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Abstract

Traditionally, most consumers of electricity pay for themnsumptions according to a fixed rate. With the
advancement of Smart Grid technologies, large-scale imghtation of variable-rate metering becomes more prac-
tical. As a result, consumers will be able to control thegcgiicity consumption in an automated fashion, where
one possible scheme is to have each individual maximizewts wtility as a noncooperative game. In this paper,
noncooperative games are formulated among the electgoifumers in Smart Grid with two real-time pricing
schemes, where the Nash equilibrium operation points aresiigated for their uniqueness and load balancing
properties. The first pricing scheme charges a price aaugitdi the average cost of electricity borne by the retailer
and the second one charges according to a time-varianaisiogeblock price, where for each scheme, a zero-revenue
model and a constant-rate revenue model are consideredidition, the relationship between the studied games
and certain competitive routing games from the computerading community, known as atomic flow games, is
established, for which it is shown that the proposed nonemdjve game formulation falls under the class of atomic
splittable flow games. The Nash equilibrium is shown to efastfour different combined cases corresponding to
the two pricing schemes and the two revenue models, and dgierior three of the cases under certain conditions.
It is further shown that both pricing schemes lead to simélectricity loading patterns when consumers are only
interested in minimizing the electricity costs without amiher profit considerations. Finally, the conditions under
which the increasing-block pricing scheme is preferred dlie average-cost based pricing scheme are discussed.

Index Terms

Game Theory, Noncooperative Game, Atomic Splittable Flaam®, Nash Equilibrium, Smart Grid, Real Time
Pricing, Increasing-Block Pricing.

. INTRODUCTION

In the traditional power market, electricity consumersaligupay a fixed retail price for their electricity usage.
This price only changes on a seasonal or yearly basis. Hawigveas been long recognized in the economics
community that charging consumers a flat rate for elegyricieates allocative inefficiencies, i.e., consumers do not
pay equilibrium prices according to their consumption Is\[#]. This was shown through an examplelin [2], which
illustrates how flat pricing causes deadweight loss at effiptimes and excessive demand at the peak times. The
latter may lead to small-scale blackouts in a short run aressive capacity buildup over a long run. As a solution,
variable-rate metering that reflects the real-time costmfigr generation can be used to influence consumers to
defer their power consumption away from the peak times. €deced peak-load can significantly reduce the need
for expensive backup generation during peak times and sxeegeneration capacity.

The main technical hurdle in implementing real-time pricimas been the lack of cost-effective two-way smart
metering, which can communicate real-time prices to comsarand their consumption levels back to the energy
provider. In addition, the claim of social benefits from réale pricing also assumes that the consumer demand is
elastic and responds to price changes while traditionasworers do not possess the equipments that enable them
to quickly alter their demands according to the changing groprices. Significant research efforts on real-time
pricing have involved estimating the consumer demandieigsand the level of benefits that real time pricing can
achieve [[1], [[3], [4]. Fortunately, the above requirememissmart metering and consumer adaptability are being
fulfilled [5] as technology advances in cyber-enabled nieggmpower generation, power storage, and manufaturing
automation, which is driven by the need for a Smart Grid.
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Such real-time pricing dynamics have been studied in teealitire mainly with game theory! [6]-+[8]. In particular,
the authors in[[6] provided a design mechanism withrelation principleto determine the optimal amount of
incentive that is needed for the customers to be willing teeema contract with the utility and accept power
curtailment during peak periods. However, they only coaisid a fixed pricing scheme. In| [7], the authors studied
games among consumers under a certain class of demandgatfédeprice that is a function of day long aggregate
cost of global electricity load of all consumers. Howevhge tase with real-time prices was not investigated in [7].
In [8], a noncooperative game was studied to tackle thetiea-pricing problem, where the solution was obtained
by exploring the relationship with the congestion games jpoigntial games. However, the pricing schemes that
we study are not amenable to transformations described]in [8

In this paper we formulate noncooperative games [9]] [10prgnthe consumers with two real-time pricing
schemes under more general load profiles and revenue matheldirst pricing scheme charges a price according
to the instantaneous average cost of electricity prodnaicd the second one charges according to a time-varying
version of increasing-block price [11]. We investigate samer demands at the Nash equilibrium operation points
for their uniqueness and load balancing properties. Furtbee, two revenue models are considered for each of the
schemes, and we show that both pricing schemes lead to sietdetricity loading patterns when consumers are
interested only in the minimization of electricity costse\&lso demonstrate the relationship between these games
and certain competitive routing games [[12], known as atoftaiev games [[13] from the computer networking
community. We show that the proposed noncooperative gamaufation falls under the class of atomic splittable
flow games([14]. Specifically, we show that the noncoopeeagame amongst the consumers has the same structure
as that in the atomic splittable flow game over a two-node agtwith multiple parallel links between them. Finally
we discuss the conditions under which the increasing-bjoiting scheme is preferred over the average-cost based
pricing scheme.

