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Abstract. Recent improvements in positioning technology have led to a much
wider availability of massive moving object data. One of the objectives of spatio-
temporal data mining is to analyze such datasets to exploit moving objects that
travel together. Naturally, the moving objects in a cluster may actually diverge
temporarily and congregate at certain timestamps. Thus, there are time gaps among
moving object clusters. Existing approaches either put a strong constraint (i.e. no
time gap) or completely relaxed (i.e. whatever the time gaps) in dealing with
the gaps may result in the loss of interesting patterns or the extraction of huge
amount of extraneous patterns. Thus it is difficult for analysts to understand the
object movement behavior.
Motivated by this issue, we propose the concept of fuzzy swarm which softens
the time gap constraint. The goal of our paper is to find all non-redundant fuzzy
swarms, namely fuzzy closed swarm. As a contribution, we propose fCS-Miner

algorithm which enables us to efficiently extract all the fuzzy closed swarms.
Conducted experiments on real and large synthetic datasets demonstrate the ef-
fectiveness, parameter sensitiveness and efficiency of our methods.
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1 Introduction

Nowadays, many electronic devices are used for real world applications. Telemetry at-
tached on wildlife, GPS installed in cars, sensor networks, and mobile phones have
enabled the tracking of almost any kind of data and has led to an increasingly large
amount of data that contain moving object information. One of the objectives of spatio-
temporal data mining [2] [4] [5] [10] [11] [12] [14] is to analyze such datasets for in-
teresting patterns. For example, Buffaloes in South Africa (165 animals reported daily),
Golden Eagles in Alaska (43 animals reported daily), and so on3. Analyzing this data
gives insight into entity behavior, in particular and migration patterns [12]. The analysis
of moving objects also has applications in transport analysis, route planning and vehicle
control, socio-economic geography, location prediction, location-based services.

One of the crucial tasks for extracting patterns is to find moving object clusters (i.e.
group of moving objects that are traveling together). A moving object cluster can be
defined in both spatial and temporal dimensions: (1) a group of moving objects should
be geometrically closed to each other, (2) they should be together for at least some

3 http://www.movebank.org
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Fig. 1. An example of moving object clusters. o1, o2 are moving objects, c1, . . . , c4 are clusters
which are generated by applying some clustering techniques and A, B, C, F are spatial regions.

minimum number of certain timestamps. In this context, many recent studies have been
defined to mine moving object clusters including flocks [2], moving clusters [9], convoy
queries [10], closed swarms [12], group patterns [14], etc...

The common part of such patterns is that they require the group of moving objects
to be together for at least mint timestamps (i.e. could be consecutive or completely
be non-consecutive), which might not be practical in the real cases. For instance, if
we set mint = 3 and the timestamps must be consecutive in Figure 1, no moving
object cluster can be found. But essentially, these two objects, o1 and o2, travel together
even though they temporarily leave the cluster at some snapshots. To address this issue,
Zhenhui Li et al. [12] propose swarm in which moving objects are not required to
be together in consecutive timestamps. Therefore, swarm can capture the movement
pattern in Figure 1. The pattern is ”o1, o2 are moving together from A to B to C and to

F at timestamps t1, t2, t4 and t1000”. This pattern could be interesting since it expresses
the relationship between o1 and o2. However, the issue here is that it is hard to say that
o1 and o2 moving together to F since they only meet each other at F by chance after
996 timestamps. In other words, enforcing the consecutive time constraint may result in
the loss of interesting moving object clusters, while completely relaxing this constraint
may generate a large number of extraneous and useless patterns.

In this paper, we propose a new movement pattern, called fuzzy closed swarm, which
softens the consecutive time constraint without generating extraneous patterns. The key
challenge is to deal with the time gap between a pair of clusters since: 1) it is difficult
to recognize which size of a time gap is relevant or not, 2) we need to know when the
patterns should be ended to eliminate uninteresting ones. To address these issues, we
present the definition of fuzzy time gap and fuzzy time gap participation index. Obtained
patterns are of the type ”o1, o2 are moving together from A to B to C with 60% weak,

20% medium and 20% strong time gaps”. These patterns are characterized by their time
gap frequency (or support), which is by definition the proportion of time gaps involved
in the patterns. As a contribution, we propose fCS-Miner algorithm to efficiently extract
the complete set of fuzzy closed swarms. The approach shares the same spirit with
the GeT Move algorithm [5] [6] but is different in terms of goal and properties. The
effectiveness as well as efficiency of our method are demonstrated on both real and
large scale synthetic moving object databases.

