
ar
X

iv
:1

21
0.

64
65

v1
 [

cs
.D

S]
 2

4
O

ct
 2

01
2

Black-Box Complexity: Breaking the O(n log n) Barrier of

LeadingOnes

Benjamin Doerr and Carola Winzen

Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract

We show that the unrestricted black-box complexity of the n-dimensional XOR- and
permutation-invariant LeadingOnes function class is O(n log(n)/ log logn). This shows
that the recent natural looking O(n logn) bound is not tight.

The black-box optimization algorithm leading to this bound can be implemented in a
way that only 3-ary unbiased variation operators are used. Hence our bound is also valid for
the unbiased black-box complexity recently introduced by Lehre and Witt. The bound also
remains valid if we impose the additional restriction that the black-box algorithm does not
have access to the objective values but only to their relative order (ranking-based black-box
complexity).

Keywords: Algorithms; black-box complexity; query complexity; runtime analysis; theory.

1 Introduction

The black-box complexity of a set F of functions S → R, roughly speaking, is the number
of function evaluations necessary to find the maximum of any member of F which—apart
from the points evaluated so far—is unknown. This and related notions are used to describe
how difficult a problem is to be solved via general-purpose (randomized) search heuristics.
Consequently, black-box complexities are very general lower bounds which are valid for a wide
range of evolutionary algorithms. A number of different black-box notions exist, each capturing
different classes of randomized search heuristics, cf. [DJW06], [LW10], and [DW11].

In this paper we consider the unrestricted black-box model by Droste, Jansen, and We-
gener [DJW06] and the unbiased black-box model by Lehre and Witt [LW10], and we shortly
remark on the ranking-based models which we propose in [DW11]. A formal definition of the
first two models is given in Section 2. For now, let us just mention that algorithms in the
unrestricted black-box model are allowed to query any bit string, whereas in the k-ary unbiased
model, an algorithm may only query search points sampled from a k-ary unbiased distribution.
That is, in each iteration, the algorithm may either query a random search point or, based upon
at most k previously queried search points, it may generate a new one. The new search point
can be generated only by using so-called unbiased variation operators. These are operators that
are symmetric both in the bit values (0 or 1) and the bit positions. More formally, the variation
operation must be invariant under all automorphisms of the hypercube.

In this work, we are concerned with the black-box complexity of the LeadingOnes func-
tion, which is one of the classical test functions for analyzing the optimization behavior of
different search heuristics. The function itself is defined via Lo : {0, 1}n → [0..n], x 7→ max{i ∈
[0..n] | ∀j ≤ i : xj = 1}. It was introduced in [Rud97] to disprove a previous conjecture by

1

http://arxiv.org/abs/1210.6465v1

Mühlenbein [Müh92] that any unimodal function can be optimized by the well-known (1+1) evo-
lutionary algorithm (EA) in O(n log n) iterations. Rudolph [Rud97] proves an upper bound of
O(n2) for the expected optimization time of the (1 + 1) EA on Lo and concludes from ex-
perimental studies a lower bound of Ω(n2)—a bound which was rigorously proven in 2002 by
Droste, Jansen, and Wegener [DJW02]. This Θ(n2) expected optimization time of the simple
(1 + 1) EA seems optimal among the commonly studied evolutionary algorithms.

Note that the unrestricted black-box complexity of the Lo function is 1: The algorithm
querying the all-ones vector (1, . . . , 1) in the first query is optimal. Motivated by this and by
the fact that the unbiased black-box model only allows variation operators which are invariant
with respect to the bit values and the bit positions, we shall study here a generalized version of
the Lo function. More precisely, we consider the closure of Lo under all permutations σ ∈ Sn

and under all exchanges of the bit values 0 and 1. It is immediate, that each of these functions
has a fitness landscape that is isomorphic to the one induced by Lo. To be more precise, we
define for any bit string z ∈ {0, 1}n and any permutation σ of [n] the function

Loz,σ : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : zσ(j) = xσ(j)} .

We let LeadingOnesn be the set {Loz,σ | z ∈ {0, 1}n, σ ∈ Sn} of all such functions.
Note that this definition differs from the one in [DJW06], where only the subclass

LeadingOnes0n := {Loz,id | z ∈ {0, 1}n} not invariant under permutations of [n] is stud-
ied. Here, id denotes the identity mapping on [n]. For this restricted subclass, Droste, Jansen,
and Wegener [DJW06] prove an unrestricted black-box complexity of Θ(n). Of course, their
lower bound Ω(n) is a lower bound for the unrestricted black-box complexity of the general
LeadingOnesn function class, and consequently, a lower bound for the unbiased black-box
complexity of LeadingOnesn.

The function class LeadingOnesn has implicitly been studied for the first time in [LW10],
where Lehre and Witt show that indeed the (1+1) EA is provably (asymptotically) optimal
among all unbiased black-box algorithms of arity at most one. This establishes a natural Θ(n2)
bound for LeadingOnesn.

