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Abstract

We show that the Entropy Photon-Number Inequality (EPnljisievhere one of the input
states is the vacuum state and for several candidates ofhbe ioput state that includes the
cases when the state has the eigenvectors as the numbegrastdteither has only two non-zero
eigenvalues or has arbitrary number of non-zero eigensdlueis a high entropy state. We also
discuss the conditions, which if satisfied, would lead toxrrsion of these results.

1 Introduction

The Entropy Photon Number Inequality (EPnl) was conjecting Guha et. al[J1]. EPnl has a
classical analogue called Entropy power inequality whichtated as follows. LeX andY be
independent random variables with densities Al ) be the differential entropy ok, then

Zh(X) 4 g2h(Y) < G2h(X+Y) (1)

holds. It was first stated by Shannon in REéf. [2] and the praas given by Stam and Blachman
[3.14].

The EPnl has some important consequences in quantum infomtheory. In particular,
if this conjecture is true, then one would be able to esthlitie classical capacity of certain
bosonic channelg [1]5]. EPnl is shown to imply two minimuntpot entropy conjectures,
which would suffice to prove the capacity of several othemcdleds such as the thermal noise
channel[[5] and the bosonic broadcast charinéll[6, 7].

The statement of the inequality is as follows. Letndb be the photon annihilation operators
and let the joint state of the modes associated wihdb be the product state, i.@ap = p4 ®
pB, Wherep4 andpp are the density operators associated withdfedb modes respectively.
For the beam-splitter with inputsandb and output: with transmissivityn and reflectivityl — n
respectively, the annihilation operator evolution is gy

c=na++/1—nb, (2)
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The EPnl is now stated as

g [S(pe)] = ng [S(pa)l + (1 —n)g [S(pB)] ., ©)

where
g(z) = (z + 1) log(x + 1) — z log(x) (4)

is the von Neumann entropy of the thermal state with mean gphotimber z, and
S(p) = —Tr(plog p) is the von Neumann entropy.

In this paper, we prove the EPnl for the casepgf to be the vacuum state,, having
its eigenvectors as the number states and either having dwpeno eigenvalues or high von
Neumann entropy with arbitrary number of eigenvalues. &laee other candidates as well for
which some special cases EPnl hold and these are mentideed la

2 Thebeam-splitter transformation

We obtain the output density matrix from the beam-splitter transformations. The annihilation
operators for the two outputs are

c=ma++/1T=nb, ()
d:eb‘z’(\/l—na—\/ﬁb), (6)

where[a,a'] = [b,b'] = [¢,c] = [d,d'] = Tand[a,b] = [a,c] = [a,d] = 0 and so on. We
assume that the inputs density operators are diagonal imutinder state basis and hence,

pan =YY wiyjli)ali)p (ila ilp )
i=0 j=0

wherez; andy; are theith andjth eigenvalues oft and B respectively,i) , and|j) ; are the
Fock number states for the systerisind B respectively. Any statg) , |;7) 5 can be written as
(see Ref.[[8] for example)

N (af)’ (v1)?

i = ——10),|0) 5. 8

|>A|J>B \/i_!\/ﬁ|>A|>B (8)
From [B) and[(6), we get! = \/ic’ + /T —ne'?d’ andb’ = /T—nc’ — \/me'?dl. Using
these with[(B), we get the transformation

o — gtV (T el — rebdt)i
i) o L) 25 WO L 7y Wi=n o D e, ©

where B.S. indicates the action of the beam splitter. Udiegfact that the operator$ andd’
commute and the binomial expansion, we get

" k=01=0
(CT)(i-i-j)_(k-H) (dT)k-i-l ‘O>C ‘O>D ) (10)
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Incorporating the action aft andd' on the vacuum states 6f and D, we get

)4 17) 5 ZZ Lk +1)$ <;> <?>ni§+z(1 gy

k 0 1=0
J[(z‘+y>—(k+l)]-<k+l)- (i +7) = (k+D)e [E+Dp.  (11)