This paper is structured as follows. Section 2 discusses the related work. The def-
initions of fuzzy time gap and fuzzy closed swarm are given in Section 3. fCS-Miner
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algorithm will be clearly presented in Section 4. Experiments testing effectiveness and
efficiency are shown in Section 5. Finally, we draw our conclusions in Section 6.

2 Related Work

As mentioned before, many approaches have been proposed to extract patterns. For in-
stance, Gudmundsson and Van Kreveld [2] define a flock pattern, in which the same set
of objects stay together in a circular region with a predefined radius, Kalnis et al. [11]
propose the notion of moving clusters. Jeung et al. [10] define a convoy pattern and pro-
pose three algorithms CMC,CuTS,CuTS∗ that incorporate trajectory simplification
techniques in the first step. Then, the authors proposed to interpolate the trajectories by
creating virtual time points and by applying density measurements on trajectory seg-
ments. Additionally, the convoy is defined as a candidate when it has at least k clusters
during k consecutive timestamps.

Recently, Zhenhui Li et al. [12] propose the concept of swarm and closed swarm
and the ObjectGrowth algorithm to extract closed swarm patterns. The ObjectGrowth
method is a depth-first-search of all subsets of ODB through a pre-order tree traversal.
To speed up the search process, they propose two pruning rules. Apriori Pruning and
Backward Pruning are used to stop traversal the subtree when we find further traversal
that cannot satisfy mint and closure property. After pruning the invalid candidates, a
ForwardClosure checking is used to determine whether a pattern is a closed swarm.
In [14], Hwang et al. propose two algorithms to mine group patterns, known as the
Apriori-like Group Pattern mining algorithm and Valid Group-Growth algorithm. The
former explores the Apriori property of valid group patterns and the latter is based on
idea similar to the FP-growth algorithm.

The interested readers may refer to [7] where short descriptions of the most efficient
approaches and interesting patterns are proposed. Nevertheless, all the work above is not
able to address the problem of capturing fuzzy closed swarms.

3 Problem Statement

3.1 Preliminarily Definitions

Let us assume that we have a set of moving objects ODB = {o1, o2, . . . , oz}, a set of
timestamps TDB = {t1, t2, . . . , tm}.

Database of clusters. A database of clusters, CDB = {C1, C2, . . . , Cm}, is the
collection of snapshots of the moving object clusters at timestamps {t1, t2, . . . , tm}.
Note that an object could belong to several clusters at one timestamp (i.e. cluster over-
lapping). Given a cluster c ∈ CDB and c ⊆ ODB , |c| and t(c) are respectively used to
denote the number of objects belong to cluster c and the timestamp that c involved in.
To make our framework more general, we take clustering as a preprocessing step. The
clustering methods could be different based on various scenarios. We leave the details
of this step in the Appendix Obtaining Clusters.

From now, O = {oi1 , oi2 , . . . , oip}(O ⊆ ODB) stands for a group of objects, T =
{ta1 , ta2 , . . . , tam} (T ⊆ TDB) is the set of timestamps within which objects stay
together.
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(a) Convoy (b) Swarm

Fig. 2. An example of convoy and swarm where c1, c2, c3, c4 are clusters.

Fig. 3. Membership degree functions for fuzzy time gaps.

Convoys and closed swarms. Informally, a convoy (O, T ) is a group of objects
O containing at least mino individuals which are closed each other during at least
mint consecutive time points T . While, consecutive time constraint is relaxed in swarm

in which objects in O are closed each other for at least mint timestamps. To avoid
redundancy, Zhenhui Li et al. [12] propose the notion of closed swarm for grouping
together both objects and time. A swarm (O, T ) is object-closed if when fixing T ,
O cannot be enlarged. Similarly, a swarm (O, T ) is time-closed if when fixing O, T
cannot be enlarged. A swarm (O, T ) is a closed swarm if it is both object-closed and
time-closed.