Surprisingly, it turns out that this bound does not hold for the unrestricted black-box model
and that it does not even hold in the 2-ary unbiased black-box model. In [DJK+11] it is shown
that, assuming knowledge on σ(1), . . . , σ(ℓ), one can perform a binary search to determine
σ(ℓ+ 1) and its corresponding bit value. Since this has to be done n times, an upper bound of
O(n log n) for the unrestricted black-box complexity of LeadingOnesn follows. Furthermore,
this O(n log n) bound can already be achieved in the binary unbiased model. Up to now, this is
the best known upper bound for the unrestricted and the 2-ary unbiased black-box complexity
of LeadingOnesn.

In this work we show that both in the unrestricted model (Section 3) and for arities at
least three (Section 4), one can do better, namely that O(n log(n)/ log log n) queries suffice to
optimize any function in LeadingOnesn. This breaks the previous O(n log n) barrier. This
result also shows why previous attempts to prove an Ω(n log n) lower bound must fail.

Unfortunately, also the ranking-based model does not help to overcome this unnatural low
black-box complexity. We shall comment in Section 5 that the 3-ary unbiased ranking-based
black-box complexity of LeadingOnesn, too, is O(n log(n)/ log log n).

As for the memory-restricted model we note without proof that a memory of size O(
√
log n)

suffices to achieve the same bound.

2

Algorithm 1: Scheme of an unrestricted black-box algorithm for optimizing f : S → R

1 Initialization:

2 Sample x(0) according to some probability distribution p(0) on S;
3 Query f(x(0));
4 Optimization:

5 for t = 1, 2, 3, . . . do

6 Depending on
(

(x(0), f(x(0))), . . . , (x(t−1), f(x(t−1)))
)

choose a probability

distribution p(t) on S;
7 Sample x(t) according to p(t);

8 Query f(x(t));

2 Preliminaries

In this section we briefly introduce the two black-box models considered in this work, the
unrestricted black-box model by Droste, Jansen, and Wegener [DJW06] and the unbiased black-
box model by Lehre and Witt [LW10]. Due to space limitations, we keep the presentation as
concise as possible. For a more detailed discussion of the two different black-box models and
for the definition of the ranking-based versions considered in Section 5, we refer the reader
to [DW11].

Before we introduce the two black-box models, let us fix some notation. For all positive
integers k ∈ N we abbreviate [k] := {1, . . . , k} and [0..k] := [k]∪ {0}. By enk we denote the k-th
unit vector (0, . . . , 0, 1, 0, . . . , 0) of length n. For a set I ⊆ [n] we abbreviate enI :=

∑

i∈I e
n
i =

⊕i∈Ieni , where ⊕ denotes the bitwise exclusive-or. By Sn we denote the set of all permutations
of [n] and for x = (x1, . . . , xn) ∈ {0, 1}n and σ ∈ Sn we abbreviate σ(x) := (xσ(1), . . . , xσ(n)).
For any two strings x, y ∈ {0, 1}n let B(x, y) := {i ∈ [n] | xi = yi}, the set of positions in which
x and y coincide.

For r ∈ R≥0, let ⌈r⌉ := min{n ∈ N0 | n ≥ r} and ⌊r⌋ := max{n ∈ N0 | n ≤ r}. For
the purpose of readability we sometime omit the ⌈·⌉ signs, that is, whenever we write r where
an integer is required, we implicitly mean ⌈r⌉. All logarithms log in this work are base two
logarithms. By ln we denote the logarithm to the base e := exp(1).

Black-Box Complexity. Let A be a class of algorithms and F be a class of functions. For
every A ∈ A and f ∈ F let T (A, f) ∈ R ∪ {∞} be the expected number of fitness evaluations
until A queries for the first time some x ∈ argmax f . We call T (A, f) the expected optimization
time of A for f . The A-black-box complexity of F is T (A,F) := supf∈F T (A, f), the worst-case
expected optimization time of A on F . The A-black-box complexity of F is infA∈A T (A,F), the
best worst-case expected optimization time an algorithm of A can exhibit on F .

The Unrestricted Black-Box Model. The black-box complexity of a class of functions
depends crucially on the class of algorithms under consideration. If the class A contains all
(deterministic and randomized) algorithms, we refer to the respective complexity as the unre-
stricted black-box complexity. This is the model by Droste, Jansen, and Wegener [DJW06]. The
scheme of an unrestricted algorithm is presented in Algorithm 1.

Note that this algorithm runs forever. Since our performance measure is the expected
number of iterations needed until for the first time an optimal search point is queried, we do
not specify a termination criterion for black-box algorithms here.