Hence, we arrive at the expression forp as

pCD —Z Z T ZZ Z Ze ()= (k ] (Y4 <k:> <l> <;/> (;/)

i=0 j=0 'kOlOk’Ol’
i~ Btk g “'(1 _ n)j—ﬂJr%
\/[(z +7)— (k+ D]k +l)!\/[(z’+j) — (K + )Nk +1")!
(i +7) = (k+ D)tk +Dp (@ +5) = (K + 1) K+ (12)

Now, tracing out system D, we get

Pc—zz LiYj IJIZZZZ l+l/<.> <l> <;/> (27/)

=0 j=0 k=01=0 k’'=01'=
. kK 1l 4l k4K
T Ly

[0 +5) = E+DIE+ D@ +5) = (R+D) (i +7) = (E+ D] Okgrprrr. (13)

We now consider the special case whehis a vacuum state. Let the set of all probability
vectors (with infinite length) be denoted Byand ifz € P, then) > z; = 1 andz; > 0V
i > 0. Then [13B) reduces to

pc = Z Z ’Z>C <i’c7 (14)
=0
wherez = M, (z) = M(n,z), M : [0,1] x P — Pis a transformation given by
_ - k % k—1i
2 —kg@n (1=m)* "z (15)
Hence, [(B) reduces to
g H{H[My(@)]} = g™ [H(z)]. (16)

Note that this equation is expected to hold foralle P andn € [0,1]. The inequality is
trivially true for n = 0 sinceMy(z) = [1,0,...] implying H[M,(z)] = 0, and forn = 1 since
M1 (:1:) =1x.

3 pg4 istwo-dimensional in the number state basis and
pp isthevacuum state

Let
Hy(p) £ —plog(p) — (1 — p)log(1 — p) 17)



to be the binary entropy of a two-point probability distfilotn [p, 1 — p] with 0 < p < 1.
Let the eigenvalues g4 given by the probability vectoz = [1 — «, «,0,...]. Therefore,
H(z) = Hy(o) and H[M,,(z)] = Hp(n). We now provel(I6) for the above case.

Lemmal. Forall n € [0,1] and « € [0, 1], we have

9" [Hy(na)] > ng™" [Hy(a)] . (18)
with equality if and only if n € {0,1} or &« = 0.

Proof. One can see that™! [Hy(na)] = ng~! [Hy(a)] if n € {0,1} or @ = 0. In all other
cases, we show that
9" Hy(na)] > ng™" [Hy(@)].- (19)

Let f(B) = g~ ! [Hy(B)]. The Lemma is equivalent to showing th&ts)/j is a strictly
decreasing function il < 8 < 1. Note that since(8) = Hy(3)+2[log(2) — Hy (1/2 + 5/2)]
andlog(2) > Hy (1/2+ p/2) forall g € (0,1), henceyg(3) > Hy(5) forall 0 < g < 1. Since
g is one-to-one and increasing, we have [H,(3)] < g forall0 < g < 1 or f(B) < 3 for all
0<p<l1.

It is not difficult to see that

d f(B) _ log{(1—-B)[1 + f(B)]}

= (20)

d 1+£(8)

po B 10g |47
and since, using () < gforall0 < g < 1, it follows that (1 — 5)[1 + f(8)] < 1 for all
0 < B < 1, hencef(B)/p is a strictly decreasing function ih< 5 < 1. O

Recall that if the distribution of a random variabteis Binomial, denoted by BifL, ) € P,
then Bin(L,n, k) £ Pr{X =k} = (})n*(1 —n)*~*if k € {0,1,..., L} and is zero otherwise.

Let the two non-zero entries of the probability vectdr!” be at theV-th andP-th position,
i.e,zy =1—a,zp = aand letzV:F" = M, (V7).

Lemma2. Forall n € [0,1], « € [0,1] and L > 1, we have
g [HEYD)] =097 [HE@N)]. (21)
Proof. By Lemmd1, we have
9" [Hy(na)] = ng™" [Hy(@)] .- (22)

Note thaty is one-one and and strictly increasing, therefpréis also strictly increasing. There-
fore, it is enough to prove that

H(z"F) > H(2""). (23)
asH (z') = Hy(na) andH (z™') = Hy (). We first show that
H(Z%P) > H(ZO). (24)
Note that
H(Z"") =f [, (1 =)"] + aH [Bin(P, )], (25)
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where
flayx) =—[(1 —a)+ az]log[(1 —a) + az] — (1 — z)alog(a) + zlog(x)a. (26)

It is not difficult to show thatf(x) is a decreasing function af. Note thatH [Bin(P,n)] in-
creases withP. SinceH (z%") is a sum of two functions each of which increases wih(24)
follows.