For instance, in Figure 2a, with mino = 2,mint = 2 we have two convoys
({o1, o2}, {t1, t2, t3, t4}) and ({o1, o2, o3}, {t3, t4}). While, in Figure 2b, if we set
mino = 2 and mint = 2, we can find the following swarms ({o1, o2}, {t1, t3}),
({o1, o2}, {t1, t4}), ({o1, o2}, {t3, t4}), ({o1, o2}, {t1, t3, t4}). We can note that these
swarms are in fact redundant since they can be grouped together in the following closed
swarm ({o1, o2}, {t1, t3, t4}).

3.2 Fuzzy Closed Swarms

As illustrated before, enforcing the consecutive time constraint or completely relaxing
this constraint may result in the loss of interesting patterns or the generation of un-
interesting patterns. To deal with the issue, we propose the adaptation of fuzzy logic
principle in which the strength of time gaps are evaluated with a membership degree
function A (see Figure 3). Given two timestamps t1 and t2, a time gap x between t1

and t2 is computed as x = |t1 − t2| − 1 (i.e. t1 �= t2). The fuzzy time gap is defined as
follows.
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Definition 1 Fuzzy Time Gap. Given two timestamps t1 and t2, a pair of one time gap

x and one corresponding fuzzy set a, denoted by [x, a], is called a fuzzy time gap if

x = |t1 − t2| − 1 is involved in membership function A.

For instance, see Figure 4, there are totally four time gaps which are x1 = 3, x2 =
18, x3 = 34 and x4 = 939. The fuzzy time gap [x1, weak], [x1,medium] and [x1,

strong] respectively are µweak(x1) = 0.9, µmedium(x1) = 0.1 and µstrong(x1) = 0.
Since x4 is out of function A, it cannot be considered as a fuzzy time gap.

Definition 2 Fuzzy Time Gap Set. Given an ordered list of timestamps T = {ta1 ,

ta2 , . . . , tam}, a set of time gaps X = {x1, . . . , xn}, n = m− 1. (X,A) is a fuzzy time

gap set generated from T if ∀i ∈ {1, . . . , n} : xi = |tai − tai+1 | − 1 and ∀x ∈ X : x is

involved in A. Note that for any x ∈ X,x = 0 then x will be excluded from X without

any affection.

For instance, see Figure 4, a proper pattern ({o1, o2}, {t1, t2, t6, t25, t60}) and a
fuzzy time gap set is X = {x1, x2, x3} and for each time gap xi ∈ X , there are a
corresponding fuzzy set including strong,medium and weak. Note that x4 is out of
membership function and therefore it is not included in X and ({o1, o2}, {t1, t2, t6, t25,
t60, t1000}) will not be considered as a valid pattern.

To highlight the participation of time gaps given by a fuzzy set a, we further propose
an adaptation of the participation index [8] which is fuzzy time gap participation index

proposed to take into account the fuzzy time gap occurrences in the pattern.

Definition 3 Fuzzy Time Gap Participation Ratio. Let (X,A) be a set of fuzzy time

gaps and a be an item of A, the fuzzy time gap participation ratio for a in X denoted

TGr(X, a) can be defined as follows.

TGr(X, a) =

�
x∈X

µa(x)

|X| (1)

Definition 4 Fuzzy Time Gap Participation Index. Let (X,A) be a set of fuzzy time

gaps and a be an item of A, the fuzzy time gap participation index of (X,A) denoted

TGi(X) can be defined as follows.

TGi(X) = Max∀a∈ATGr(X, a) (2)

For instance, see Figure 4, a fuzzy time gap set X = {x1, x2, x3} and TGr(X,

weak) = 0.1+0.9+0
3 = 0.33, TGr(X, medium) = 0.1+0.9+0.35

3 = 0.45, TGr(X,

strong) = 0+0+0.65
3 = 0.22. Thus, the fuzzy time gap participation index of X ,

TGi(X) = 0.45.
Fuzzy swarm and fuzzy closed swarm. Given a group of objects O moving to-

gether in an ordered list of timestamps T and a set of fuzzy time gaps (X,A) gen-
erated from T . (O, T,X) is a fuzzy swarm that contains at least mino objects (resp.
|O| ≥ mino) during at least mint timestamps (resp. |T | ≥ mint) and TGi(X) ≥ ε.
The fuzzy swarm can be defined as follows.
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Fig. 4. A fuzzy closed swarm running example.

Definition 5 Fuzzy Swarm. Given integers mino,mint and a user-defined threshold ε.