The Unbiased Black-Box Model. As observed already by Droste, Jansen, and We-
gener [DJW06], the unrestricted black-box complexity can be surprisingly low for different
function classes. For example, it is shown in [DJW06] that the unrestricted black-box complex-

3

Algorithm 2: Scheme of a k-ary unbiased black-box algorithm

1 Initialization:

2 Sample x(0) ∈ {0, 1}n uniformly at random;

3 Query f(x(0));
4 Optimization:

5 for t = 1, 2, 3, . . . do

6 Depending on
(

f(x(0)), . . . , f(x(t−1))
)

choose up to k indices i1, . . . , ik ∈ [0..t− 1]

and a k-ary unbiased distribution D(· | x(i1), . . . , x(ik));
7 Sample x(t) according to D(· | x(i1), . . . , x(ik));
8 Query f(x(t));

ity of the NP-hard optimization problem MaxClique is polynomial.
This motivated Lehre and Witt [LW10] to define a more restrictive class of algorithms, the

so-called unbiased black-box model, where algorithms may generate new solution candidates only
from random or previously generated search points and only by using unbiased variation opera-
tors, cf. Definition 1. Still the model captures most of the commonly studied search heuristics,
such as many (µ + λ) and (µ, λ) evolutionary algorithms, simulated annealing algorithms, the
Metropolis algorithm, and the Randomized Local Search algorithm (confer the book [AD11] for
the definitions of these algorithms).

Definition 1 (Unbiased Variation Operator). For all k ∈ N, a k-ary unbiased distribution
(

D(· | y(1), . . . , y(k))
)

y(1),...,y(k)∈{0,1}n is a family of probability distributions over {0, 1}n such that

for all inputs y(1), . . . , y(k) ∈ {0, 1}n the following two conditions hold.

(i)∀x, z ∈ {0, 1}n : D(x | y(1), . . . , y(k)) = D(x⊕ z | y(1) ⊕ z, . . . , y(k) ⊕ z) ;

(ii)∀x ∈ {0, 1}n ∀σ ∈ Sn : D(x | y(1), . . . , y(k)) = D(σ(x) | σ(y(1)), . . . , σ(y(k))) .

We refer to the first condition as ⊕-invariance and to the second as permutation invariance.
An operator sampling from a k-ary unbiased distribution is called a k-ary unbiased variation
operator.

1-ary—also called unary—operators are sometimes referred to as mutation operators, in
particular in the field of evolutionary computation. 2-ary—also called binary—operators are
often referred to as crossover operators. If we allow arbitrary arity, we call the corresponding
model the ∗-ary unbiased black-box model.

A k-ary unbiased black-box algorithm can now be described via the scheme of Algorithm 2.
The k-ary unbiased black-box complexity of some class of functions F is the complexity of F
with respect to all k-ary unbiased black-box algorithms.

3 On LeadingOnesn in the Unrestricted Model

This section is devoted to the main contribution of this work, Theorem 1. Recall from the
introduction that we have defined

Loz,σ : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : zσ(j) = xσ(j)}

and LeadingOnesn := {Loz,σ | z ∈ {0, 1}n, σ ∈ Sn} .

Theorem 1. The unrestricted black-box complexity of LeadingOnesn is O(n log(n)/ log log n).

4

The proof of Theorem 1 is technical. For this reason, we split it into several lemmata. The
main proof can be found at the end of this section. We remark already here that the algorithm
certifying Theorem 1 will make use of unbiased variation operators only. Hence, it also proves
that the ∗-ary unbiased black-box complexity of LeadingOnesn is O(n log(n)/ log log n). This
will be improved in Section 4.

The main idea of both the ∗-ary and the 3-ary algorithm is the following. Given a bit string x
of fitness Loz,σ(x) = ℓ, we iteratively first learn k :=

√
log n bit positions σ(ℓ+1), . . . , σ(ℓ+ k)

and their corresponding bit values which we fix for all further iterations of the algorithm.
Learning such a block of size k will require O(k3/ log k2) queries. Since we have to optimize
n/k such blocks, the overall expected optimization is O(nk2/ log k2) = O(n log(n)/ log log n).
In what follows, we shall formalize this idea.

Convention: For all following statements let us fix a positive integer n, a bit string z ∈
{0, 1}n and a permutation σ ∈ Sn.

Definition 2 (Encoding Pairs). Let ℓ ∈ [0..n] and let y ∈ {0, 1}n with Loz,σ(y) = ℓ. If
x ∈ {0, 1}n satisfies Loz,σ(x) ≥ Loz,σ(y) and ℓ = |{i ∈ [n] | xi = yi}| , we call (x, y) an
ℓ-encoding pair for Loz,σ.

If (x, y) is an ℓ-encoding pair for Loz,σ, the bit positions B(x, y) are called the ℓ-encoding
bit positions of Loz,σ and the bit positions j ∈ [n]\B(x, y) are called non-encoding.

