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Abstract. Formal specifications play a central role in the design, verification,
and debugging of systems. This paper presents a new viewpoint to the problem
of mining specifications from simulation or execution traces of reactive systems.
The main application of interest is to localize faults to sections of an error trace
we term subtraces, with a particular focus on digital circuits. We propose a novel
sparse coding method that extracts specifications in the form of basis subtraces.
For a set of finite subtraces each of length p, each subtrace is decomposed into
a sparse Boolean combination of only a small number of basis subtraces of the
same dimension. We formally define this decomposition as the sparse Boolean
matrix factorization problem and give a graph-theoretic algorithm to solve it. We
formalize a sufficient condition under which our approach is sound for error local-
ization. Additionally, we give experimental results demonstrating that (1) we can
mine useful specifications using our sparse coding method, and (2) the computed
bases can be used to do simultaneous error localization and error explanation.

1 Introduction

Formal specifications play a central role in system design. They can serve as high-level
requirements from which a system is to be synthesized. They can encode key properties
that the system must exhibit, finding use in formal verification, testing and simulation.
Formal specifications are also valuable as contracts for use in code maintenance and
compositional design. Finally, they are also useful in debugging and error localization,
in the following way: if several local properties are written for a system, covering each
of its components, then a failing property can provide information about the location of
the bug. It is this last application of formal specifications — for error localization and
debugging in reactive systems — that is the main focus of this paper.

Unfortunately, in practice, comprehensive formal specifications are rarely written
by human designers. It is more common to have instead a comprehensive test suite used
during simulation or testing. There has therefore been much interest in automatically
deriving specifications from simulation or execution traces (e.g. [8, 2]). It is important
to note that, until they are formally verified, the properties generated from traces are
only likely specifications or behavioral signatures of a design.

Different kinds of formal specifications provide different tradeoffs in terms of ease
of generation from traces, generality, and usefulness for error localization. Büchi au-
tomata [4] provide a very general formalism, and are typically inferred by learning a
finite automaton from finite-length traces and interpreting it over infinite traces. How-
ever, such automata tend to overfit the traces they are mined from, and do not generalize
well to unseen traces — i.e., they are very sensitive to the choice of traces T they are
mined from and can easily exclude valid executions outside of the set T . Linear tem-
poral logic (LTL) formulas [18] are an alternative. One typically starts with templates
for common temporal logic formulas and learns LTL formulas that are consistent with
a set of traces. If the templates are chosen carefully, such formulas can generalize well



to unseen traces. However, the biggest challenge is in coming up with a suitable set of
templates that capture all relevant behaviors.

In this paper, we introduce a third kind of formal specification, which we term as
basis subtraces. To understand the idea of a subtrace, consider the view of a trace as a
two-dimensional table, where one dimension is the space of system variables and the
other dimension is time. A subtrace is a finite window, or a snapshot, of a trace. Thus,
just as a movie is a sequence of overlapping images, a trace is a sequence of overlapping
subtraces. Restricting ourselves to Boolean variables, each subtrace can be viewed as
a binary matrix. Given a set of finite-length traces, and an integer p, the traces can be
divided into subtraces of time-length p. The set of all such subtraces constitutes a set
of binary matrices. The basis subtraces are simply a set of subtraces that form a basis
of the set of subtraces, in that every subtrace can be expressed as a superposition of the
basis subtraces.

The form of superposition depends on the type of system being analyzed. In this pa-
per, we focus on digital systems, and more concretely on digital circuits. In this context,
one can define superposition as a “linear” combination over the semi-ring with Boolean
OR as the additive operator and Boolean AND as the multiplicative operator. The coef-
ficients in the resulting linear combination are either 0 or 1. The problem of computing
a basis of a set of subtraces is equivalent to a Boolean matrix factorization problem,
in which a Boolean matrix must be decomposed into the product of two other Boolean
matrices. If we seek the basis of the smallest size, the problem is equivalent to finding
the ambiguous rank [9] of the Boolean matrix, which is known to be NP-complete [24].

Given a set of subtraces, several bases are possible. Following Occam’s Razor prin-
ciple, we seek to compute a “simple” basis that generalizes well to unseen traces. More
concretely, we seek to find a basis that is minimal in that each subtrace is a linear combi-
nation of only a small number of basis subtraces. This yields the sparse basis problem.
In this paper, we formally define this problem in the context of Boolean matrix fac-
torization and propose a graph-theoretic algorithm to solve the sparse-version of the
problem. Such a problem is often referred to as a sparse coding problem in the machine
learning literature, since it involves encoding a data set with a “code” in a sparse manner
using few non-zero coefficients.

We apply the generated basis subtraces to the problem of error localization. In digi-
tal circuits, an especially vexing problem today is that of post-silicon debugging, where,
given an error trace with potentially only a subset of signals observable and no way to
reproduce the trace, one must localize the problem in space (to a small collection of
error modules) and time (to a small window within the trace). Similar problems arise in
debugging distributed systems. In addition, error localization is very relevant to “pre-
silicon” verification as well. Our approach is to attempt to reconstruct windows of an
error trace using a basis computed from slicing a set of good traces into subtraces of
length p. The hypothesis is that the earliest windows that cannot be reconstructed are
likely to indicate the time of the error, and the portions that cannot be reconstructed are
likely to indicate the signals (variables) that are the source of the problem. The tech-
nique can thus be applied for simultaneous error localization and explanation. We apply
this technique to representative digital circuits.