(O, T,X) is a fuzzy swarm if and only if:






(1) : |O| ≥ mino.

(2) : |T | ≥ mint.

(3) : (X,A) is a fuzzy time gap set.

(4) : ∀i ∈ {1, . . . , n}, TGi({x1, . . . , xi}) ≥ ε.

(3)

Note that if X = {x1, x2, x3} then the condition (4) means that TGi({x1}) ≥ ε,

TGi({x1, x2}) ≥ ε and TGi({x1, x2, x3}) ≥ ε.

By definition, if we set mino = 2,mint = 3 and ε = 0.2 then there are totally 13
fuzzy swarms in Figure 4 such as ({o1, o2}, {t1, t2, t6}, {x1}), ({o1, o2}, {t1, t2, t25},
{x = 22}), ({o1, o2}, {t2, t6, t25, t60}, {x1, x2, x3}) and so on. However, it is obvi-
ously redundant to output fuzzy swarms like ({o1, o2}, {t1, t2, t6, }) since it can be
enlarged to ({o1, o2}, {t1, t2, t6, t25, t60}, {x1, x2, x3}). To avoid mining redundant
fuzzy swarms, we further give the definition of fuzzy closed swarm. Essentially, a fuzzy
swarm (O, T,X) is time-closed if fixing T , O cannot be enlarged (�O� s.t. (O�, T,X)
is a fuzzy swarm and O ⊂ O�). Similarly, a fuzzy swarm (O, T,X) is object-closed if
fixing O then T cannot be enlarged. Finally, a fuzzy swarm (O, T,X) is a fuzzy closed
swarm if it is both time-closed and object-closed. Our goal is to find the complete set of
fuzzy closed swarms. The definition is formally presented as follows.

Definition 6 Fuzzy Closed Swarm. Given a fuzzy swarm (O, T,X), it is a fuzzy closed

swarm if and only if:

�
(1) : �O�, O ⊂ O� ∧ (O�, T,X) is a fuzzy swarm.

(2) : �T �, T ⊂ T � ∧ (O, T �, X �) is a fuzzy swarm.
(4)

For instance (Figure 4), a closed swarm is ({o1, o2}, {t1, t2, t6, t25, t60}, {x1, x2, x3}).

Property 1. Anti-monotonic. For all patterns (O, T,X), if (O, T,X) is not a fuzzy
swarm because of the condition (3) suffering then the following holds:

For all supersets of (O, T,X) by adding a later cluster and a fuzzy time gap in

terms of time to T and X are not fuzzy swarms.
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Table 1. Cluster Matrix corresponding to our running example in Figure 4.

TDB t1 t2 t6 t25 t60 t1000

Clusters CDB c1 c2 c3 c4 c5 c6

ODB

o1 1 1 1 1 1 1
o2 1 1 1 1 1 1
o3 1

Proof. After construction, we have ∃k ∈ {1, . . . , n} s.t. TGi({x1, . . . , xk}) < ε. For
any X � = {x1, . . . , xn, xm}, (O, T �, X �) is not a fuzzy swarm since ∃k ∈ {1, . . . ,m}
s.t. TGi({x1, . . . , xk}) < ε.

4 Discovering of Fuzzy Closed Swarms

The patterns we are interested in here, fuzzy closed swarms, is the association of a set of
objects O, a set of timestamps T and a set of fuzzy time gaps X , denoted (O, T,X). As
first glance, we can employ ObjectGrowth algorithm [12] to extract all closed swarms
and then a post-processing step to obtain all the fuzzy closed swarms. However, moving
object databases are naturally large and thus the search space of closed swarm extract-
ing can be significantly increased (i.e. approximately 2|ODB | × 2|TDB |). Additionally, a
huge amount of generated closed swarms (i.e. including extraneous patterns) can cause
an expensive post-processing task. Furthermore, in real world applications (e.g. cars),
object locations are continuously reported by using Global Positioning System (GPS).
Thus, new data is always available and we need to execute again and again the al-
gorithms on the whole database (i.e. including existing data and new data) to extract
patterns. This is of course, cost-prohibitive and time consuming.

To deal with the issues, we propose fCS-Miner algorithm which is an adaptation
of Incremental GeT Move approach [5] [6] which has already been proved as being
efficient in large moving object databases.