The rest of the paper is organized as follows. The system nfwdmulation of the noncooperative game, and its
relationship with the atomic flow games are presented ini@efl The game is analyzed with different real-time
pricing schemes under different revenue models in Seclibiesd [[V] where the Nash equilibrium properties are
investigated. We conclude the paper in Secfion V.

II. SYSTEM MODEL

We study the transaction of energy between a single elégtrietailer and multiple consumers. In each given
time slot, each consumer has a demand for electric energgsfimed in Watt-hour, Wh). The job of the retailer
is to satisfy demands from all the consumers. The elegtrigifpply of the retailer is purchased from a variety of
sources over a wholesale electricity market and the retaily possess some generation capacity as well. These
sources may use different technologies and fuels to genetacttricity, which leads to different marginal costs of
electricity at the retailer, where the marginal cost is therémental cost incurred to produce an additional unit of
output [15]. Mathematically, the marginal cost functioreigpressed as the first derivative of the total cost function.
Examples of the marginal cost function and the correspantbtal cost are presented in Fjg. 1(a) and Fig.|1(b),
respectively, which are based on real world data from thelegabe electricity market [3]. Naturally, the retailer
attempts to satisfy demands by procuring the cheapestescﬁm;ﬂ. This results in a non-decreasing marginal cost
of the supply curve, as illustrated through the example o [E{a). The retailer charges each consumer a certain
price for its consumption in order to cover the cost, wheeeshm payments by all the consumers should be enough
to cover the total cost and certain profit margin set by thailetor regulatory body. In our model we assume that
all these are incorporated within the marginal cost of eieity.

While the retailer aims to procure sufficient supply to méet sum demand of its consumers in each time slot,
in reality, the supply is limited by the generation capacitrailable in the wholesale electricity market. Thus, the
maximum sum load that the retailer can service bears an Uppiérand we model this capacity limit by setting
the marginal cost of electricity to infinity when the sum loexteeds a predetermined threshold. Each consumer
has an energy demand in each time slot and it pays the resilermprice that is set by the retailer such that, in
each time slot, the sum of payments made by all consumerssrtteetotal cost in that slot. As such, a particular

In real life the base load, i.e., the regular power that is atesed by the consumers, is satisfied from sources such ase, loal or
nuclear, as they are cheap. The fluctuating components addheand are satisfied from sources such as oil, as the poamispghased on
oil are more flexible to control.
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Fig. 1. A hypothetical marginal cost of supply and the cqroesling total cost curve as seen by the retailer in the whtdemarket within
a single time slot. Supply is from five different sources: togdectric, nuclear, coal, natural gas, and oil. Two déférgenerators may use
different technologies for power generation thus incwriifferent marginal costs with the same fuel (e.qg., the tiffeietnt cost levels for

oil in Fig. [I(a)).

consumer’s share of this bill depends on the retailer'sipgischeme, which is a function of the demands from all
the consumers. Accordingly, as the total load varies ovee tieach consumer operates over a time-variant price
with time-slotted granularity. We assume that each consums a total demand for electricity over each Bjay
which can be distributed throughout the day in a time-stbtteanner, to maximize certain utility function. Next,
we model such individual load balancing behaviors as a nogpe@tive game.

A. Noncooperative Load Balancing Game

The noncooperative game between these consumers is feethaa follows. Consider a group 6f consumers,
who submit their daily demands to a retailer in a time-stbpattern at the beginning of the day (which contdihs
time slots). These consumers are selfish and aim to maximé&e individual utility/payoff functions; hence they
do not cooperate with each other to manage their demandb.demsumet has a minimum total daily requirement
of energy,3; > 0, which is split over thel’ time slots. Letz! denote theith consumer’'s demand in th¢h time

slot. A consumer can demand any valtje> 0 (negativity constraint) wity ", z; > 3; (demand constraint). Let
xt={at,2b, .2k ),
represent théth consumer’s demand vector, which is called the strategyti®ith consumer. Let
x; = {af, ...z},

represent the demand vector from all consumers in time shith 2, = >, zi. Letx represent the sédi!, ... xV}.

The payoff or utility for consumet is denoted byr’ which is the difference between the total revenue it gemssrat
from the purchased electricity and its cost. In particktrE?, a function ofz?, represent the revenue generated by
theith consumer in théth time slot andM/, a function ofx,, represent its payment to the retailer for purchasing
xt. Then the payoffr’, to be maximized by consumeéris given by

= 3 (El-M).
te{1,...,T}

Since M} is a function ofx,, we see that the consumer payoff is influenced by its loadnbalg strategy and
those of other consumers.