To summarize, the main contributions of the paper are:

• We introduce the idea of basis subtraces as a formal way of capturing behavior of a
design as exhibited by a set of traces;

• We formally define the sparsity-constrained Boolean matrix factorization problem
and propose a graph-theoretic algorithm to solve it;



• We demonstrate with experimental results that we can mine useful specifications
using our sparse coding method, and

• We show that the computed bases can be effective for simultaneous error localization
and error explanation, even for transient errors, such as bit flips, that arise not just
due to logical errors but also from electrical effects.

Organization. We begin in Sec. 2 with basic terminology and preliminaries. Sec. 3
introduces our approach to finding a sparse basis. In Sec. 4, we show how we can use
our approach for performing error localization. Experimental results are presented in
Sec. 5. Related work is surveyed in Sec. 6 and we conclude in Sec. 7.

2 Preliminaries

In this section, we introduce the basic notation used in the rest of the paper. Sec. 2.1
introduces notation representing traces of a reactive system as matrices, and Sec. 2.2
connects the matrix representation with a graph representation.

2.1 Traces and Subtraces

We model a reactive system as a transition system (V,Σ0, δ) where V is a finite set
of Boolean variables, Σ0 is a set of initial states of the system, and δ is the transition
relation. In general, V contains input, output and (internal) state variables. A state of the
system σ is a Boolean vector comprising valuations to each variable in V . For clarity,
we restrict ourselves in this paper to synchronous systems in which transitions occur at
the tick of a clock, such as digital circuits, although the ideas can be applied in other
settings as well.

Let the state of the system at the ith cycle (step) be denoted by σi. A complete trace
of the system of length l is a sequence of states σ0, σ1, σ2, . . . , σl−1 where σ0 ∈ Σ0,
and (σi−1, σi) ∈ δ for 1 ≤ i < l. Note however that the full system state and/or
inputs might not be observed or recorded during execution. We therefore define a trace
τ as a sequence of valuations to an observable subset of the variables in V ; i.e., τ =
σ′
0, σ

′
1, σ

′
2, . . . , σ

′
l−1

where σ′
i ⊆ σi. A subtrace τi,j of length j in τ is defined as the

segment of τ starting at cycle i and ending at cycle i + j − 1, such that i ≥ 0, j > 1
and i+ j ≤ l, i.e. τi,j = σ′

i, σ
′
i+1, . . . , σ

′
i+j−1. We consider subtraces of length at least

2; i.e., containing at least one transition.
For example, Equation 1 shows a trace τ of length 4 where each state comprises a

valuation to two Boolean variables. We depict the trace in matrix form, where the rows
correspond to variables and the columns to cycles.

1 0 1 1
1 0 1 1

(1)

The subtrace τ0,2 of τ is

1 0
1 0

Let Tp be the set of all subtraces of length p in τ , i.e. Tp = {τi,p|0 ≤ i ≤ l − p}. For
any τi,p ∈ Tp, we can view it as a Boolean matrix of dimension |V | × p. We can also

represent it using a vector v
p
i ∈ B

|V |×p by stacking the columns in τi,p (i.e., using a

column-major representation). For example, v20 as shown below represents the subtrace
τ0,2.

v20 = [1 1 0 0]
T



For brevity, we use vi for v
p
i when the length of each subtrace p is obvious from the

context. Hence, we can represent Tp as a Boolean matrix with |V |×p rows and l−p+1
columns. For example, we can represent all the subtraces of length 2 for the trace in
Equation 1 as the matrix in Equation 2 in Fig. 1(a).

2.2 Boolean Matrices and Bipartite Graphs

A Boolean matrix can be viewed as an adjacency matrix for a bipartite graph (bigraph,
for short). Recall that a bipartite graph G = 〈U, V,E〉 is a graph with two disjoint
non-empty sets of vertices U and V and such that every edge in E ⊆ U × V connects
one vertex in U and one in V . For a Boolean matrix M ∈ B

k1×k2 , denote Mi,j as the

entry in the ith row and j th column of M . Then, M can be represented by a bigraph
GM with U = {u1, u2, . . . , uk1

} and V = {v1, v2, . . . , vk2
}, such that there is an edge

connecting ui ∈ U and vj ∈ V if and only if Mi,j = 1. For example, the matrix X in
Equation 2 (Fig. 1(a)) can be represented by the bigraph GX in shown in Fig. 1(b).