If (x, y) is an ℓ-encoding pair for Loz,σ we clearly either have have Loz,σ(x) > ℓ or Loz,σ(x) =
Loz,σ(y) = n. For each non-optimal y ∈ {0, 1}n we call the unique bit position which needs
to be flipped in y in order to increase the objective value of y the ℓ-critical bit position of
Loz,σ. Clearly, the ℓ-critical bit position of Loz,σ equals σ(ℓ+1), but since σ is unknown to the
algorithm we shall make use of this knowledge only in the analysis, and not in the definition
of our algorithms. In the same spirit, we call the k bit positions σ(ℓ + 1), . . . , σ(ℓ + k) the k
ℓ-critical bit positions of Loz,σ.

Lemma 2. Let ℓ ∈ [0..n − 1] and let (x, y) ∈ {0, 1}n × {0, 1}n be an ℓ-encoding pair for Loz,σ.
Furthermore, let k ∈ [n− Loz,σ(y)] and let y′ ∈ {0, 1}n with ℓ ≤ Loz,σ(y

′) < ℓ+ k.
If we create y′′ from y′ by flipping each non-encoding bit position j ∈ [n]\B(x, y) with

probability 1/k, then
Pr[Loz,σ(y

′′) > Loz,σ(y
′)] ≥ (ek)−1 .

Proof. First note that due to Loz,σ(y
′) ≥ Loz,σ(y), we clearly have y′j = xj for all ℓ-encoding

bit positions j ∈ B(x, y). Since we do not allow these bit positions B(x, y) to be changed, we
necessarily also have Loz,σ(y

′′) ≥ ℓ.
Let c ∈ [0..

√
log n] such that Loz,σ(y

′) = ℓ + c. Then Loz,σ(y
′′) > Loz,σ(y

′) if and only if
both

(i) none of the c bit positions σ(Loz,σ(y) + 1), . . . , σ(Loz,σ(y) + c) is flipped, and

(ii) the ℓ+ c-critical bit position σ(ℓ+ c+ 1) is flipped.

This yields

Pr[Loz,σ(y
′′) > Loz,σ(y

′)] = (1− 1
k)

c 1
k ≥ (1− 1

k)
k−1 1

k ≥ (ek)−1 ,

where we make use of the well-known fact that for all positive integers k it holds that (1− 1
k)

k−1 ≥
e−1.

5

Algorithm 3: The (x, y)-encoded (1+1) evolutionary algorithm with mutation probabil-
ity 1/k.

1 Input: ℓ-encoding pair (x, y) ∈ {0, 1}n × {0, 1}n.
2 y′ ← y;
3 while Loz,σ(y

′) < Loz,σ(y) + k do

4 y′′ ← random(y′, x, y, 1/k);
5 Query Loz,σ(y

′′);
6 if Loz,σ(y

′′) > Loz,σ(y
′) then y′ ← y′′;

7 Output y′;

Lemma 2 motivates us to formulate Algorithm 3 which can be seen as a variant of the
standard (1 + 1) EA, in which we fix some bit positions and where we apply a non-standard
mutation probability. The variation operator random(y′, x, y, 1/k) samples a bit string y′′ from
y′ by flipping each non-encoding bit position j ∈ [n]\B(x, y) with probability 1/k. This is easily
seen to be an unbiased variation operator of arity 3.

The following statement follows easily from Lemma 2 and the linearity of expectation.

Corollary 3. Let (x, y), ℓ, and k be as in Lemma 2. Then the (x, y)-encoded (1 + 1) EA
with mutation probability 1/k, after an expected number of O(k2) queries, outputs a bit string
y′ ∈ {0, 1}n with Loz,σ(y

′) ≥ ℓ+ k.

A second key argument in the proof of Theorem 1 is the following. Given an ℓ-encoding pair
(x, y) and a bit string y′ with Loz,σ(y

′) ≥ ℓ+
√
log n, we are able to learn the

√
log n ℓ-critical

bit positions σ(ℓ+1), . . . , σ(ℓ+
√
log n) in an expected number of O(log3/2(n)/ log log n) queries.

This will be formalized in the following statements.

Lemma 4. Let ℓ ∈ [0..n−⌈√log n⌉] and let (x, y) be an ℓ-encoding pair for Loz,σ. Furthermore,
let y′ be a bit string with Loz,σ(y

′) ≥ ℓ+
√
log n.

For each i ∈ [8e log3/2(n)/ log log n] let yi be sampled from y′ by independently flipping each
non-encoding bit position j ∈ [n]\B(x, y) with probability 1/

√
log n.

For each c ∈ [
√
log n] let

Xc := {yi | i ∈ [8e log3/2(n)/ log log n] and Loz,σ(y
i) = ℓ+ c− 1} ,

the set of all samples yi with Loz,σ(y
i) = ℓ+ c− 1.

Then

Pr
[

∀c ∈ [
√

log n] : |Xc| ≥ 4 log(n)/ log log n
]

≥ 1− o(1) .