2Here we adopt one day as an operation period that containgainceumber of time slots. Obviously, such a choice has npaithon
the analytical results in this paper.



We consider the problem of maximizing the payoff at each aores by designing the distributed load balancing
strategyx’'s, under two real-time pricing schemes set by the retdllee first one is the average-cost based pricing
scheme and the second one is the increasing-block pricingnse. Specifically, for the first scheme the retailer
charges the consumers the average cost of electricity ppomnt that is only dependent on the sum demands,
x,, from all the consumers. For the second scheme, the retdiges according to a marginal cost function that
depends on the vector of demands from all consumers,

Let C'(x) represent the cost of units of electricity, to the retailer, from the wholesalerket (an example
function is plotted in Fig[ I(h)). Then under the averagstdmased pricing, the price per unit charged to the
consumers is given by

C(x
A(xt) = ﬁvv (1)
Ty
and at timet consumer; pays ‘ ‘
M = ziA(x,) )

for consumingz? units of electricity. It is easy to see thaf, M} = C(z,), i.e., with average-cost based pricing
the total payment made by the consumers covers the totat@dlse retailer. Note thaf”’(x,) gives the marginal
cost function in the wholesale market, henceforth denoted ;) = C’(z,) in the context of increasing-block
pricing (an example marginal cost curve is plotted in Fi@]L(For reasons we discussed earlier, in the context
of electricity market, the marginal coStx,) is always non-negative and non-decreasing suchdttaj) is always
positive, non-decreasing, and convex. Briefly, we note éisathe retailer capacity is constrained by a predetermined
upper limit U, we model this constraint a8(x,) = oo, Vx, > U; obviouslyz: < U is an implicit constraint on
the demand:i for any rational consumer.

The second scheme is a time-variant version of the incrgdsock pricing schemel [11]. With a typical
increasing-block pricing scheme, consunieis charged a certain ratly for its first z; units consumed, then
charged ratés (> b;) for additionalz2 units, and charged ratg (> b2) for additionalz; units, and so on. The
b's andz's describe the marginal cost price for the commodity. In selieme we design a marginal cost function,
which retains the increasing nature of increasing-blodgimy, such that it depends af, and the functionC'(-).
Consumeri pays an amount determined by the marginal cost functidéfe, x,), applicable to all consumers at
time slott. In particular consumer pays

M; = / " Mz, x,)dz 3)
0

for consumingz? units of electricity whereM(-) is chosen as
M) = ¢ (S min(,a)) |
j

such that)", M} = C(z,) is satisfied. An intuition behind this pricing scheme is tom@é&ze consumers with
relatively larger demands. Note that in this case< U is implicitly assumed by letting () = co V2! > U and
henceM} = co Vai > U.

For each of the two pricing schemes, we study two differemémee models. For the first one we g&tas zero
for all consumers over all time slots, which leads to payadiximization being the same as cost minimization from
the point of view of the consumers. For the second one we rassigsumetr a constant revenue ratg at each
time slot¢, which givesE! = ¢ix! and leads to payoff maximization being the same as profit miaaiion.

B. Atomic Flow Games with Splittable Flows

The noncooperative game that we have formulated in the quevéection is related to the following problem
in the network routing literature [12], [13]. Consider seleagents each trying to establish paths from a specific
source node to some destination node in order to transpoted fimount of traffic. In the context of Internet, each
agent can be viewed as a manager of packet routing. In thexdasfttransportation, each agent can be a company
routing its fleet vehicles across the network of roads. Tloblpm here is of competitive routing between agents,



where each agent needs to deliver a given amount of flow oeenétwork from its designated origin node to the

corresponding destination node. An agent can choose howittedts flow amongst the available routes. On each
link the agents experience a certain delay. In the case opuaten networks, if many agents collectively route a

large number of packets through a particular link, the ptclell experience larger delays; and beyond a certain
level, the link may even start dropping packets, resultminfinite delay. Such a delay can be referred to as cost,
which is a function of the link congestion or the total flowdhgh the link. The cost of a path is the sum of the

link costs along the route.

To show the relationship between our noncooperative coaslmad balancing problem and the above routing
problem, we can reformulate the load balancing problem tinéofollowing routing game over a network with two
nodes and multiple links [12]. We use notations similar ter¢éhin [12] in the interest of readability. Let there be
N agents who share a common source node and a common destioatioa two-node network connected By
parallel links (see Fid.]2). It is assumed that the agentsole@operate. Each agent {1,..., N} has a minimum

(a) Flows from theith agent.  (b) Sum of flows from all the agentgc) Cost for different links for théth
agent.