Next, we show that for allV, P > 0, we have

H(ZN+1’P+1) > H(ZN’P). (27)

Note first that BifN + 1,7) = (1 — n)Bin(N,n) + nBin,; (N, n), where if X has distribution
Bini1(NV,n), thenPr{X =k + 1} = Bin(N, n, k) ¥V k. This implies that

N,P
SNHLPHL (1- n)zN,P + 0 (28)

where we define”;" similarly. UsingH (™'F) = H(2Y;"), itis not difficult to show that
H(zN+1,P+1) _ H(zN,P) +(1—n)D [zN,P||zN+1,P+1] D [zf,lPHzN—kLP—i-l . (29)

whereD(-||-) is the relative entropy that is always non-negative and éef&) follows.
Assume w.l.o.g. thaP > N. Applying (24) repeatedly followed by (27), we get
HEN) > H%PN) > H(2). (30)

The result follows. O

4 py has number states as eigenvectors and pp is the
vacuum state

We have observed that the EPnl holds whpgrhas two non-zero eigenvalues with eigenvectors
as the number states apg is a vacuum state. We now consider the case whgehas number
states as the eigenvectors and could have arbitrary nurhbenmero eigenvalues ang; is the
vacuum state. We derive some necessary and sufficient mmrdfor this inequality to hold.

We first note thatVf,, [M,, (x)] = M, (x) ¥ n,n € [0,1] andz € P. To prove this, let
y = M, (x), z = M,(y) and note that

“=) (f) (1 —n)* "y, (31)

k=i
'\ (k i k—i — (7)., k ni—k

:Z<i>ﬁ(1—n) Z<k>(n) (L=n) "y (32)
k=1 j=k

=2 (Z) (m)'z; (‘2 _ i) (o =) (1 =y (33)
J=i k—i=0

=2 Myya;. (34)
j=i



To simplify the notation, let us define
H(n,z) = H(M,x) (35)
h(n,z) £ g~ [H(n.2)]. (36)
As M is an identity transformation, we sometimes wiiitéx) for H(1,z) andh(z) for h(1,z).
Note thath(1,z) = ¢! [H ()] and therefore[(16) can be rephrased as

h2) S 4. 37)

n

It is not difficult to see that if.(16) holds, ther(n, z)/n is a decreasing function in To see
this, let < nandd =’ /nwhere0 < § < 1. Then

h(n',) _ h[o, My(x)] 1 (38)
n o
5 hIL My (@)] (39)
1
_ hin.x) (40)
e
As h(n,z)/n is differentiable, we have

d hlmz) _ AHOLZ)  p oy 4 log 11+ (. 2)]. (41)

dn n dn

Lemma 3. Let M, : [0,1] x P — P be the transformation given by (I5). The following are
equivalent:

(1) h(n,z) > nh(1,z) VxeP,Vne(0,1], (42)
(i4) dif?h(%”) <0 VezeP,Vne (0,1,  (43)
d h(n,x)

(i) i (nzl <0 VeeP.  (44)

Proof. Itis clear from [40) thati) and(i7) are equivalent. Furthermorg;) implies (iii) since
(737) is a special case @f:). We prove thatiii) implies(ii). Note that

e T )

Now (ii7) implies that
A0 <o @7)
and hence(ii) follows using [(46). O



We now state EPnl i (16) in the form of an entropic inequalig., an inequality involving
Shannon entropy of discrete probability distributions. lBynma3,[(Ib) is equivalent to

dH (n,
n L () + log 1+ A 0] <o (a8)
The above can be expressed as
dH (n,x)
g [eH("’x)_" - 1} > H(n, ). (49)