Proof. For readability purposes, let us abbreviate k :=
√
log n.

First, let us consider the size |Xc| for some fixed c ∈ [k]. By the same arguments as used in
the proof of Lemma 2 we have for any i ∈ [8e log3/2(n)/ log log n] that

Pr[Loz,σ(y
i) = ℓ+ c− 1] = (1− 1

k)
c−1 1

k ≥ (1− 1
k)

k−1 1
k ≥ 1

ek .

Thus, E[|Xc|] ≥ 8 log(n)/ log log n by the linearity of expectation.
If we set Yi,c = 1 if Loz,σ(y

i) = ℓ + c − 1 and Yi,c = 0 otherwise, we have |Xc| :=
∑8e log3/2(n)/ log logn

i=1 Yi,c. In particular, |Xc| is the sum of independent random variables. We can

6

thus apply Chernoff’s bounds (cf. [AD11] for a compact introduction) to bound the deviation
of |Xc| from its expectation and obtain

Pr
[

|Xc| < 1
2 E[|Xc|]

]

≤ exp
(

− 1
8 E[|Xc|]

)

≤ exp
(

− log(n)/ log log n
)

≤ 1/ log n ,

where the last inequality follows from log(n)/ log log n > ln log n for large enough n. By a simple
union bound we conclude

Pr
[

∀c ∈ [
√

log n] : |Xc| ≥ 4 log(n)/ log log n
]

≥ 1− 1/
√

log n = 1− o(1) .

These sets Xc are large enough to identify σ(ℓ+ c).

Lemma 5. Let ℓ, (x, y), and y′ be as in Lemma 4 and let t := 4 log(n)/ log log n.
For any c ∈ [

√
log n] let Xc be a set of at least t bit strings y1(c), . . . , y|Xc|(c) with fitness

Loz,σ(y
i(c)) = ℓ+ c−1, which are sampled from y′ by independently flipping each non-encoding

bit position j ∈ [n]\B(x, y) with probability 1/
√
log n.

Then we have, with probability at least 1−o(1), that for all c ∈ [
√
log n] there exists only one

non-encoding j := jℓ+c ∈ [n]\B(x, y) with y′j = 1− yij(c) for all i ∈ [|Xc|]. Clearly, j = σ(ℓ+ c).

Proof. Let us first consider some fix value c ∈ [
√
log n]. For any i ∈ [|Xc|] we have, by definition,

that Loz,σ(y
i(c)) = ℓ+c−1. Thus, it must hold that yiσ(ℓ+c)(c) = 1−y′σ(ℓ+c) and yiσ(j)(c) = y′σ(j)

for all j < ℓ+ c. Let

Iℓ+c := [n]\(B(x, y) ∪ {σ(ℓ+ 1), . . . , σ(ℓ+ c)})
= [n]\{σ(1), . . . , σ(ℓ+ c)} .

Since all bit flips are mutually independent, we have for any i ∈ [|Xc|] and any fixed j ∈ Iℓ+c

that the entry yij(c) in the j-th bit position equals 1− y′j with probability 1/
√
log n. Note that

this remains true despite the fact that we condition on Loz,σ(y
i) = ℓ+ c− 1.

Thus, for any j ∈ Iℓ+c we have

Pr[∀i ∈ [|Xc|] : yij(c) = 1− y′j] ≤ (1/
√

log n)|Xc|

≤ (1/
√

log n)4 log(n)/ log logn

= 2−2 logn = 1/n2 .

By the union bound, the probability that there exists a j ∈ Iℓ+c with yij(c) = 1 − y′j for all
i ∈ [|Xc|] is bounded from above by 1/n.

And by again applying a union bound we find that

Pr[∃c ∈ [
√

log n]∃j ∈ Iℓ+c∀i ∈ [|Xc|] : yij(c) = 1− y′j] ≤
√

log n/n = o(1) .

Combining Lemma 4 with Lemma 5 we immediately gain the following.

Corollary 6. Let ℓ, (x, y), y′, and yi, i = 1, . . . , 8e log3/2(n)/ log log n, be as in Lemma 4.
With probability at least 1 − o(1) we have that for all c ∈ [

√
log n] there exists only one

non-encoding j := jℓ+c ∈ [n]\B(x, y) with y′j = 1 − yij for all i ∈ [8e log3/2(n)/ log log n] with

Loz,σ(y
i) = ℓ+ c− 1. Clearly, j = σ(ℓ+ c).

7

We are now ready to prove Theorem 1. As mentioned above, the proof also shows that the
statement remains correct if we consider the unbiased black-box model with arbitrary arity.

of Theorem 1. We need to show that there exists an algorithm which maximizes any (a priori
unknown) function Loz,σ ∈ LeadingOnesn using, on average, O(n log(n)/ log log n) queries.

For readability purposes, let us fix some function f = Loz,σ ∈ LeadingOnesn to be
maximized by the algorithm.

First, let us give a rough idea of our algorithm, Algorithm 4. A detailed analysis can be
found below.

The main idea is the following. We maximize f block-wise, where each block has a length
of
√
log n bits. Due to the influence of the permutation σ on f , these bit positions are a

priori unknown. Assume for the moment that we have an ℓ-encoding pair (x, y), where ℓ ∈
[0..n−⌈√log n ⌉]. In the beginning we have ℓ = 0 and y = x⊕(1, . . . , 1), the bitwise complement
of x. To find an (ℓ +

√
log n)-encoding pair, we first create a string y′ with objective value

f(y′) ≥ ℓ +
√
log n. By Corollary 3, this requires on average O(log n) queries. Next, we need

to identify the
√
log n f(y)-critical bit positions σ(ℓ + 1), . . . , σ(ℓ +

√
log n). To this end, we

sample enough bit strings such that we can unambiguously identify these bit positions. As we
shall see, this requires on average O(log3/2(n)/ log log n) queries. After identifying the critical
bits, we update (x, y) to a (ℓ+

√
log n)-encoding pair. Since we need to optimize n/

√
log n such

blocks of size
√
log n, the overall expected optimization time is O(n log(n)/ log log n).

Let us now present a more detailed analysis. We start by querying two complementary bit
strings x, y. By swapping x with y in case f(y) ≥ f(x), we ensure that f(x) > f(y) = 0. This
gives us a 0-encoding pair.

Let an ℓ-encoding pair (x, y), for some fixed value ℓ ∈ [0..n − ⌈√log n ⌉], be given.
We show how from this we find an (ℓ +

√
log n)-encoding pair in an expected number of

O(log3/2(n)/ log log n) queries.
As mentioned above, we first find a bit string y′ with objective value f(y′) ≥ ℓ +

√
log n.

We do this by running Algorithm 3, the (x, y)-encoded (1 + 1) EA with mutation probabil-
ity 1/

√
log n until we obtain such a bit string y′. By Corollary 3 this takes, on average, O(log n)

queries.
Next we want to identify the

√
log n ℓ-critical bit positions σ(ℓ+1), . . . , σ(ℓ+

√
log n). To this

end, we query in the i-th iteration of the second phase, a bit string yi which has been created from
y′ by flipping each non-encoding bit y′j, j ∈ [n]\B(x, y) independently with probability 1/

√
log n.

If f(yi) = ℓ+c−1 for some c ∈ [
√
log n], we updateXℓ+c ← Xℓ+c∪{yi}, the set of all queries with

objective value ℓ+ c− 1, and we compute Jℓ+c := {j ∈ [n]\B(x, y) | ∀w ∈ Xℓ+c : wj = 1− y′j},
the set of candidates for σ(ℓ + c). We do so until we find |Jℓ+c| = 1 for all c ∈ [

√
log n]. By

Corollary 6 this takes, on average, at most 8e log3/2(n)/ log log n queries.
Thus, all we need to do in the third step is to update (x, y) to an (ℓ+

√
log n)-encoding pair

by exploiting the information gathered in the second phase. For any c ∈ [
√
log n] let us denote

the element in Jℓ+c by jℓ+c. We go through the positions σ(ℓ+ 1), . . . , σ(ℓ +
√
log n) one after

the other and either we update y ← y ⊕ enjℓ+c
(if f(y) < f(x)), and we update x ← x ⊕ enjℓ+c

otherwise. It is easy to verify that after
√
log n such steps we have f(x) ≥ ℓ +

√
log n and

f(y) ≥ ℓ+
√
log n. It remains to swap (x, y)← (y, x) in case f(y) > f(x) in order to obtain an

(ℓ+
√
log n)-encoding pair (x, y).

This shows how, given a ℓ-encoding pair (x, y), we find an (ℓ +
√
log n)-encoding pair in

O(log n) +O(log3/2(n)/ log log n) +O(
√
log n) = O(log3/2(n)/ log log n) queries.

By definition of Algorithm 4, all bit positions in B(x, y) remain untouched in all fur-
ther iterations of the algorithm. Thus, in total, we need to optimize ⌊ n

⌈
√
logn ⌉⌋ blocks

of size ⌈√log n ⌉ until we have a (⌊ n
⌈
√
logn ⌉⌋⌈

√
log n ⌉)-encoding pair (x, y). For each

8

Algorithm 4: A ∗-ary unbiased black-box algorithm for maximizing f ∈ LeadingOnesn.
Recall that we have defined Jℓ+c := {j ∈ [n]\B(x, y) | ∀w ∈ Xℓ+c : wj = 1− y′j}.
1 Initialization:

2 for i = 1, . . . , n do Xi ← ∅;
3 Sample x ∈ {0, 1}n uniformly at random;
4 Query f(x);
5 Set y ← x⊕ (1, . . . , 1);
6 Query f(y);
7 if f(y) ≥ f(x) then (x, y)← (y, x);
8 Optimization:

