Skip to main content

Metabolic Constraints on the Evolution of Genetic Codes: Did Multiple Preaerobic’ Ecosystem Transitions Entrain Richer Dialects via Serial Endosymbiosis?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 7625))

Abstract

A model derived from Tlusty’s elegant topological deconstruction suggests that multiple punctuated ecosystem resilience regime changes in metabolic free energy broadly similar to the aerobic transition enabled a punctuated sequence of increasingly complex genetic codes and protein translators. In a manner similar to the Serial Endosymbiosis effecting the Eukaryotic transition, codes and translators coevolved until the ancestor of the present narrow spectrum of protein machineries became locked-in by evolutionary path dependence at a relatively modest level of fitness reflecting a modest embedding metabolic free energy ecology. A search for evidence of a sequence of ‘preaerobic’ ecosystem shifts in metabolic free energy availability or efficiency of use might be surprisingly fruitful.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ash, R.: Information Theory. Dover Publications, New York (1990)

    MATH  Google Scholar 

  2. Bennett, C.: Logical depth and physical complexity. In: Herkin, R. (ed.) The Universal Turing Machine: a Half-Century Survey, pp. 227–257. Oxford University Press (1988)

    Google Scholar 

  3. Bos, R.: Continuous representations of groupoids. ArXiv:math/0612639 (2007)

    Google Scholar 

  4. Bredon, G.: Topology and Geometry. Springer, New York (1993)

    MATH  Google Scholar 

  5. Brown, R.: From groups to groupoids: a brief survey. Bulletin of the London Mathematical Society 19, 113–134 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buneci, M.: Representare de Groupoizi. Editura Mirton, Timisoara (2003)

    Google Scholar 

  7. Cannas da Silva, A., Weinstein, A.: Geometric Models for Noncommunative Algebra. American Mathematical Society, New York (1999)

    Google Scholar 

  8. Canfield, D., Rosing, M., Bjerrum, C.: Early anaerobic metabolisms. Philosophical Transactions of the Royal Society, B 351, 1819–1836 (2006)

    Article  Google Scholar 

  9. Champagnat, N., Ferriere, R., Meleard, S.: Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models. Theoretical Population Biology 69, 297–321 (2006)

    Article  MATH  Google Scholar 

  10. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  11. Dembo, A., Zeitouni, O.: Large Deviations and Applications, 2nd edn. Springer, NY (1988)

    Google Scholar 

  12. Diekmann, U., Law, R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. Journal of Mathematical Biology 34, 579–612 (1996)

    Article  MathSciNet  Google Scholar 

  13. Eigen, M.: Steps Toward Life: A Perspective on Evolution. Oxford University Press, New York (1996)

    Google Scholar 

  14. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  15. Feynman, R.: Lectures on Computation. Westview Press, New York (2000)

    Google Scholar 

  16. Franzosi, R., Pettini, M.: Theorem on the origin of phase transitions. Physical Review Letters 92, 060601 (2004)

    Article  Google Scholar 

  17. Glazebrook, J.F., Wallace, R.: Small worlds and Red Queens in the Global Workspace: An information-theoretic approach. Cognitive Systems Research 10, 333–365 (2009)

    Article  Google Scholar 

  18. Glazebrook, J.F., Wallace, R.: Rate distortion manifolds as models for cognitive information. Informatica 33, 309–345 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Golubitsky, M., Stewart, I.: Nonlinear dynamics and networks: the groupoid formalism. Bulletin of the American Mathematical Society 43, 305–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gunderson, L.: Ecological resilience in theory and applications. Annual Reviews of Ecological Systematics 31, 425–439 (2000)

    Article  Google Scholar 

  21. Holling, C.: Resilience and stability of ecological systems. Annual Reviews of Ecological Systematics 4, 1–23 (1973)

    Article  Google Scholar 

  22. Kastner, M.: Phase transitions and configuration space topology. Reviews of Modern Physics 80, 167–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khinchin, A.: Mathematical Foundations of Information Theory. Dover, New York (1957)

    MATH  Google Scholar 

  24. Koonin, E., Senkevich, T., Dolja, V.: The ancient virus world and evolution of cells. Biology Direct (2006), doi 10.1186/1745-6150-1-29

    Google Scholar 

  25. Koonin, E., Novozhilov, A.: Origin and evolution of the genetic code: the universal enigma. Life 61, 99–111 (2009)

    Google Scholar 

  26. Landau, L., Lifshitz, E.: Statistical Physics, Part I. Elsevier, New York (2007)

    Google Scholar 

  27. Lee, J.: Introduction to Topological Manifolds. Springer, New York (2000)

    MATH  Google Scholar 

  28. Matsumoto, Y.: An Introduction to Morse Theory. Translations of Mathematical Monographs, vol. 208. American Mathematical Society (2002)

    Google Scholar 

  29. Michel, L., Mozrymas, J.: Application of Morse Theory to the symmetry breaking in the Landau theory of the second order phase transition. In: Kramer, P., Rieckers, A. (eds.) Group Theoretical Methods in Physics: Sixth International Colloquium. Lecture Notes in Physics, vol. 79, pp. 447–461. Springer, New York (1977)