Basic idea of fCS-Miner algorithm. As in [5] [6], we first present CDB in a clus-
ter matrix (see Table 1) so that Incremental GeT Move can be applied to extract all
frequent closed itemsets (FCIs). Next, we propose an novel property which can be used
to directly extract fuzzy closed swarms from generated FCIs without a post-processing
step. The cluster matrix definition is as follows.

Definition 7 Cluster Matrix [5] [6]. Given a set of clusters CDB = {C1, C2, . . . , Cm}
where Ci = {ci1ti , ci2ti , . . . , cinti} is a set of clusters at timestamps ti. A cluster matrix

is thus a matrix of size |ODB |×|CDB |. Each row represents an object and each column

represents a cluster. The value of the cluster matrix cell, (oi, cj) is 1 (resp. empty) if oi

is in (resp. is not in) cluster cj .

For instance, see Table 1 and Figure 4, the matrix cell of (o1, c2) is 1 since o1 ∈ c2

and this is similar for c1, c3, c4, c6. While, the matrix cell of (o3, c1) is empty since
o3 �∈ c1.

By applying Incremental GeT Move which mainly bases on LCM algorithm [13]
on the cluster matrix, we are able to extract all FCIs. Let us denote a frequent item-
set as Υ = {c1, c2, . . . , ck}, OΥ contains the corresponding group of moving objects
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which are closed each other in a set of timestamps TΥ = {t(c1), t(c2), . . . , t(ck)}. We
can recognize that |OΥ | = σ(Υ )4, |Υ | = |TΥ | and XΥ is used to denote as a fuzzy
time gap set generated from TΥ . For instance, see Table 1, a proper frequent item-
set is Υ = {c1, c2, c3, c4, c5} with OΥ = {o1, o2}, TΥ = {t1, t2, t6, t25, t60} and
XΥ = {x1, x2, x3}.

The following property, f-closed swarm, is used to verify whenever a frequent item-
set Υ can be a fuzzy closed swarm or not.

Property 2. f-Closed swarm. Given a frequent itemset Υ = {c1, c2, . . . , ck}, XΥ =
{x1, . . . , xn}. (OΥ , TΥ , XΥ ) is a fuzzy closed swarm if and only if:






(1) : σ(Υ ) ≥ mino.

(2) : |Υ | ≥ mint.

(3) : ∀x ∈ X,x is involved in A.

(4) : ∀i ∈ {1, . . . , n}, TGi({x1, . . . , xi}) ≥ ε.

(5) : �Υ �
s.t OΥ ⊂ OΥ � , TΥ � = TΥ and (OΥ � , TΥ , XΥ ) is a fuzzy swarm.

(6) : �Υ �
s.t. OΥ � = OΥ , TΥ ⊂ TΥ � and (OΥ , TΥ � , XΥ �) is a fuzzy swarm.

(5)

Proof. After construction, we have σ(Υ ) ≥ mino and thus |OΥ | ≥ mino since |OΥ | =
σ(Υ ). Additionally, |Υ | ≥ mint and therefore |TΥ | ≥ mint since |Υ | = |TΥ |. Further-
more, ∀x ∈ X : x is involved in A and ∀i ∈ {1, . . . , n}, TGi({x1, . . . , xi}) ≥ ε..
Consequently, (OΥ , TΥ , XΥ ) is a fuzzy swarm (Definition 5). Moreover, if �Υ � s.t
OΥ ⊂ OΥ � , TΥ � = TΥ and (OΥ � , TΥ , XΥ ) is a fuzzy swarm then (OΥ , TΥ , XΥ ) can-
not be enlarged in terms of objects. Therefore, it satisfies the object-closed condition.
Furthermore, if �Υ � s.t. OΥ � = OΥ , TΥ ⊂ TΥ � and (OΥ , TΥ � , XΥ �) is a fuzzy swarm
then (OΥ , TΥ , XΥ ) cannot be enlarged in terms of lifetime. Therefore, it satisfies the
time-closed condition. Consequently, (OΥ , TΥ , XΥ ) is a fuzzy swarm and it satisfies
object-closed and time-closed conditions and therefore (OΥ , TΥ , XΥ ) is a fuzzy closed
swarm according to the Definition 6.

To show the fact that from an itemset mining algorithm we are able to extract the
set of all fuzzy closed swarms, we propose the following lemma.