1 0 1
1 0 1
0 1 1
0 1 1






(2)

(a) Matrix form (b) Bipartite graph (c) Biclique edge cover

Fig. 1. Subtraces in matrix and bigraph form, and corresponding biclique edge cover

A biclique is a complete bipartite graph; i.e., a bipartite graph G′ = 〈U ′, V ′, E′〉
where E′ = U ′ × V ′. Given a bigraph G, a maximal edge biclique of G is a biclique
B1 = 〈U1 ⊆ U, V1 ⊆ V,E1 = U1 × V1〉 if it is not contained in another biclique of G,
that is, there does not exist another bicliqueB2 = 〈U2 ⊆ U, V2 ⊆ V,E2 = U2×V2〉 and
either U1 ⊂ U2 or V1 ⊂ V2. In the rest of the paper, we use the pair of vertices (U1, V1)
to denote the maximal edge biclique B1. For a set of bicliques Cov and a bigraph G,
denote ECov as the set of edges in G covered by Cov, i.e. ∀ e ∈ ECov, ∃ G′ = 〈U ′ ⊆
U, V ′ ⊆ V,E′〉 ∈ Cov, s.t. e ∈ E′. Cov is a biclique edge cover of G if and only if
all the edges E in G are covered by the set, i.e. ECov = E. Abusing notation a little,
we use Ev to denote the set of edges connected to vertex v. The smallest number of
bicliques needed is called the bipartite dimension of G. For example, a biclique cover
for the bigrah in Figure 1(b) is shown in Figure 1(c).

The view of Boolean matrices as bigraphs is relevant for decomposing a set of traces
into a set of basis subtraces. The following problem is important in this context.

Definition 1. Consider a Boolean matrix X ∈ B
m×n, the Boolean matrix factorization

problem is to find k and Boolean matrices B ∈ B
m×k and S ∈ B

k×n such that

X = B ◦ S (3)



That is, X is decomposed into a Boolean combination (denoted by the operator ◦) of
two other Boolean matrices, in which scalar multiplication is the Boolean AND operator
∧, and scalar addition (“+”) is the Boolean OR operator ∨. In other words, we perform
matrix/vector operations over the Boolean semi-ring with ∧ as the multiplicative oper-
ator and ∨ as the additive operator. For example, the matrix in Equation 2 (Fig. 1(a))
can be factorized in the following way.







1 0 1
1 0 1
0 1 1
0 1 1






=







1 0
1 0
0 1
0 1






◦

[

1 0 1
0 1 1

]

We use M·,i to denote the ith column vector of a matrix M , and Mi,· to denote the ith

row vector of M . Thus, the columns of matrix X are X·,1, X·,2, . . . , X·,n. We will refer
to X as the data matrix since it represents the traces which are the input data. We call
the matrix B the basis matrix because each B·,i can be viewed as some basis vector in
B
m. We call the matrix S the coefficient matrix. Each S·,i is a Boolean vector in which

a 1 in the j th entry indicates that the j th basis vector is used in the decomposition and 0
otherwise.

We can also rewrite the factorization in the following way as a Boolean sum of the
matrices formed by taking the tensor (outer) product of the ith column in B and the ith

row in S.






1 0 1
1 0 1
0 1 1
0 1 1






=







1 0 1
1 0 1
0 0 0
0 0 0






+







0 0 0
0 0 0
0 1 1
0 1 1







Notice that the two matrices on the right hand side represent the bicliques in Fig. 1(c).

Remark 1 Clearly, a solution always exists for the problem in Definition 1. This is
because one can always pick k = n such that B = I(B = X) and S = X(S = I)
(where I is the identity matrix). However, this is not particularly revealing in terms of
the behaviors which each X·,i is composed of. One alternative is to minimize k. The
smallest k for which such a decomposition exists is called the ambiguous rank [9] of
the Boolean matrix X . It is also equal to the bipartite dimension of the bigraph GX

corresponding to matrix X . The problem of finding a Boolean factorization of X with
the smallest k is equivalent to finding a biclique edge cover of GX with the minimum
number of bicliques. Both problems are NP-hard [24]. On the other hand, one can
choose to find an overcomplete basis (k > n) such that each X·,i can be expressed
as a Boolean sum of only a few basis vectors. We discuss this formulation in detail in
Section 3.

3 Specification Mining via Sparse Coding

In this section, we describe how specifications are mined via sparse Boolean matrix
factorization. The specifications we mine, basis subtraces, can be viewed as temporal
patterns over a finite time window.



3.1 Formulation as Sparse Coding Problem

The notion of sparsity is borrowed from the wealth of literature in machine learning
such as sparse coding [15] and sparse principal component analysis (PCA) [30]. The
key insight is that a sparsity constraint often generates a better interpretation of the
data in terms of the underlying concepts. In the setting of mining specifications from a
trace, we argue that each subtrace of a trace can be viewed as a superposition of patterns,
and a potential specification is a pattern that is commonly shared by multiple subtraces.
These patterns are the so-called basis subtraces.

We present the sparse Boolean matrix factorization problem for computing basis
subtraces below. A few different options are presented for formulating the problem and
we pick one with a notion of sparsity that seems well-suited to our context.