    Chapter  Google Scholar 

  30. Milnor, J.: Morse Theory. Annals of Mathematical Studies. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  31. Pettini, M.: Geometry and Topology in Hamiltonian Dynamics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  32. Pielou, E.: Mathematical Ecology. Wiley, New York (1977)

    Google Scholar 

  33. Ringel, G., Young, J.: Solutions of the Heawood map-coloring problem. Proceedings of the National Academy of Sciences 60, 438–445 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  35. Rodin, S., Rodin, A.: On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100, 341–355 (2008)

    Article  Google Scholar 

  36. Rose, K.: Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE 86, 2210–2239 (1998)

    Article  Google Scholar 

  37. Sarshar, N., Wu, X.: On rate-distortion models for natural images and wavelet coding performance. IEEE Transactions on Image Processing 3, 87–93 (2007)

    MathSciNet  Google Scholar 

  38. Shmulevich, I., Dougherty, E.: Genomic Signal Processing. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  39. Skierski, M., Grundland, A., Tuszynski, J.: Analysis of the three-dimensional time dependent Landau-Ginzburg equation and its solutions. Journal of Physics A (Math. Gen.) 22, 3789–3808 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM Journal of Applied Dynamical Systems 2, 609–646 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stewart, I.: Networking opportunity. Nature 427, 601–604 (2004)

    Article  Google Scholar 

  42. Sun, F., Ceataeno-Anolles, G.: Evolutionary patterns in the sequence and structure of transfer RNA: a window into early translation and the genetic code. PLOSone 3(7), 32799 (2008)

    Google Scholar 

  43. Tlusty, T.: A model for the emergence of the genetic code as a transition in a noisy information channel. Journal of Theoretical Biology 249, 331–342 (2007)

    Article  Google Scholar 

  44. Tlusty, T.: A simple model for the evolution of molecular codes driven by the interplay of accuracy, diversity and cost. Physical Biology 5, 016001; Casting polymer nets to optimize noisy molecular codes. Proceedings of the National Academy of Sciences 105, 8238–8243 (2008)

    Google Scholar 

  45. Tlusty, T.: Personal communication (2010)

    Google Scholar 

  46. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., Isozaki, Y.: Evidence for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006)

    Article  Google Scholar 

  47. Van Valen, L.: A new evolutionary law. Evolutionary Theory 1, 1–30 (1973)

    Google Scholar 

  48. Vetsigian, K., Wose, C., Goldenfield, N.: Collective evolution and the genetic code. Proceedings of the National Academy of Sciences 103, 10696–10701 (2006)

    Article  Google Scholar 

  49. Villarreal, L., Witzany, G.: Viruses are essential agents within the roots and stem of the tree of life. Journal of Theoretical Biology 262, 698–710 (2010)

    Article  Google Scholar 

  50. Wallace, R., Wallace, R.G.: On the spectrum of prebiotic chemical systems: an information-theoretic treatment of Eigen’s Paradox. Origins of Life and Evolution of Bioshperes 38, 419–455 (2008)

    Article  Google Scholar 

  51. Wallace, R., Wallace, D.: Punctuated Equilibrium in Statistical Models of Generalized Coevolutionary Resilience: How Sudden Ecosystem Transitions Can Entrain Both Phenotype Expression and Darwinian Selection. In: Priami, C. (ed.) Transactions on Computational Systems Biology IX. LNCS (LNBI), vol. 5121, pp. 23–85. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  52. Wallace, R., Wallace, D.: Code, Context, and Epigenetic Catalysis in Gene Expression. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS (LNBI), vol. 5750, pp. 283–334. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  53. Wallace, R.: Metabolic constraints on the eukaryotic transition. Origins of Life and Evolution of Biospheres 39, 165–176 (2009)

    Article  Google Scholar 

  54. Weinstein, A.: Groupoids: unifying internal and external symmetry. Notices of the American Mathematical Association 43, 744–752 (1996)

    MATH  Google Scholar 

  55. Wilson, K.: Renormalization group and critical phenomena. I Renormalization group and the Kadanoff scaling picture. Physical Review B 4, 3174–3183 (1971)

    MATH  Google Scholar 

  56. Witzany, G.: Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Annals of the New York Academy of Sciences 1178, 244–267 (2009)

    Article  Google Scholar 

  57. Zhu, R., Rebirio, A., Salahub, D., Kauffmann, S.: Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models. Journal of Theoretical Biology 246, 725–745 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wallace, R. (2012). Metabolic Constraints on the Evolution of Genetic Codes: Did Multiple Preaerobic’ Ecosystem Transitions Entrain Richer Dialects via Serial Endosymbiosis?. In: Priami, C., Petre, I., de Vink, E. (eds) Transactions on Computational Systems Biology XIV. Lecture Notes in Computer Science(), vol 7625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35524-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35524-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35523-3

  • Online ISBN: 978-3-642-35524-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics