciding how to modify working memory.
Learning also occurs at decision time, by altering functions in conditionals (structure
learning remains for future work). Episodic learning modifies temporal functions in
episodic conditionals that are automatically built for state predicates (such as
Location and Selected). Gradient descent learning modifies conditional
functions, as stored in factor nodes, by interpreting incoming messages as gradients
that are to be normalized, multiplied by the learning rate, and added to the existing
function. The idea for this learning mechanism, which was developed in conjunction
with Abram Demski and Teawon Han, was inspired by earlier work [15] showing that
gradient descent was possible in Bayesian networks, much as in neural networks, but
without the need for an additional backpropagation mechanism because the local
messages already determined the gradient.1 This form of learning is capable of

1 The version here only approximates the true gradient in [15], but was sufficient for this work.

CONDITIONAL Transition
 Conditions: (Location state:s x:x)
 (Selected state:s operator:o)
 Condacts: (Location*Next state:s x:nx)
 Function<x,o,nx>: .125:<*,*,*>

Fig. 6: Grid conditional for an initially uniform transition
function (action model).

CONDITIONAL Select-Operator
 Conditions: (Location state:s x:x)
 (Q x:x operator:o value:[.1*q])

 Actions: (Selected state:s operator:o)

Fig. 5: Grid conditional that transforms distributions over Q values
into operator weights for selection.

working in either a supervised or unsupervised manner, and in Sigma supports both
basic RL and model learning.

4 RL in Sigma

The core idea for deriving an RL algorithm from Sigma has been to leverage gradient
descent in learning Q values over multiple trials, given appropriate conditionals to
structure the computation as is needed for this to happen. Much of the work has
therefore involved understanding what these conditionals should be.

Two conditionals – the one in Fig. 4 plus another like it – implement the left and
right actions in the grid task. Given these two conditionals, plus a third that
proposes the actions for selection, Sigma performs a random walk until the goal is
achieved. To enable Q values to determine which action to choose, the proposal
conditional must be
augmented to use them as
operator weights – or
numeric preferences – as in
Fig. 5. Initial Q values must
then also be provided, as in
Fig. 7. If direct evidence
were provided for the
action’s Q values, it would
be trivial to use gradient
descent to learn better values for this function without needing to invoke
reinforcement learning. However, without such evidence, RL is the means by which
rewards from later steps in task
performance propagate backwards to
serve as input for learning Q values
for earlier steps. This occurs via a
combination of: (1) learning to
predict local rewards from the
externally provided evidence for
these rewards; and (2) learning to
predict both discounted future rewards and Q values by propagating backwards the
discounted sum of the next location’s local reward and its discounted future reward.

To (learn to)
predict a location’s
reward, the
conditional in Fig. 8
is added. To learn
discounted future
rewards and Q
values, the
conditional in Fig. 9
is added (along with

CONDITIONAL Q
 Conditions: (Location state:s x:x)
 Condacts: (Q x:x operator:o value:q)
 Function<x,o,q>: .1:<*,*,*> …

Fig. 7: Grid conditional for an initially uniform
distribution over the Q values for the operators, given the
locations.

CONDITIONAL Backup
 Conditions: (Location state:s x:x)
 (Selected state:s operator:o)
 (Location*Next state:s x:nx)
 (Reward x:nx value:r)
 (Projected x:nx value:p)
 Actions: (Q x:x operator:o value:.95*(p+r))
 (Projected x:x value:.95*(p+r))

Fig. 9: Grid conditional for backing up rewards.

CONDITIONAL Reward
 Condacts: (Reward x:x value:r)
 Function<x,r>: .1:<[1,6)>,*> …

Fig. 8: Grid conditional for an initially uniform
distribution over rewards at locations.

an unshown conditional for discounted future rewards). The Backup conditional
examines the current location and operator, along with the predicted next location – as
given by the transition function – and its predicted local reward and future discounted
reward. In the actions, it leverages an affine transformation, with an offset to add the
next location’s predicted local reward to the distribution over its predicted future
reward, and a coefficient to discount this sum. RL then results from using the
messages that are passed back to the conditional functions as gradients in learning Q
values and discounted future rewards.

 Fig. 10 summarizes
how RL emerges from all
of this. Double arrows
with elliptical tips
represent decisions for the
operator and location.
Solid arrows predict
aspects of the current
location. The gray box is
the external reward.
Dotted boxes and arrows
are predictions of/for the
next location. Value
backup involves the gray
triangles and curved arrow.

The resulting form of learning is like SARSA rather than Q-learning because it is
driven by the operator actually selected rather than by the best available operator.
This form of RL also is model based, leveraging a version of the transition conditional
in Fig. 6 that embodies probabilities corresponding to the actions’ actual effects.
Learning then occurs via gradient-descent-based refinements to the functions in Figs.
7-8 and the unshown one, for the distributions over Q values, local rewards, and
discounted future rewards, respectively.

After completing 20 trials for each of the two possible extreme starting points –
locations 1 and 6 – the expected value of the learned reward function (by location) is
identical to the
externally defined
reward function: <0, 0,
0, 0, 9, 0, 0, 0, 0>. The
expected values
learned for the
discounted future
reward are shown in
Fig. 11 (Fixed Model).
This peaks, as it
should, as the goal
location (4) is neared,
but is zero for both the
goal location and the
buffer locations since

Fig. 10: Variables and processes for RL in the grid task.

Fig. 11: Learned expected discounted future reward.

they are initialized
to zero and no move
is ever made from
them. The expected
Q values learned for
left vs. right
are shown in Fig.
12. As desired,
moving right is
preferred when left
of the goal and
moving left when to
the right. There is
no preference at the
goal.

These results have been presented in terms of point values, a format that matches
what is normally seen with RL. However, the learning actually involves full
distributions rather than individual points, with points computed as expected values
over distributions. Learning via distributions rather than points has been natural in
Sigma, but it may also prove particularly advantageous when distributions can help,
for example, identify when a representation is too coarse [16], or when a Soar-like
impasse – forms of which already exist in Sigma [17] – should occur [18].

Everything in this example was learned in a synchronic manner, considering only
one actual location. Even reward backup was synchronic, being based on the
distribution over the predicted next location rather than on the actual next location.
By focusing on learning to predict, RL has been able to proceed within Sigma in the
context of a single actual location. However, for model-free RL, a pair of actual
locations must be available simultaneously in working memory so that value backup
can occur without the aid of the predictions the transition function provides in model-
based RL. Similarly, although an initial uniform transition function is provided when
the action models are to be learned, the correct gradient cannot be computed unless
both locations are simultaneously in working memory.

As Sigma worked prior to this investigation of RL, consecutive states were
simultaneously present only during the decisions that occurred at the end of cognitive
cycles, when old working memory values were replaced by new ones. However, just
one of these states would be in working memory at a time. If Sigma were extended to
transiently represent both at once in working memory – essentially during the
decision – with a solution to the graph occurring in the interim and learning enabled,
then the kind of diachronic learning required for both model-free RL and the learning
of action models should be possible with only a minimal extension to Sigma’s
architectural code. This is in fact what has been implemented. During decisions, new
values are placed into next variants of to-be-altered state predicates –
Location*Next here – and the graph is again solved with learning enabled, before
actual modifications are made to working memory (and the next variants are flushed).

Now, when there is no transition conditional, model-free RL results, with value
backup based on the actual next location rather than the predicted one. Given 20
trials, the expected discounted future rewards are the same as those learned with a

Fig. 12: Learned expected Q values.

fixed model (Fig. 11). When the uniform transition conditional from Fig. 6 is
included, the gradient necessary to learn action models becomes available, enabling
them to be acquired during the same trials in which rewards, Q values, and discounted
future rewards are learned. Running 20 trials here yields a transition function where
the only entries that are above the initial value of .125 are shown in Fig. 13 (with
darkness corresponding to functional value). All of the on-path moves have a
functional value
of 1, whereas the
two off-path
moves predict the
correct transition
but at lower
values. The expected discounted future rewards here – Fig. 11 (Learned Model) – are
nearly indistinguishable from those learned with a predefined transition function.