9 while |B(x, y)| ≤
⌊

n
⌈
√
logn ⌉

⌋

⌈√log n ⌉ do
10 ℓ← |B(x, y)|;
11 Apply Algorithm 3 with input (x, y) and mutation probability 1/

√
log n until it

outputs a bit string y′ with f(y′) ≥ ℓ+
√
log n;

12 Initialize i← 1;
13 while ∃c ∈ [

√
log n] : |Jℓ+c| > 1 do

14 yi ← random(y′, x, y, 1/
√
log n);

15 Query f(yi);
16 if f(yi) ∈ [ℓ, . . . , ℓ+

√
log n− 1] then

17 Update Xf(yi)+1 ← Xf(yi)+1 ∪ {yi};
18 Update Jf(yi);
19 i← i+ 1;

20 for c = 1, . . . ,
√
log n do update(x, y, y′,Xℓ+c);

21 if f(y) > f(x) then (x, y)← (y, x);

22 Apply Algorithm 3 with input (x, y) and mutation probability 1/
√
log n until it queries

for the first time a string y′ with f(y′) = n;

block, the expected number of queries needed to fix the corresponding bit positions is
O(log3/2(n)/ log log n). By linearity of expectation this yields a total expected optimization
time of O(n/

√
log n)O(log3/2(n)/ log log n) = O(n log(n)/ log log n) for optimizing the first

k := ⌊ n
⌈
√
logn ⌉⌋⌈

√
log n ⌉ bit positions σ(1), . . . , σ(k).

The remaining n− k ≤ ⌊√log n⌋ bit positions can be found by Algorithm 3 in an expected
number of O(log n) queries (Corollary 3). This does not change the asymptotic number of
queries needed to identify z.

Putting everything together, we have shown that Algorithm 4 optimizes any function Loz,σ ∈
LeadingOnesn in an expected number of O(n log(n)/ log log n) queries. It is not difficult to
verify that all variation operators are unbiased. We omit the details.

4 The Unbiased Black-Box Complexity of LeadingOnesn

Next we show how a slight modification of Algorithm 4 yields a 3-ary unbiased black-box
algorithm with the same asymptotic expected optimization time.

Theorem 7. The 3-ary unbiased black-box complexity of LeadingOnesn is
O(n log(n)/ log log n).

9

Algorithm 5: Subroutine update(x, y, y′,Xℓ+c)

1 Input: An ℓ-encoding pair (x, y), a bit string y′ with f(y′) ≥ ℓ+
√
log n, and, a set Xℓ+c

of samples w with f(w) = ℓ+ c− 1 such that
|Jℓ+c| = |{j ∈ [n]\B(x, y) | ∀w ∈ Xc : wj = 1− y′j}| = 1;

2 if f(y) ≤ f(x) then
3 y ← y ⊕ enJ (ℓ+c);

4 Query f(y);

5 else

6 x← x⊕ enJ (ℓ+c);

7 Query f(x);

Proof. Key for this result is the fact that, instead of storing for any c ∈ [
√
log n] the whole query

history Xℓ+c, we need to store only one additional bit string xℓ+c to keep all the information
needed to determine σ(ℓ+ c).

Algorithm 6 gives the full algorithm. Here, the bit string update2(w, y′, xℓ+c) is defined
via

(

update2(w, y′, xℓ+c)
)

i
= wi if i ∈ [n]\B(y′, xℓ+c) and

(

update2(w, y′, xℓ+c)
)

i
= 1 − wi for

i ∈ B(y′, xℓ+c).
Note that, throughout the run of the algorithm, the pair (y′, xℓ+c), or more precisely, the

set B(y′, xℓ+c) encodes which bit positions j are still possible to equal σ(ℓ + c). Expressing
the latter in the notation used in the proof of Theorem 1, we have in any iteration of the first
while-loop that for all i ∈ [n] it holds y′i = xℓ+c

i if and only if i ∈ Jℓ+c. This can be seen as
follows. In the beginning, we only know that σ(ℓ+c) 6= B(x, y). Thus, we initialize xℓ+c

i ← 1−y′i
if i ∈ B(x, y) and xℓ+c

i ← y′i for i ∈ [n]\B(x, y). In each iteration of the second while-loop, we
update xℓ+c

i ← 1− y′i if σ(ℓ+ c) = i can no longer hold, i.e., if we have sampled a bit string w
with f(w) = ℓ+ c− 1 and wi = y′i.

It is easily verified that Algorithm 6 certifies Theorem 7. We omit a full proof in this
extended abstract.

5 LeadingOnesn in the Ranking-Based Models

As discussed above, we introduced two ranking-based versions of the black-box complexity
notion in [DW11]: the unbiased ranking-based and the unrestricted ranking-based black-box
complexity. Instead of querying the absolute fitness values f(x), in the ranking-based model,
the algorithms may only query the ranking of y among all previously queried search points,
cf. [DW11] for motivation and formal definitions. We briefly remark the following.