Definition 2. Given X ∈ B
m×n and a positive integer C, the sparsity-constrained

Boolean matrix factorization problem is to find k, B ∈ B
m×k, and S ∈ B

k×n such that

X = B ◦ S

and ‖S·,i‖1 ≤ C, ∀i
(4)

Let us reflect on the above problem formulation. The constraint X = B ◦S imposes
the requirement that the input data (subtraces) represented by X must be reconstructed
as a superposition of the subtraces represented by B, with S encoding the coefficients
in the superposition. The second constraint ‖S·,i‖1 ≤ C, ∀i encodes the sparsity con-
straint, which ensures that each subtrace in X is a sparse superposition of the subtraces
in B.

More precisely, the definition above imposes a constraint on the number of 1s per
column of S. Similar to the Boolean matrix factorization problem in Definition 1, a
trivial solution is to set B = X and S = I (and k = n). However, this solution
does not produce any sharing of patterns amongst the different subtraces and hence is
useless for specification mining. The optimization objective is thus the following, which
maximizes the number of 1s in S.

maximize
∑

i

∑

j

Si,j (5)

We describe how we solve this problem in Section 3.2.
One might also consider defining sparsity in a somewhat different manner. Instead

of imposing a L1-norm constraint on the columns of the coefficient matrix S, we can
seek B and S such that the total sparsity is minimized.

Definition 3. GivenX ∈ B
m×n and a positive integer k, the sparsity-optimized Boolean

matrix factorization problem is the following optimization problem.

minimize
B,S

n
∑

i

‖S·,i‖1

subject to X = B ◦ S

(6)

The main issue with this problem definition is that k is fixed; in other words, one
has to “guess” a suitable k for which B and S can be computed. While modifications
of this problem that restrict or minimize k could potentially be useful, we leave the
investigation of these variants of 6 to future work.



3.2 Solving the Sparse Coding Problem

In this section, we describe an algorithm that solves the sparsity-constrained Boolean
matrix factorization problem, as formalized in Equations 4 and 5. Our solution is guar-
anteed to satisfy the sparsity constraint and tries to maximize the objective in Equa-
tion 5. The algorithm exploits the connection between the matrix factorization problem
and the biclique edge cover problem described in Sec. 2. Specifically, it is based on
growing a biclique edge cover Cov for the bigraph GX = 〈U, V,E〉 corresponding to
matrix X . At each step, a maximal edge biclique that covers some number of previously
uncovered edges is added to Cov until Cov covers all the edges. The sparsity constraint
is then a constraint on the number of maximal bicliques that can be used to cover the
edges that connect each vertex in V . (Recall that each vertex in V corresponds to a
column S·,i of S.)

Notice that this algorithm relies on a way to generate maximal edge bliciques of a
bigraph. Computing these bicliques is not easy: for instance, the closely-related problem
of finding a maximum (not maximal) edge biclique in a bigraph is NP-complete [23].
Additionally, the number of maximal bicliques in a bigraph can be exponential in the
number of vertices [11].

However, there exist enumeration algorithms that are polynomial in the combined
input and output size, such as the Consensus algorithm in [1]. In addition, this algorithm
runs in incremental polynomial time.

Algorithm 1 solves the sparsity-constrained Boolean matrix factorization problem
by building upon some key concepts in the Consensus algorithm and adapting them for
our problem context. These concepts are described below.

• Consensus: For two bicliques B1 = (U1, V1) and B2 = (U2, V2), the consensus of
B1 and B2 is B3 = (U3, V3) where U3 = U1 ∩ U2 and V3 = V1 ∪ V2.

• Extend to a maximal biclique: For a consensus biclique B1 = (U1, V1), we can
extend it to a maximal biclique B2 = (U2, V2) where U2 = U1 and V2 = {v | ∀ u ∈
U1, (u, v) ∈ E}
(V2 is the set of vertices in V that are connected to every vertex in U1).

• v-rooted star biclique: A v-rooted star biclique is the biclique formed by the node
v ∈ V and all the nodes connected to v (and the edges), i.e. ({u | (u, v) ∈ E}, {v})

The main idea of Algorithm 1 is the following. We try to cover the edges in the
bigraph with as many maximal bicliques as possible, until we are about to violate the
sparsity constraint at some vertex v ∈ V . In that case, we cover the remaining edges
of v with the v-rooted star biclique. If there is still some v ∈ V with uncovered edges
at the end of the iteration, then we just cover it with the v-rooted star biclique as well.
The final cover will be the union of the set of maximal bicliques added in the consensus
steps Cov1 \ Cov0 with the set of star bicliques Cov2.

4 Application to Error Localization

The key idea in our approach is to localize errors by attempting to reconstruct the error
trace from basis subtraces generated from correct traces. Our hypothesis is that the
earliest section (subtrace) of the error trace that cannot be reconstructed contains the
likely cause of the error. Our localization algorithm is presented in this section, along
with some theoretical guarantees. We begin with the problem definition.