5 Conclusion

Learning is central to general intelligence, with reinforcement learning providing a
particular form that that has been prominently featured within both AGI and several
cognitive architectures. When the time came to address how reinforcement learning
would work in Sigma, the intriguing possibility arose of its emerging from the
interactions among a general set of more basic mechanisms, making RL a derived
capability rather than an architecturally implemented mechanism, and satisfying the
joint constraints of functional elegance, Occam’s razor and Newell’s exhortation.

The work presented here is still only a beginning, but it does show how RL can be
deconstructed in terms of a local form of gradient-descent learning plus appropriate
knowledge structures, to yield basic on-policy, model-based, reinforcement learning.
A single extension to Sigma – to simultaneously represent both the current and next
state during an interpolated graph solution – was then required to enable both model-
free RL and (intertwined) model learning. As it turns out, this is a non-RL-specific
extension that was also motivated, for example, by the related problem of learning
transition functions for POMDPs in Sigma [19]. The extension of Sigma’s affine
transformations to variable offsets also occurred in service of implementing RL,
although the idea and the understanding of its need both predated this work on RL.

Much more is still required in a complete, state-of-the-art, architecturally
integrated capability for reinforcement learning, including exploration, scaling, and
structure learning. Also necessary is extensive experimentation with more complex
tasks, careful comparisons with implementations of RL in other architectures, and
investigations of synergies that might become available when RL interacts with other
knowledge and capabilities in Sigma. Yet, the important result remains, that the core
of RL has been demonstrated, along with its intertwining with model learning, and all
in a functionally elegant manner.

Fig. 13: Learned transition function.

Acknowledgments. This effort has been sponsored by the U.S. Army and the Air
Force Office of Scientific Research. Statements and opinions expressed do not
necessarily reflect the position or the policy of the United States Government, and no
official endorsement should be inferred. I would like to thank Abram Demski, Nassim
Mafi and Volkan Ustun for helpful discussions on this material.

References

1. Sutton, R.S, Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book,
MIT Press, Cambridge (1998)

2. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer-Verlag, Berlin (2005)

3. Sun. R., Slusarz, P., Terry, C.: The interaction of the explicit and the implicit in skill
learning: A dual-process approach. Psychological Review, 112, 159-192 (2005)

4. Nason, S., Laird, J.E., Soar-RL: Integrating reinforcement learning with Soar. Cognitive
Systems Research, 6, 51-59 (2005)

5. Rosenbloom, P.S.: Graphical models for integrated intelligent robot architectures. In:
AAAI Spring Symposium on Designing Intelligent Robots (2012)

6. Kschischang, F. R., Frey, B. J., Loeliger, H.: Factor Graphs and the Sum-Product
Algorithm. IEEE Transactions on Information Theory, 47, 498-519 (2001)

7. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge (2009)

8. Rosenbloom, P.S.: Bridging dichotomies in cognitive architectures for virtual humans. In:
AAAI Fall Symposium on Advances in Cognitive Systems (2011)

9. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)
10. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems (1994)
11. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Cambridge University

(1989)
12. Rosenbloom, P.S.: Mental imagery in a graphical cognitive architecture. In: Second

International Conference on Biologically Inspired Cognitive Architectures (2011)
13. Rosenbloom, P.S.: Extending mental imagery in Sigma. In: Fifth Conference on Artificial

General Intelligence (2012)
14. Rosenbloom, P.S.: Combining Procedural and Declarative Knowledge in a Graphical

Architecture. In: 10th International Conference on Cognitive Modeling (2010)
15. Russell, S., Binder, J., Koller, D. Kanazawa, K.: Local learning in probabilistic networks

with hidden variables. In: 14th International Joint Conference on AI (1995)
16. Munos, R., More, A.: Variable resolution discretization in optimal control. Machine

Learning, 49, 291-323 (2002)
17. Rosenbloom, P.S.: From memory to problem solving: Mechanism reuse in a graphical

cognitive architecture. In: Fourth Conference on Artificial General Intelligence (2011)
18. Bloch, M.K., Laird, J.E. Heuristic value function revision. In: The 32nd Soar Workshop.
19. Chen, J., Demski, A., Han, T., Morency, L-P., Pynadath, P., Rafidi, N., Rosenbloom, P.S.:

Fusing symbolic and decision-theoretic problem solving + perception in a graphical
cognitive architecture. Second International Conference on Biologically Inspired
Cognitive Architectures (2011)