Lemma 1. Let FI = {Υ1, Υ2, . . . , Υl} be the set of frequent itemsets being mined from

the cluster matrix with minsup = mino. All fuzzy closed swarms (O, T,X) can be

extracted from FI .

Proof. Let us assume that (O, T,X) is a fuzzy closed swarm. Note, T = {t(c1),
. . . , t(ck)}. According to the Definition 6 we have |O| ≥ mino. If (O, T,X) is a fuzzy
closed swarm then ∀t(ci) ∈ T, ∃ci s.t. O ⊆ ci therefore

�k

i=1 ci = O. Additionally, we
have ∀ci, ci is an item so ∃Υ =

�k

i=1 ci is an itemset and OΥ =
�k

i=1 ci = O, TΥ =�k

i=1 t(ci) = T . Furthermore, we also have XΥ = X as well. Therefore, (OΥ , TΥ , XΥ )
is a fuzzy closed swarm since OΥ = O, TΥ = T and XΥ = X . So, (O, T,X) is ex-
tracted from Υ . Furthermore, σ(Υ ) = |OΥ | = |O| ≥ mino then Υ is a frequent itemset

4
σ(Υ ) is the support value of frequent itemset Υ .
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Algorithm 1: fCS-Miner

Input : double ε, int mino, int mint, set of items CDB

1 begin

2 Incremental GeT Move(CDB ,mino);
3 PatternMining(FCI, ε,mint)

4 begin

5 f-CS := ∅;
6 if |FCI| ≥ mint then

7 Υ := ∅;
8 for k := 1 to |FCI| do

9 Υ
� := Υ ∪ ck;

10 if fuzzy(XΥ �) = true ∧ TGi(Υ �) ≥ ε then

11 Υ := Υ
�;

12 else

13 if OΥ = OFCI ∧ |Υ | ≥ mint + 1 then

14 f-CS := f-CS ∪Υ ;
15 Υ := ∅ ∪ ck;
16 return f-CS;
17 where: fuzzy(XΥ �) returns true if XΥ � is a fuzzy time gap set, otherwise returns false. In

this function, we only need to verify that the last time gap is involved in A instead of all
the time gaps in XΥ � .

and Υ ∈ FI . Finally, ∀(O, T ) s.t. if (O, T,X) is a fuzzy closed swarm then ∃Υ s.t.
Υ ∈ FI and (O, T,X) can be extracted from Υ , we can conclude that ∀ fuzzy closed
swarm (O, T,X), it can be mined from FI .

Essentially, by scanning the FCIs from the beginning to the end with the f-closed
swarm property, we are able to extract the corresponding fuzzy closed swarms. The
scanning process will be ended whenever one of conditions (3), (4) is suffered (Property

1), after that the current frequent itemset Υ (i.e. σ(Υ ) ≥ mino) only need to be verified
the conditions |Υ | ≥ mint and Υ contains the same number of objects with the FCI.
This is because Υ cannot be enlarged in terms of timestamps TΥ (i.e. Property 1) and
objects (i.e. FCI is closed). Thus, it satisfies all the requirements to be a fuzzy closed
swarm completely.

The pseudo-code of fCS-Miner is presented in the Algorithm 1. We first apply In-
cremental GeT Move on cluster matrix CDB with minsup = mino (line 2). Then, for
each generated FCI, we directly scan it with the f-closed swarm property as mentioned
before (lines 4-16). By using fCS-Miner, we are able to extract all fuzzy closed swarms
on-the-fly without a post-processing step.

5 Experimental Results

A comprehensive performance study has been conducted on real and synthetic datasets.
All the algorithms are implemented in C++, and all the experiments are carried out on
a 2.8GHz Intel Core i7 system with 4GB Memory. The system runs Ubuntu 11.10 and



10 Phan Nhat Hai et al.

g++ version 4.6.1. The implementation of our proposed algorithm is also integrated in a
demonstration system available online5. As in [12] [2] [6], the following dataset6 have
been used during experiments: Swainsoni dataset includes 43 objects evolving over
time and 764 different timestamps. It was generated from July 1995 to June 1998.

To the best of our knowledge, there is no previous work which addresses fuzzy
closed swarms. Therefore, in the comparison, we employ the latest pattern mining al-
gorithms such as CuTS∗7 [10] (convoy mining) and ObjectGrowth [12] (closed swarm
mining). As pointed out in [12], ObjectGrowth outperforms VG-Growth [14] (group
pattern mining) in terms of performance and therefore we will only consider Object-

Growth and not both.
Similarly to [10] [12], we first use linear interpolation to fill in the missing data.