Fig. 2. A two node network witll” links between source and destinatiorn.

throughput demang;, which can be split among thE links as chosen by the agent. L€t > 0 denote the flow
that agent sends through link € {1,...,T}. The sum ofz; should add upt@;, i.e.,3; =, z}. Letz, = >, =i,
andx, = {xf,...,z%,...,z]}. The flow vector for agent is denoted by the vectat’ = {z%,... % ... 2%}
The system flow vector is the collection of all agent flow vestalenoted by = {x!,...,x% ...,x"V}. A given
x' is feasible if its components obey the non-negativity c@ist and the demand constraints. L&t be the set
of all feasible choices ok’ for agenti, and X’ be the set of all feasible choices of

Let J(x) denote thecostfor each agent, which it wishes to minimize. Sincd?(x) is a function of the flow
vector of all the agents, the best response of a given agentusction of the responses from all the other agents;
and hence we can have a noncooperative game formulatioriNasie solution of the game is defined as the system
flow vector such that none of the agents can unilaterally awprtheir performance. Formallg, € X is a Nash
Equilibrium Point (NEP) if the following condition holds fall agents

JHx) = min JUxL, .. &L xR N

. ) ) ) )
xteX?

wherex’ is the demand vector for thgh agent. The above noncooperative game is known aganic splittable
flow gamef14], [16]. In [12], the existence of NEP is proved for theraio splittable flow game over the two-node
network with parallel links when the following five assunguts (G1-G5) are satisfied for the cost function.

G1: J' is the sum of link cost functions, i.efi(x) = Y[, Ji(x,).

G2: Jj :[0,00)N — [0,00] is a continuous function.

G3: J; is convex overr:.

G4: Wherever finite,J} is continuously differentiable over:.

G5: Sum capacities of all links is greater than the sum demé&man all the agents.

The last assumption (G5) mentioned here is a simplificatfadhevoriginal assumption mentioned n [12], applicable
to two-node networks, while the original form of the assumpapplies to more general networks. The consequence
of this assumption is that, at Nash equilibrium, all usewuirfinite link costs, i.e.,J} < co, Vi, t.



As a side-note, in[[12], the uniqueness of NEP is further isggbfor the two-node network if the cost function
J} additionally complies with the following assumptions:

Al: th is a function of two arguments, namely ageist flow on link ¢ and the total flow on that link, i.e.,
'E(Xt) = Ji(zy, 2p).
A2: J; is increasing over each of its two arguments.

A3: Let K} = gj WhereverJ; is finite, J; is finite, andK} = K} (z%,z,) is strictly increasing in each of its two

arguments.
In particular, functions that comply with the assumptions-G5 and A1-A3 are referred to dgpe-Afunctions
in [12]. In the following sections we will apply some of thestdts in [12] to facilitate our analysis over the
noncooperative consumer load balancing game. The costidascin our formulation do not satisfy all of the
assumptions A1-A3, and hence we use other means to provaamggs of NEP.

With our load balancing problem for each of the two pricingesmes in our game two different revenue models
are studied to provide more design insights, which leadsvtodifferent payoff structures. In the first model the
revenue is set to zero, such that payoff maximization is sosimization. In the second model, the rate of revenue
generation at each consumer is set as a non-zero constahttrat payoff maximization is profit maximization.

[Il. NASH EQUILIBRIUM WITH AVERAGE-COST PRICING
For the average-cost pricing, the payment to the retaileslaht by consumet is given by [2).

A. Zero-Revenue Model
In this case the revenue is set to zero as

which results in payoff maximization being the same as casimization for each consumer. Specifically, the
payoff for consumei is given by _
= — Z M.
t

The consumer load balancing problem for consumdor i = 1,..., N, is given by the following optimization
problem:

maximize 7*(x’) = - M;
t
subject to M} = ziA(x,), Vi,
t
T, = Zmi, Vt,
J
0<uwz;, Vit

As cost to the retailer becomes infinity whenever the totahaled goes beyond the capacity threshold for the
wholesale market, i.e., when

C(z,) =00 Va, >U,

the price to consumers will become infinite and their paydff go to negative infinity. Thus any consumer facing
an infinite cost at a particular time slot can manipulate thmand vector such that the cost becomes finite, which is
always feasible as long as assumption G5 holds. This imfiiets at Nash equilibrium, sum demandwill be less
than the capacity threshold, V¢, which allows for a redundant constraitit < U, Vi,t, asz} < >, i =z, < U.
Such a redundant but explicit constraint in turn makes tlasifde region forx, denoted by, finite and hence
compact. The compactness property will be later utilizegrimve the Kakutani’s theorem [117].