Theorem 8. The 3-ary unbiased ranking-based black-box complexity of LeadingOnesn is
O(n log(n)/ log log n).

This theorem immediately implies that the unrestricted ranking-based black-box complexity
of LeadingOnesn is O(n log(n)/ log log n) as well.

Theorem 8 can be proven by combining the Algorithm 6 presented in the proof of Theorem 7
with a sampling strategy as used in Lemma 4. Although the latter is not optimal, it suffices to
show that after sampling O(log3/2(n)/ log log n) such samples, we can identify the rankings of
f(ℓ+ 1), . . . , f(ℓ +

√
log n), with probability at least 1 − o(1). We do the sampling right after

Line 10 of Algorithm 6. After having identified the rankings of f(ℓ+ 1), . . . , f(ℓ+
√
log n), we

can continue as in Algorithm 6.

10

Algorithm 6: A 3-ary unbiased black-box algorithm for maximizing f ∈ LeadingOnesn.

1 Initialization:

2 Sample x ∈ {0, 1}n uniformly at random;
3 Query f(x);
4 Set y ← x⊕ (1, . . . , 1);
5 Query f(y);
6 if f(y) ≥ f(x) then (x, y)← (y, x);
7 Optimization:

8 while |B(x, y)| ≤
⌊

n
⌈
√
logn ⌉

⌋

⌈√log n ⌉ do
9 ℓ← |B(x, y)|;

10 Apply Algorithm 3 with input (x, y) and mutation probability 1/
√
log n until it

outputs a bit string y′ with f(y′) ≥ ℓ+
√
log n;

11 for c = 1, . . . ,
√
log n do

12 for i = 1, . . . , n do

13 if i ∈ B(x, y) then xℓ+c
i ← 1− y′i else xℓ+c

i ← y′i;

14 while ∃c ∈ [
√
log n] : |B(xℓ+c, y′)| > 1 do

15 w ← random(y′, x, y, 1/
√
log n);

16 Query f(w);
17 if ∃c ∈ [

√
log n] : f(w) = ℓ+ c− 1 then

18 for i = 1, . . . , n do if xℓ+c
i = y′i = wi then xℓ+c

i ← 1− y′i;

19 for c = 1, . . . ,
√
log n do

20 if f(y) ≤ f(x) then update2(y, y′, xℓ+c) else update2(x, y′, xℓ+c);

21 if f(y) > f(x) then (x, y)← (y, x);

22 Apply Algorithm 3 with input (x, y) and mutation probability 1/
√
log n until it queries

for the first time a string y′ with f(y′) = n;

6 Conclusions

We have shown that there exists a 3-ary unbiased black-box algorithm which optimizes any
function Loz,σ ∈ LeadingOnesn in an expected number of O(n log(n)/ log log n) queries. This
establishes a new upper bound on the unrestricted and the 3-ary unbiased black-box complexity
of LeadingOnesn.

Our result raises several questions for future research. The obvious one is to close the
gap between the currently best lower bound of Ω(n) (cf. [DJW06]) and our upper bound of
O(n log(n)/ log log n). Currently, we cannot even prove an ω(n) lower bound. Secondly, it
would also be interesting to know whether the gap between the 2-ary and the 3-ary unbiased
black-box model is an artifact of our analysis or whether 3- and higher arity operators are truly
more powerful than binary ones.

Acknowledgments. Carola Winzen is a recipient of the Google Europe Fellowship in
Randomized Algorithms. This research is supported in part by this Google Fellowship.

11

References

[AD11] Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics. World
Scientific, 2011.

[DJK+11] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus Wag-
ner, and Carola Winzen. Faster black-box algorithms through higher arity operators.
In Proc. of Foundations of Genetic Algorithms (FOGA’11), pages 163–172. ACM,
2011.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory of Computing Systems,
39:525–544, 2006.

[DW11] Benjamin Doerr and Carola Winzen. Towards a Complexity Theory of Randomized
Search Heuristics: Ranking-Based Black-Box Complexity. In Proc. of Computer
Science Symposium in Russia (CSR’11), pages 15–28. Springer, 2011.

[LW10] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. In
Proc. of Genetic and Evolutionary Computation Conference (GECCO’10), pages
1441–1448. ACM, 2010.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing.
In Proc. of Parallel Problem Solving from Nature (PPSN II), pages 15–26. Elsevier,
1992.

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Algorithms. Kovac, 1997.

12

	1 Introduction
	2 Preliminaries
	3 On LeadingOnes n in the Unrestricted Model
	4 The Unbiased Black-Box Complexity of LeadingOnes n
	5 LeadingOnes n in the Ranking-Based Models
	6 Conclusions