Algorithm 1 Sparsity-constrained cover

1: Input: the set of v-rooted star bicliques Cov0 and sparsity constraint C.
2: Initialize: Cov1 := Cov0, Cov2 := ∅, αv := C, ∀ v ∈ V , and Vcov := ∅.
3: repeat
4: Pick a new pair of bicliques B1 = (U1, V1) from Cov1 and B2 = (U2, V2) from Cov0,

form the consensus B3.
5: Extend B3 to a maximal biclique B4 = (U4, V4).
6: if (B4 /∈ Cov1) ∧ (V4 ∩ Vcov = ∅) then
7: Add B4 to Cov1.
8: for v ∈ V4 \ Vcov do
9: αv := αv − 1

10: if αv = 1 then Add the v-rooted star biclique to Cov2 and add v to Vcov end if
11: end for
12: end if
13: until E(Cov1\Cov0)∪Cov2 = E or cannot find a new pair of bicliques B1 and B2

14: for v ∈ V \ Vcov do
15: Add the v-rooted star biclique to Cov2.
16: end for
17: Output: the sparsity-constrained cover (Cov1 \ Cov0) ∪ Cov2

4.1 Problem Definition

Consider the problem of localizing an error given a set of correct traces and a single
error trace. Our goal is to identify a small interval of the timeline at which the error
occurred. What makes the problem especially challenging is that the input sequence that
generated the error trace is either unknown (or only partially known) or it is extremely
slow to re-simulate the input sequence (if known) on the correct design (also sometimes
referred to as a “golden model”). This means that a simple anomaly detection technique
which checks the first divergence of the error trace and the correct trace obtained by
simulating the golden model on the same input sequence does not work. One has to
use the set of correct traces to help localize the bug in the error trace. This setting
is especially applicable to post-silicon debugging where the bugs are often difficult
to diagnose due to limited observability, limited reproducibility and susceptibility to
environmental variations.

More formally, the error localization problem we address in this section can be
defined as follows.

Definition 4. Given an error trace of length l and an integer p, partition the trace into
non-overlapping subtraces each of length p (w.l.o.g. assume l is an integer multiple of
p; otherwise, the last subtrace can be treated specially).

Then, the error localization problem is to identify the subtrace containing the first
point of deviation of the error trace from the correct trace on the same input sequence.

One might note that the problem we define is not the only form of error localization
that is desirable. For instance, one might also want to narrow down the fault to the
signals/variables that were incorrectly updated.

Also, there might be more than one source of an error, in which case one might want
to identify all of the sources.

While these goals are important, we contend that our algorithm to address the prob-
lem defined above can also be used to achieve these additional objectives. For example,



the error explanation technique we present below can be used to identify which vari-
ables were incorrectly updated and how. Similarly, one can apply our reconstruction-
based localization algorithm iteratively to identify multiple subtraces that cannot be re-
constructed from the basis subtraces, and could potentially be used to identify multiple
causes of an error.

4.2 Localization by Reconstruction

As described above, the key hypothesis underlying our approach is that the earliest
section (subtrace) of the error trace that cannot be reconstructed contains the likely
cause of the error.

Our error localization algorithm operates in the following steps:

1. Given a set of correct traces T , first obtain the set of all unique subtraces of length p
in T . Denote this set by Tp. Using the approach described in Section 2, convert the
set Tp to a data matrix X .

2. Solve the sparsity-constrained Boolean matrix factorization problem for X for a
given constant C.

3. Given an error trace τ ′, partition it into an ordered set of q subtraces of length p.
Denote this set by T ′

p . The elements in T ′
p are ordered by their positions in τ ′. Convert

T ′
p to a data matrix X ′.

4. Starting from X ′
·,0, try to reconstruct X ′

·,i using the basis computed above with the
same sparsity constraint C. Return i as the location of the bug if the reconstruction
fails. In case all reconstructions succeed, return ⊥ indicating inability to localize the
error.

Algorithm 2 describes the above approach in more detail using pseudo-code. It uses
the following subroutines:

• dataMatrix is the procedure that converts a set of subtraces to the corresponding
data matrix described in Section 2.

• sparseBasis solves the sparsity-constrained Boolean matrix factorization problem
using the graph-theoretic algorithm presented in Section 3 for X with a given C, and
returns the computed basis B.

• reconstructTrace solves the following minimization problem.

minimize
Si

‖X ′
·,i ⊕ (B ◦ S·,i)‖1

subject to ‖S·,i‖1 ≤ C
(7)

where⊕ is the bit-wise Boolean XOR operator, and is interpreted to apply entry-wise
on matrices.
Notice that for fixed C, this problem is fixed-parameter tractable because we can use

a brute-force algorithm that enumerates all the
∑

1≤i≤C

(

k

i

)

possible S·,i. It can

also be solved using a pseudo-Boolean optimization formulation, where the Boolean
variables in the optimization problem are the entries in S·,i.

Error Explanation. Denote S∗
·,i as the optimal solution to the minimization problem

in Equation 7. If the minimum value is non-zero, then E = X ′
·,i ⊕ (B ◦ S∗

·,i) is the

minimum difference between the error subtrace X ′
·,i and the reconstructed subtrace

B ◦ S∗
·,i. Notice that E is also a subtrace, and can be interpreted as a finite sequence

of assignments to system variables. In our experience, E is a pattern that explains the
error; we expand further on this point using our experiments in Sec. 5.