We have already shown that this game is similar to the rougimmge described in_[12]. With the average-cost
based pricing and the zero-revenue model, the effectivefaastion for agent to minimize in the routing game
is

i i i )
Ji = My = xjA(z,) = :E—tC’(xt).
t

This cost function satisfies the assumptions G1-G5 givelieedn particular, G1 holds as the total payment made
by the consumers satisfies ‘ ‘
M =30
t

which is the cost to the agents in the routing formulationadiition, G2 trivially holds by the definition afZ;.
In order to satisfy G3, i.e., to show thd} is convex over:, we show thatgx‘fﬁ > 0. First we evaluate

os _0(5C@)

8—1'% Oxt
=... (4)
_ (¢ — 5”%)14(3%) + ZE%C/(:Ut)
T, ’
Then we evaluate
2 7i ,
R IGOEE—
ox} Ty Ly (5)
+ $t$i0//($t)] :
Given C(z) is convex, both(C/(xt) - %f')) > 0 and C"(z,) > 0 hold; and thereforegi—{ﬁ > 0. Thus J} is

convex overr: and G3 holds. The above also shows thiatis continuously differentiable over: and hence G4
holds. Finally, we assume that G5 holds by construction. Hgyresults in[[12] we know that if the cost function
satisfies assumption G2 and G3, akidis compact, there exists an NEP strategy for all agentsieftwe, the NEP
solution exists for the proposed noncooperative consuos balancing game.

On the other hand, the cost functiofi does not satisfy the assumption A3; so it is disqualified agpe-t
A function defined in [[1R]. Therefore, the correspondingqueiness result in_[12] cannot be extended to our
formulation. Next, we prove the uniqueness of the NEP smtuby extending the result in_[14]. The number of
playertypesin a particular game refers to the number of different valieess;’s. Thus, a single type of players
implies that all players have the same value fgs. Next, we first introduce some definitions and show that our
load balancing problem satisfies the conditions for NEP wergss as described [n [14]. We now begin with some
definitions from [14].

Definition 1. The component-joinoperation for two given graph&; = (V4, E1) and Gy = (Va, E5) consists of
mergingany two vertices; € V; andwvy € Vs into a single vertex.

Definition 2. Consider two nodes, naméulibs then ahub-componenis a connected graph formed by connecting
edges and nodes to the hubs such that all paths between tiserémnain vertex-disjoint.

eHub
@ @ oRegular Node

Fig. 3. Hub-components. These five basic units are used tstremh nearly-parallel graphs.



Definition 3. A generalized nearly-parallel graph any graph that can be constructed framub-components
applying component-joinoperations.

The two-node network with parallel links in Fifl 2 is the fist the five basic units (as drawn in Figl 3) of
nearly-parallel graphs [14], [18]; and by definitions a hadmponent is also a generalized nearly-parallel graph.

Definition 4. A cost functionf(z) is (strictly) semi-convexf = f(x) is (strictly) convex.

For the load balancing game with average-cost based praniicigzero revenue, the cost of consumés given
by (2) where the priced(z,) is given by [(1), with A(xz,) a non-negative and non-decreasing function. For the
function A(z,) to be strictly semi-convex;, A(x,) needs to be strictly convex. Sin€§z,) = =, A(x,) is the total
cost of electricity to the retailer, and we assume that thegimal cost priceC’(x) is a monotonically increasing
function, C(z) is strictly convex. Thus our problem is equivalent to an atofiow game with splittable flows and
different player typedi.e., each player controls a different amount of total flawvgr a generalized nearly-parallel
graph, which has strictly semi-convex, non-negative, an-eceecreasing functions for cost per unit flow. By the
results of [14], the NEP solution for the load balancing gasnenique.

In the following, we discuss the properties for the uniquePNEblution for the proposed load balancing game.

Lemma 1. With the average-cost based pricing and zero revenue, aNtsh equilibrium the price of electricity
faced by all consumers is the same over all time slots.

Proof: Consider two arbitrary time slotg andi,. At the Nash equilibrium the sum demands in the system
over the two time slots are either the same or different. & shhm demands are equal over the two time slots,
by (@), we know that the price of electricity will be same ovile two slots. If the sum demands are not equal,
without losing generality, let us assumg < x,, such that

A(xy,) < A(wy,) (6)

holds. Then any consumerwith x{2 > ( can reduce cost by reducimrj2 and increasingn{1 by the same small
quantity. This contradicts our assumption that the system equilibrium. Henced(z, ) = A(x,,). [ |

Lemma 2. If C(-) is strictly convex, at the Nash equilibrium, the sum of destsaon the system;,, keeps the
same across different time slots.