Furthermore, as [10] [11] [12], DBScan [1] (MinPts = 2, Eps = 0.001) is applied
to generate clusters at each timestamp. To make fair comparison, we adapt all the al-
gorithms to accommodate clusters as input but their time complexity will remain the
same. Additionally, to retrieve all the patterns including fuzzy closed swarms, convoys
and closed swarms, in the reported experiments the fuzzy function in Figure 3 is ap-
plied, the default value of mint is 1, mino = 1 and ε = 0.001. Note that the default
values are the hardest conditions for examining all the algorithms.

5.1 Effectiveness

The effectiveness of fuzzy closed swarms can be demonstrated through our online demo
system. One of the extracted patterns from Swainsoni dataset is illustrated in Figure 5c.
Each color represents a Swainsoni trajectory segment involved in the pattern.

To illustrate the feasibility of a fuzzy approach, we also show some of extracted
closed swarms and convoys from our system8 [3] in Figures 5a, b. We can consider
that closed swarm is extraneous since the two objects meet each other at Mexico on
October 1995 and after 5 months (i.e. to March 1996) for the next meeting location
(i.e. Argentina). In fact, it is hard to say that they are moving together from Mexico to
Argentina. While, the convoys are sensitive to time gaps and usually are short deal to
the consecutive time constraint (see Figure 5a). Thus, they fail to describe the insightful
relationship between objects. Either be too strict or too relaxed in dealing with time
gaps may result in the loss of interesting patterns or reporting many uninteresting ones.

Distinguish from previous work, by proposing fuzzy closed swarms, we are able to
reveal the relevant relationship between Swainsonies in a fuzzy point of view. Looking
at the illustrated pattern in Figure 5c, we can consider that, from United States, the two
objects are flying together along a narrow corridor through Central America and down
to South America. Furthermore, they temporally diverge at Panama and congregate
again at the Columbia central. The discovery of the fuzzy closed swarms on animal
migration datasets provides useful information for biologists to better understand and
examine the relationship and habits of these moving objects. Due to the space limitation,

5 http://www.lirmm.fr/~phan/fcsminer.jsp
6 http://www.movebank.org
7 The source code of CuTS

∗ is available at http://lsirpeople.epfl.ch/jeung/source codes.htm
8 http://www.lirmm.fr/~phan/index.jsp
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(a) A convoy. (b) A closed swarm. (c) A fuzzy closed swarm.

Fig. 5. An example of extracted patterns from Swainsoni dataset. The two object names are
’SW22’ and ’SW40’.

we do not provide experiments by varying the fuzzy membership function A. However,
in real world context, users can express their expertise through the membership function
for dealing with fuzzy approximate reasoning issues.

5.2 Parameter Sensitiveness

To show the parameter sensitiveness and efficiency of the proposed algorithm, as in
[12], we also generate a large synthetic dataset using Brinkhoff’s network9-based gen-
erator of moving objects. We generate 500 objects (|ODB | = 500) for 104 timestamps
(|TDB | = 104) using the generator’s default map with slow moving speed (5 × 106

points in total). DBScan (MinPts = 3, Eps = 300) is applied to obtain clusters.
Sensitiveness w.r.t ε. See Figure 6a, we can consider that fCS-Miner is not sensitive

in ε. This is because ε is only used to scan the FCIs for fuzzy closed swarm extraction
which is much less expensive than FCI mining task.

Sensitiveness w.r.t mint. Figure 6b shows that ObjectGrowth is the most sensitive
algorithm in mint. This is because ObjectGrowth applies a mint-based pruning rule,
called Apriori Pruning, which is very sensitive in mint. Since, it is used to limit approx-
imately 2|TDB | candidates in total. Furthermore, with different values of mint, there are
great differences in terms of the number of extracted closed swarms (Figure 7b). Mean-
while, fCS-Miner and CuTS* only use mint at the pattern reporting or verifying steps
without any pruning rule for mint. Additionally, as mentioned before the fuzzy closed
swarm verifying task is less expensive than the FCI extraction. Consequently, be similar
to CuTS*, the fCS-Miner sensitiveness in mint is less sensitive than ObjectGrowth.