Algorithm 2 Error localization in time

Input: Set of subtraces Tp from set of correct traces T , T ′
p from error trace τ ′

Input: Constant C > 0
X = dataMatrix(Tp); X ′ = dataMatrix(T ′

p ); B = sparseBasis(X,C)
for i := 0 → q − 1 do
E = reconstructTrace(X ′

·,i, B, C)
if E 6= 0 then return i end if

end for
return ⊥

4.3 Theoretical Guarantees

We now give conditions under which our error localization approach is sound. By
sound, we mean that when our algorithm reports a subtrace as the cause of an error,
it is really an erroneous subtrace that deviates from correct behavior.

Since our approach mines specifications from traces, its effectiveness fundamentally
depends on the quality of those traces. Specifically, our soundness guarantee relies on
the set of traces T satisfying the following coverage metrics defined over the transition
system (V,Σ0, δ) of the golden model:

1. Initial State Coverage: For every initial state σ0 ∈ Σ0, there exists some trace in T
in which σ0 is the initial state.

2. Transition Coverage: For every transition (σ, σ′) ∈ δ, there exists some trace in T
in which the transition (σ, σ′) occurs.

While full transition coverage can be difficult to achieve for large designs, there is
significant work in the simulation-driven hardware verification community on achieving
a high degree of transition coverage [25]. If achieving transition coverage is challenging
for a design, one could consider slicing the traces based on smaller module boundaries
and computing tests that ensure full transition coverage within modules, at the potential
cost of missing cross-module patterns.

Our soundness theorem relates test coverage with effectiveness of error localization.

Theorem 1. Given a transition system Z for the golden model and a set of finite-length
traces T of Z satisfying initial state and transition coverage, if Algorithm 2 is invoked
on T and an arbitrary error trace τ ′, then Algorithm 2 is sound; viz., if it reports a
subtrace of τ ′ as an error location, that subtrace cannot be exhibited by Z .

Proof. (sketch) The proof proceeds by contradiction. Suppose Algorithm 2 reports a
subtrace of τ ′ as the location of the error. Recall that a subtrace must be of length at
least 2. Thus, if we compute basis subtraces of length 2, any transition of the golden
model Z can be expressed as a superposition of these basis subtraces and hence recon-
structed from the basis subtraces B, since T contains all transitions of Z . A subtrace
reported as an error location, in contrast, is one that cannot be expressed as a superpo-
sition of the basis subtraces and hence reconstructTrace will report that it cannot be
reconstructed. Thus, any subtrace reported as an error location by Algorithm 2 cannot
be a valid transition of the golden model Z . ⊓⊔

We also note that, in theory, it is possible for Algorithm 2 to miss reporting a sub-
trace that is an error location, if that subtrace is expressible as a superposition of basis
subtraces. However, experiments indicate that it is usually accurate in pinpointing the
location of the error. Details of our experiments are provided in Sec. 5.



5 Experimental Results

In this section, we evaluate our sparse coding approach to generate specifications and
localize errors based on the following criteria.

(1) Are the computed “basis subtraces” meaningful? That is, do they correspond to some
interesting specifications of the test circuit?

(2) Do the “basis subtraces” capture sufficient underlying structure of a trace? That
is, can they be used to reconstruct traces that are generated from unseen input se-
quences?

(3) How accurately can we localize an error in an unseen trace (generated by unseen
input sequences)?

(4) How good are the error explanations?

5.1 Arbiter

We first use a 2-port arbiter as an illustrative example to evaluate our approach. The
2-port arbiter is a circuit that takes two Boolean inputs corresponding to two potentially
competing requests, and produces two Boolean outputs corresponding to the two grants.
It implements a round-robin scheme such that it will give priority to the port at which
a request has not been most recently granted. Let r0, r1 denote the input requests and
g0, g1 denote the corresponding output grants. If a request ri is granted, gi goes high in
the same cycle. Figure 2 shows part of a trace of the arbiter over the request and grant
signals. The input requests were randomly generated and the trace was 100 cycles long.

Fig. 2. A normal trace of a 2-port round-robin arbiter

We used a sliding window of length 3 to collect a set of subtraces. We then applied
our sparse coding algorithm described in Section 3.2 to extract a set of “basis subtraces”.
We set the sparsity constraint to 4 for this experiment, which is only one third of the
total number of entries in a subtrace. We now evaluate our approach with respect to the
four criteria stated at the start of this section:

(1) Figure 3 shows some of the basis subtraces computed. We can observe that basis
(a) and (b) correspond to the correct behavior of the arbiter granting a request at the
same cycle when there is no competing request. Basis (c) shows that when there are
two competing requests at the same cycle, the arbiter first grants one of the requests
and the ungranted request will stay asserted the next cycle and then gets granted.

(2) We further simulated the arbiter with random inputs another 100 times each for 100
cycles. For each of these traces, we also use a sliding window to partition them into
subtraces of length 3. Using the basis computed from the trace depicted in Figure 2,
we tried to reconstruct these subtraces and succeeded in every attempt. This was



Fig. 3. Three basis subtraces computed via sparse coding

because all the sub-behaviors were fully covered in the trace from which the bases
were computed, even though unseen subtraces exist in the new traces.

(3) For each of the 100 traces in (2), we randomly injected a single bit error (flipping its
value) at a random cycle to one of the four signals in the trace. Our task was to test
if we could localize the error to a subtrace of length 3 that contained it.
The following example illustrates one of the experiments. Figure 4(a) shows a snap-
shot of the trace.

(a) Bit flip at r1 at cycle
97

(b) Error sub-
trace as identi-
fied

(c) Error expla-
nation subtrace

(d) Alternative
error explanation
subtrace

Fig. 4. Error trace and explanation subtrace

Using the approach described in Algorithm 2, the subtrace containing the error was
correctly identified. Among the 100 traces, we successfully identified the window at
which the error was injected for 84 of them. Figure 4(b) shows the error subtrace.
Following Equation 7, Figure 4(c) shows the (differential) subtrace X ′

i ⊕ (B ◦ Si)
that minimizes |X ′

i ⊕ (B ◦ Si)|1 and serves as an error explanation.
Clearly, this subtrace reveals the injected error. While no fault model is assumed,
this approach still pinpoints the bug behaviorally – a grant was not produced at g1
at cycle 97 even when the corresponding request was made at r1. Note that multiple
error explanations (solutions to the minimization problem in Equation 7) can exist.
Figure 4(d) shows an alternative error explanation subtrace for this example where
g1 was asserted but r1 was not asserted at cycle 97.

(4) In Section 4.2, we argue that the minimum difference between an error subtrace and
any possible reconstructed subtrace using the computed basis can serve as an expla-
nation for the error. In the 84 traces for which the error was correctly localized, the
injected bit error was also uncovered by solving the optimization problem in Equa-
tion 7.



5.2 Chip Multiprocessor (CMP) Router

Our second, larger case study is a router for on-chip networks. The main goal of this
case study was to explore how the technique scales to a larger design, and how effective
it is for error localization.

Fig. 5 illustrates the high-level design of the router, as a composition of four high-
level modules. The input controller comprises a set of FIFOs buffering incoming flits

Fig. 5. CMP Router comprising four high-level modules

and interacting with the arbiter. When the arbiter grants access to a particular output
port, a signal is sent to the input controller to release the flits from the buffers, and at
the same time, an allocation signal is sent to the encoder which in turn configures the
crossbar to route the flits to the appropriate output port.

The router was simulated with two flit generating modules that each issued random
data packets (each consists of a head, some body and a tail flit) to the respective input
ports of the router. We observed 14 Boolean control signals in the router and a trace
was generated for these 14 signals with a simulation length of 1000 cycles. We used a
subtrace width of 2 cycles and obtained 93 distinct subtraces each with 14 signals over
2 cycles. A basis was computed from these 93 distinct subtraces subject to a sparsity
constraint of 52 (see explanation for the choice of this number at the end of this section).
It took 0.243 seconds to obtain this basis which contained 189 basis subtraces.

The router was simulated 100 times with different inputs. We used the first simultion
trace to obtain the basis as described in the previous paragraph and the rest 99 traces for
error localization. For each of these 99 traces, a single bit flip was injected to a random
signal at a random cycle. The goal of experiment is to localize this bit error to a subtrace
of 2 cycles (among the 999 subtraces for each trace) in which the error was introduced.

Following the localization approach described in Section 4.2 of the paper, 55 out of
99 of the errors were correctly localized. The remaining 44 errors were not localized
(all the subtraces including error subtrace were reconstructed using the computed basis).
The overall accuracy of the error localization procedure in this experiment was 55.6%.

Why is this error localization approach useful? Imagine you are given a good trace
(or a collection of good traces) and then an error trace (that cannot be reproduced),
and you are asked to localize the error without knowing very much about the underly-
ing system that generates these traces. (This situation arises when dealing with legacy
systems, for example.) Here are two plausible alternative options to our sparse coding
approach and the corresponding results:



(a) Hash all the distinct subtraces of 2 cycles in length in the good trace. For each of the
subtraces of the same dimension in the bad trace, check if it is contained in the hash,
and report an error if it is not contained. For the same traces used above, an error was
reported for each of the 99 traces even before any bit flip was injected.

(b) Use a basis that spans the entire space of subtraces of 2 cycles, e.g. 14× 2 subtraces
where each contains only a single 1 in its entries and is orthogonal to the others.
However, it is obvious that we cannot localize any error using this basis since it
spans all possible subtraces.

Our method can be viewed as something in between (a) and (b). It finds a subspace that
not only contains all the good subtraces but also generalizes well to unseen good sub-
traces from the basis. The generalization is a sparse composition of some key patterns
in the good subtraces. An error is reported if a subtrace lies outside this subspace. The
number 52 for the sparsity constraint was determined as a result of the minimization of
sparsity such that the computed basis was just sufficient to reconstruct all the other 99
traces before error injection. This limits the size of the subspace spanned by the basis
and hence increases the ability to detect an error.

6 Related Work

We survey related work along three dimensions: Boolean matrix factorization, mining
specifications from traces, and error localization techniques.