Proof: In order to prove this we will show that, # x, leads to contradiction. At Nash equilibrium we have
A(zy, ) = A(x,,) from Lemmall for all possiblé; andt,. Thus, we obtain
Alzy,) = A(zy,)
& C(zy,) /2y, = Clay,) /24,
& Olz,) = Clay,) 1.
l’t2
If C(-) is strictly convex and:;, # x,, (without loss of generality say, < x,,), by definition of strict convexity,
we have
Clz,,) < 22— 0(0) + 220 (ay)

wtz .Z'tz

X Xy — X X
= C(z,,)-1 <21 5 04+ 1 0(xy)

.Z'tz wtz wtz

Ly Ly
= C(x L < 2C(x
()5 < Sl

which is a contradiction and henag = z,,. |

Lemma 3. If C(-) is strictly convex, at Nash equilibrium, each consumer digtribute its demands equally over
the 7" time slots.

Proof: As the Nash equilibrium is unigue, by symmetry over all thedtislots, for consumerwe shall have

7 %
.Z'tl = wt2, th, t2,



as otherwise we could swap the demand vectgrsand x,, in time slotst; and¢; without altering the Nash
equilibrium conditions and get another distinct NEP, thasteadicting the uniqueness. Thus, wih, ¢ > 3; and

the fact that the consumer is trying to minimize their costhsthat ", z! = 3; holds at equilibrium, we have the
solutionz! = 3;/T for all consumers and time slotg. [ |
Remark: Under the average-cost based pricing scheme with zerowey&none particular consumer increases its
total demand of electricity, the pricé(-) increases, which in turn increases the payments for allratbesumers

as well. Theoretically one consumer may cause indefiniteeases in the payments of all others; and in this sense
this scheme does not protect the group from reckless actisoroe consumer(s). This issue will be addressed by
our second pricing scheme as we will show in Secfioh IV.

B. Constant-Rate Revenue Model
In this case, the rate of revenue generation for each corrsatmeach time slot is taken as a non-negative constant
#i. Thus, , -
E} = ¢} x .
The consumer load balancing problem for each consungegiven by the following optimization problem:

maximize 7'(x') = (E} — M)
t
subject to E} = ¢lxl, Vi,
Mtl = ‘rL.IZfA(xt)? Vta

t
T, = Zmi, Vt,
J
0<uazy Vi

We assume that; = 0, Vi, and the rate of revenue is larger than the price of elegtrsuich that we do not
end up with any negative payoff or the trivial solutieh= 0, Vi,t.

Here again, if the sum demand in a given time gleikceeds the retailer’s capacity thresholdthe consumers
will face an infinite price for their consumption. This imgdi that, at Nash equilibrium the sum demanawill
never exceed the capacity threshéldas G5 holds. This again allows for the redundant constrdint U, Vi, t,
as:ng' < Zi xi =z, < U, which in turn makes the feasible region for X, finite and hence compact.

We briefly show that under these assumptions there existsEhfhir this game. In particular, the effective cost
function for the corresponding routing game is given as

Ty = M — ¢} x x. (7)

As M is continuous inx,, J{ is continuous inx, as well and satisfies assumption G2. We have already shown
that M} under the average-cost based pricing scheme is convexthrough [5). The function-¢iz! is linear and
hence convex inci. Thus, by the property that the summation of two convex fionstis convex,J; from (1) is
convex inzi and hence satisfies assumption G3. Following the prodfih &2 consider the point-to-set mapping
x € X - I'(x) C X defined as

Mx)={xcXx % carg ml)r{l JUxL .2 xY)) (8)

z'cAx’

wherel is an upper semicontinuous mapping (by the continuity agsiom G2) that maps each point of the convex
compact sett’ into a closed (by G2) convex (by G3) subsetXf By the Kakutani Fixed Point Theorem [17],
there exists a fixed point € I'(x) and such a point is an NEP_[19].

Lemma 4. At the Nash equilibrium, the consumer(s) with the highestmee rate i) within the time slot, may
be the only one(s) buying the power in that time slot.
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Proof: For a given time slot consumer has an incentive to increase its demafidas long as the payoff can

increase, i.e., as long as
87TZ'

836}1 > 0.
Therefore at the equilibrium the following holds for all camers.
871'2: <0
oxy —
O - M) _
ox}
oK, _ou _,
Oxzy  Oxp —
= <Z5t %J\i = C:(;:t) = A(x,)

For the consumers with a strict inequality < A(z,), the rate of revenue is less than the price per unit of etttri
at timet; hence the revenue is less than the cé%t< M/, such that buying electricity will incur them a negative
payoff and hence all such consumers, with< A(x,), will not buy any power in that time slot, i.ezi = 0.
Therefore only the set of consumersrg maxy, ¢F}, i.e., the consumers who enjoy the maximum rate of revenue
may be able to purchase electricity. |
Thus if consumei has the maximum rate of revenue, either it is the only consilaging non-zero power:
such thatp! = A(z%) or ¢i < C’(0) and henceri = 0 in that time slot, which leads to a unique Nash equilibrium
for the sub-game. If in a given time slot multiple consumerpegience the same maximum rate of revenue, the
sub-game will turn into a Nash Demand Garnel [20] between thefseonsumers given byarg max;, ¢f}, which
is well known to admit multiple Nash equilibriums. Thus theecall noncooperative game has a unigue Nash
equilibrium if and only if, in each time slot, at most one comger experiences the maximum rate of revenue.

IV. NASH EQUILIBRIUM WITH INCREASING-BLOCK PRICING

In this section we study the load balancing game with the -tharéant increasing-block pricing scheme. Under
this scheme consumerpaysM; for z% units of electricity, which is given by {3) wittM (x,x,) the marginal cost
function posed to the consumer. Thus, as defined before, we ha

(x,%) E min (

As an example, if the demands from different consumers & slot¢ are identical, i.e., i&i = a:{, Vi, 7, we have,
M(z,x,) =C(Nx).

A. Zero-Revenue Model
In this case the payment by consunigs given by [(3)

z;
M} = / M(z,x;)dx.
0
The consumer load balancing problem for each consunsegiven by the following optimization problem:
maximize w(x’) ZMt

subject to M} = / M(z,x,)dz, Vi,

Zwt > Bi,

0 S zl, Vi
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If the sum demand;, in a time slott exceedd/, the price of electricity for the consumer with the highestdnd
(indexed byj) becomes infinite. As we retain the assumption G5, consyrsan rearrange its demand vector such
that either the sum demand becomes within the capacityhblé®r consumej is no longer the highest demand
consumer (then the new customer with the highest demandrpesfthe same routine until the sum demand is
under the threshold). This implies that, at the Nash equilib point we haver, < U. Similarly, we now have the
redundant constrainzti < U, Vi, t, which in turn makes the feasible regian finite and hence compact.

As M} is continuous inx,, in the corresponding routing game we have that

Jt= M} )

is continuous inx, and satisfies assumption G2. In additiavi; is convex inz! as its derivative, the marginal
cost functionM(z,x,), is non-decreasing. Thug; is convex inzi and hence satisfies assumption G3. Following
the proof in [12], we consider the point-to-set mappwg X — I'(x) C X defined the same as ihl(8). By the
Kakutani Fixed Point Theorem [17], there exists a fixed pairt I'(x) and such a point is an NEP.

When each consumer tries to minimize its total cost whilésBamg its minimum daily energy requiremept,
we have the following result.

Lemma 5. If C(-) is strictly convex, the Nash equilibrium is unique and eaohsumer distributes its demand
uniformly over all time slots.

Proof: For the equilibrium conditions to be satisfied,
M(wllfl’xtl) :M(wllf27xt2)’ vzﬂt].?tZ?

should hold; otherwise consumercan increase payoff by varyingi, andz , in a similar argument to that for
Lemmall. This condition can be rewritten after expandvg-) as

Zmin(:ﬂ;,m{]) =C Zmin(miz,xi) , Vi, ty, to. (20)

Given thatC(-) is strictly convex, we havé€(-) = C’(-) monotonically increasing, which gives
C(z1) =C(2) & 21 = 2. (11)
Therefore, [(I0D) implies
me xtl .I't] me xtz,mi Vi, t1,to. (12)

Now assume that there exists an NkRvith demand vectors, # x,,. Let P represent the subset of consumers
with unequal demands in time slotg andts, i.e.,

P = {klaf #af ke {1,2,...,N}}.
Then leta represent the consumer from sub®ewith the highest value of demand in time stgt i.e.,
k
= 13
a = argmax;, (13)

and letb represent the consumer from sub®etvith the highest value of demand in time slats i.e.,

b= k. 14
argmaxz;, (14)

From [12) we have
Zmln xtl,xt Zmln xtz,xt Vt1, to, (15)

and
Zmln xtl,xt Zmln xtQ,xt Vi1, ta. (16)
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Combining [12) and[(13) leads to

Zmln wtl,xtl Zmln wtl,xtl (17)
combining [I12) and{14) leads to

Zmln th,ath Zmln th,ath (18)

If 2¢ # b oraf # a2, (L) holds with strict inequality. WitH (15)[(16), arid 1 We have
Z min (zf,, acé) > Z min (z7,, $g2)>
j J

which contradicts[(18). Ifef = 2! andzf = 2%, (I8) and [(Ib) implyz¢ = =z, andz? = z}, respectively,
which contradicts that, b € P. This implies that the seP is empty, which contradicts that, # x,,.

Hence we have
CL'IZ;I = l’; \V/i,tl,tg,
and the solution is given by: = 3;/T, Vi,t. Under the necessary conditions for NEP](10), this is thg salution
for the setx, hence NEP is unique. [ |
Remark: Notice that under the zero-revenue model, the NEP pointesstime with both increasing-block pricing
and average-cost based pricing. For both the cases, at NERavex! = j3;/T, Vi,t. However, even though the
loading pattern is similar, the payments’ made by the consumers will differ and, with increasing-klpcicing,
will likely be lesser for consumers with relatively lowerrgumption. In addition, with increasing-block pricing,
the maximum payment/; made by theith consumer given:: demand will beC(Nz%)/N, irrespective of what
other consumers demand and consume. Thus this addressesuthéaced under the average-cost based pricing and
zero-revenue model, in which one consumer can increase dbaiand indefinitely and cause indefinite increase
in the payments of all other consumers.

B. Constant-Rate Revenue Model
The consumer load balancing problem for consuiniergiven by the following optimization problem:

maximize 7'(x’) =" (B} - Mj)
subject to E} = qbta:t, Vt,

M} = / M(z,x,)dx, Vt,

0 S zl, Vi

Here again, we assuntg = 0, Vi, to avoid any negative payoffs and we could agree for thenddnt constraint
x@’ < U, Vi, t, which in turn makes the feasible region far finite and hence compact.

In this case, we briefly show that with increasing-block imgcand a constant-rate for revenue, there exists an
NEP solution for this game. First, the cost function in theresponding routing game is given by

Ji = M} — ¢} x a}, (19)

where M} is continuous inx,, and thereforeJ; is continuous inx, and satisfies assumption G2. We have already
shown that); under the increasing-block pricing scheme is convexiin the previous subsection. The function
—¢iat is linear and hence convex irf as well. Thus,J; from (19) is convex inzi and hence satisfies assumption
G3. By the same point-to-set mapping argument as that fomh&ld, we can have that there exists a fixed point
x € I'(x) and such a point is NEP.
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With the average-cost based pricing scheme under the ctnste revenue model, we see that in a given time
slot, if a single consumer enjoys the maximum rate of reveitwdgll be the only consumer who is able to purchase
power. We show here that with the increasing-block priciogesne under constant-rate revenue model, the result
is different.

For a given time slot, consumer has an incentive to increase their demafics long as the payoff increases,
ie.,

o' -
ox} ’
Therefore at the equilibrium the following holds for all cumers:
(97?" <0
ox} - (20)
= gbé < aw{ = M(xé>xt)'

Additionally, if ¢ < M(xi,%,), J; can be reduced by reducing. This implies that ifz > 0, at the equilibrium
we have ‘ ‘
¢y = M(xp,%y). (21)

Thus [20) and[(21) together imply that,4f > 0, we have
¢7£ = M(xi7xt)'
Together we can write the following set of necessary coowlitifor equilibrium,

6 = Mlalx,) i ) = M(0,x,),

2 =0 it ¢ < M(0,x,). (22)

For illustration, we simulate a scenario consisting of 16Astmers, who have their rate of revemjegenerated
from a uniform distribution ranging ove0 — $100/MWh, where the marginal cost to the retailéf:) is given
by Fig.[1(@). In Figl% we plot the demand versus the rate of revenue:j at a given time slot, wherez! is
evaluated ovei = {1,...,100}. The equilibrium is obtained by iterative updatesidf(-) andx, until convergence
within an error tolerance as in (22).

1500} - - - - -- - -

| Quantity Demanded: (MWh)

Rate of Revenue: ($/MwWh) $100
Fig. 4. Demandz! versus the rate of revenue?) at equilibrium. Each dot represents a particular consumer{1,...,100}.
Thus, unlike with the average-cost pricing, where only tbasuimer with the maximum rate of revenue could

purchase electricity at the equilibrium, any consumer m@gyre a non-zero amount of energy as long as its own
rate of revenue is larger tham (0, x,).
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V. CONCLUSION

In this paper we formulated noncooperative games among @ahsueners of Smart Grid with two real-time
pricing schemes to derive autonomous load balancing sokitiThe first pricing scheme charges consumers a price
that is equal to the average cost of electricity borne by #tailer and the second scheme charges consumers an
amount that is dependent on the incremental marginal cogthwilh shown to protect consumers from irrational
behaviors. Two revenue models were considered for eacheopticing schemes, for which we investigated the
Nash equilibrium operation points for their uniqueness kad balancing properties. For the zero-revenue model,
we showed that when consumers are interested only in themaiation of electricity costs, the Nash equilibrium
point is unique with both the pricing schemes and leads tdairelectricity loading patterns in both cases. For the
constant-rate revenue model, we showed the existence d&f &gslibrium with both the pricing schemes and the
uniqueness results with the average-cost based pricirgrseh Throughout the paper, we utilized the relationship
between the load balancing games and the atomic splittabegames from the computer networking community
to prove the properties at the Nash Equilibrium solutions.
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