Sensitiveness w.r.t ODB , TDB . Figures 6c-d show the sensitiveness in the sizes of
ODB and TDB . We can consider that all the algorithms are quite similar to each other.
However, CuTS* is a little bit less sensitive than the others. This is because, in CuTS*:
1) the number of clusters at a certain timestamp is not exponentially increased due to
the |ODB | and |TDB | increases, 2) for any cluster c, c can combine with the clusters

9 http://iapg.jade-hs.de/personen/brinkhoff/generator/
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(a) ε (b) mint

(c) |ODB | (d) |TDB |

Fig. 6. Running time on Synthetic Dataset.

at the next timestamp. While, for ObjectGrowth, the number of candidates is greatly
increased due to the size increase of |ODB |, |TDB | (i.e. approximately 2|ODB |× 2|TDB |

candidates). As the results, the number of closed swarms is significantly increased (see
Figures 7c-d). This behavior is similar in fCS-Miner since the number of FCIs can be
large. However, thanks to the fuzzy approach, there are not huge amount of generated
patterns compared to ObjectGrowth. Obviously, fCS-Miner is similar to ObjectGrowth
and a little bit more sensitive than CuTS* in terms of |ODB | and |TDB |.

Influence of TGi(X) on #f-Closed swarms. Figure 8 shows the influence of the
fuzzy time gap participation index on the number of patterns that contain weak, medium
and strong time gaps. We can consider that the number of patterns which have TGi(X)
with weak fuzzy time gaps X , medium fuzzy time gaps X and strong fuzzy time gaps
X are quite distinguished from each other. Since, the number of patterns with weak
X is smallest, more number of patterns with medium X and the highest number of
patterns with strong X . Therefore, the TGi(X) enable us to rank the fuzzy closed
swarms well corresponding with the membership degree function. Furthermore, if we
ignore all the fuzzy closed swarms with strong (and medium) fuzzy time gaps, a number
of uninteresting patterns can be eliminated.

To summarize, fCS-Miner is effective to extract fuzzy closed swarms which are
novel and useful movement patterns. By applying fuzzy function, users can express
their background knowledge in order to obtain interesting patterns without generating
extraneous ones. Additionally, fCS-Miner parameter sensitiveness is quite acceptable
compare to the other model algorithms. Moreover, with the purpose to extract the com-
plete set of f-closed swarms, fCS-Miner is competitive in time efficiency to state-of-
the-art approaches (see Figure 6).
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(a) ε (b) mint

(c) |ODB | (d) |TDB |

Fig. 7. Number of patterns on Synthetic Dataset.

Fig. 8. Influence of TGi(X) on #patterns through ε.

6 Conclusions and Future Directions

In this paper, to deal with the issue that enforcing the consecutive time constraint or
completely relaxing may result in the loss of interesting patterns or the generation of
uninteresting patterns, we propose the concept of fuzzy swarm which softens the time
gap constraint. These concepts enable the discovery of insightful movement patterns
and the elimination of extraneous patterns. A new method fCS-Miner is proposed to
efficiently extract all the fuzzy closed swarms. The proposed algorithm’s effectiveness,
and parameter sensitiveness are demonstrated using real and large synthetic datasets.

In the future work, the proposed approaches can be applied on other kinds of pat-
terns (e.g. gradual trajectory patterns [4]). Although the number of non-interesting pat-
terns are significantly reduced, it is still difficult to analyze the results since number of
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patterns is still large. Another future directions is to directly mining top-K informative
fuzzy movement patterns to avoid extracting redundant information.
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Obtaining clusters

The clustering method is not fixed in our system. Users can cluster cars along high-
ways using a density-based method, or cluster birds in 3 dimension space using the
k-means algorithm. Clustering methods that generate overlapping clusters are also ap-
plicable, such as EM algorithm or using a rigid definition of the radius to define a
cluster. Moreover, clustering parameters are decided by users’ requirements or can be
indirectly controlled by setting the number of clusters at each timestamp.

Usually, most of clustering methods can be done in polynomial time. In our experi-
ments, we used DBScan [1], which takes O(|ODB |log(|ODB |)× |TDB |) in total to do
clustering at every timestamp. To speed it up, there are also many incremental cluster-
ing methods for moving objects. Instead computing clusters at each timestamp, clusters
can be incrementally updated from last timestamps.