6.1 Boolean Matrix Factorization

Matrix factorization or factor analysis methods are prevalent in the data mining com-
munity, with a common goal to discover the latent structures in the input data. While
most of these methods are focusing on real-valued matrices, there have been several
works recently that target Boolean matrices, for applications such as role mining [26].
Miettinen et al. [20] introduced the discrete basis problem (DBP). DBP is similar to
our definition of the Boolean matrix factorization problem in which k is fixed and the
objective is to minimize the reconstruction error. They showed that DBP is NP-hard
and gave a simple greedy algorithm for solving it. In terms of sparse decomposition,
Miettinen [19] showed the existence of sparse factor matrices for a sparse data matrix.
Our paper describes a different notion of sparsity – we seek to express each data vector
as a combination of only a few basis vectors, which can be dense themselves.

6.2 Specification Mining

Approaches to mine specifications can be largely categorized into static and dynamic
methods. We restrict ourselves here to the dynamic methods that mine specifications
from traces. Daikon [8] is one of the earliest tools that mine single-state invariants or
pre-/post-conditions in programs. In contrast, we focus on mining (temporal) properties
over a finite window for reactive (hardware) designs. Some existing tools produce tem-
poral properties in the form of automata. Automata-based techniques generally fall into
two categories. The first class of methods learn a single complex specification (usually
as a finite automaton) over a specific alphabet, and then extract simpler properties from
it. For instance, Ammons et al. [2] first produce a probabilistic automaton that accepts
the trace and then extract from it likely properties. However, learning a single finite
state machine from traces is NP-hard [12]. To achieve better scalability, an alternative
is to first learn multiple small specifications and then post-process them to form more



complex state machines. Engler et al. [7] first introduce the idea of mining simple alter-
nating patterns. Several subsequent efforts [27, 28, 10] built upon this work. In previous
work, we proposed a specification mining approach similar to Javert that focuses on
patterns relevant for digital circuits [16] and showed how this can be applied to error
localization. However, such approaches are limited by the set of patterns. The present
work seeks to remove this limitation by inferring design-specific patterns in the form of
basis subtraces.

6.3 Error Localization

The problem of error localization and explanation has been much studied in literature in
several communities: software testing, model checking, and electronic design automa-
tion. In model checking, Groce et al. [13] present an approach based on distance metrics
which, given a counterexample (error trace), finds a correct trace as “close” as possible
to the error trace according to the distance metrics. Ball et al. [3] present an approach
to localizing errors in sequential programs. They use a model checker as a subroutine,
with the core idea to identify transitions of an error trace that are not in any correct trace
of the program, and use this for error localization. Both of these approaches operate on
error traces generated by model checking, and thus have full observability of the inputs
and state variables. In contrast, in our context, the trace includes only-partially observed
state and is not reproducible.

In the software testing community, researchers have attempted to use predicates and
mined specifications to localize errors [17, 6]; however, these rely on human insight in
choosing a good set of predicates/templates. In contrast, our approach automatically
derives specifications in the form of basis subtraces, which can be seen as temporal
properties over a finite window. Program spectra [14], which include computing pro-
files of program behavior such as summaries of the branches or paths traversed, have
also been proposed as ways to separate good traces from error traces; however, these
techniques are of limited use for digital circuits since they rely on the path structure of
sequential programs and give no guarantees on soundness.

In the area of post-silicon debugging (see [21] for a recent survey), the problem
of error localization has received wide attention. The IFRA approach [22], which is
largely specialized for processor cores, is based on adding on-chip recorders to a de-
sign to collect “instruction footprints” which are analyzed offline with some input from
human experts. Li et al. [16] have proposed the use of mined specifications to perform
error localization; however, this approach relies on human insight in supplying the right
templates to mine temporal logic specifications. Zhu et al. [29] propose a SAT-based
technique for post-silicon fault localization, where backbones are used to propagate in-
formation across sliding windows of an error trace. This additional information helps
make the approach more scalable and addresses the problem of limited observability.
Backspace [5] addresses the problem of reproducibility by attempting to reconstruct one
or more “likely” error traces by performing backwards reachability guided by recorded
signatures of system state; such a system is complementary to the techniques proposed
herein for error localization.

7 Conclusion and Future Work

In this paper, we have presented basis subtraces, a new formalism to capture system
behavior from simulation or execution traces. We showed how to compute a sparse basis
from a set of traces using a graph-based algorithm. We further demonstrated that the
generated basis subtraces can be effectively used for error localization and explanation.



In terms of future work, we envisage two broad directions: improving scalability and
applying the ideas to other domains. Since the Boolean matrix factorization problem
and its sparse variants can be computationally expensive to solve, the scalability of
the approach must be improved. In this context, it would be interesting to use slightly
different definitions of a basis (for example, using the field of rationals rather than the
semi-ring we consider) so that the problem of computing a sparse basis is polynomial-
time solvable. Moreover, the ideas introduced in this paper can be extended beyond
digital circuits to software, distributed systems, analog/mixed-signal circuits, and other
domains, providing many interesting directions for future work.
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