Note thatg(1/8 — 1) = H,(3)/8 V B € [0,1] and hence[(16) is equivalent to showing that

_ dH (n,z)
Hb |:e H(W@)"‘W dn :|

H(n,z) < 50

(n.z) e—H(n,m)+n—dH§Z’m) (50)

For the two dimensional case with = 1, z = [a,1 — ,0,...], « € [0,1], H(n,2) —
ndH (n,x)/dn = —log(«), H(x) = Hy(«), and substituting this in(50), we get

Hyfa) < 24O, (51)

which is true. This gives a short proof ¢f (16) for this spécise. Evaluatingd (50) af = 1
gives an interesting expression that depends only on thébdison z. It is shown in [G2) that

é dH(nvx)

an ‘nzl = —;m log <

O(x)

) , (52)

Ly
Ti—1

and hence[(30) reduces to
H, [e—H(z)+®(z)]

e—H(z)+O0(x)

H(z) < (53)

The above inequality involves only entropies and anothection © of the distribution but, to
the best of our knowledge, has never been studied before llitehature.
We now show that iffl(16) is true, then it implies that

n%?z) <1, (54)
0 < b (r.0) (59

If (L8) holds, then using Lemnid 3, we hati&n,x) — ndH (n,x)/dn > log [1 + h(n,z)]. As
log [1+ h(n,z)] > 0, we haveH (n,x) — ndH (n,z)/dn > 0, which proves[(55).

Using LemmdB again, we havglH (n,z)/dn — H(n,z) + log [1 + h(n,x)] < 0. Itis
enough to prove thall (1, ) — log [1 + h(n,z)] < 1, i.e.,

1+ g ' [H(n,z)] > et/ (1)~ (56)



We first consider the case whén< H(n,z) < 1. Thene/®)-1 < 1. Therefore,1 +
g ' [H(n,z)] > e =)~1 and [54) holds.

Now considerH (n,z) > 1. Hence, it is enough to prove that- g~ '(z) > e* 1 V2 > 1,
or,x+ 1> g(e® — 1) Vo > 0. Simplifying, we can show that this is equivalent to showtingt
r(e”*) > 0, wherer : [0,1] — R and

r(x)=z+ (1 —z)log(l — x). (57)

Note thatr(0) = 0 anddr(z)/dx = —log(l —x) > 0V = € [0,1]. Therefore;r(z) > 0V
x € [0,1] and [54) follows.

(54) and[(5b) are the necessary conditions[fal (16) to holeln@w show that they both hold
under general conditions.

Lemmad4. For all € [0,1] and z € P, the following hold:

dn
dH (n, )
<H 59
Ul (n,z) (59)
with equality if and only if M, (x) = [1,0,...].
Proof. Letz = M, (x) and using
dzp . .
Wy = (i + 1)z, (60)
we get
- = i 1+ log(z;) d (61)
=1 g(2 d

= ZZZZ log <z 1) (62)

) (63)

— 1, (64)

where ina, we have used the inequality tHag;(x) > 1 — 1/« for all # > 0 with equality if and
only if x = 1. If z is such that;; # 0V i, then it is impossible to have an equalitydrsince
equality would implyz;_; = z; Vi and this would imply thap ">, z; is unbounded.

If z has a finite number of nonzero values sa¥ [z, 21, ..., 211, 0, ...], then [64) can be
further tightened as

dH(n,x)
K

<1- LzL—l- (65)
U



(66)

Hence, [(54) holds.
We now prove[(BB) or equivalently
O(z) = — Z iz;log
=1
It is easy to see that the following

% ) < H(z).
Let us define a sequence of probability distributiga$”)}, L = 0,1, ..., wherez(") has length
= [1].

Zi—1

(

— AL (67)

ZL—1>
%L

L+ 1andz) = [(1 — zp)2z"Y, 21] and 2
(68)

recurrence relations hold
0z = (1 - 2)0(z""Y) + Lzp log <

H(z) = (1 — 2)H (YY) + Hy(zp).
(69)

2 0(zH)) — H(zW).

=(zH)
(70)

Define
Using the recurrence relations [n{67) ahdl(68), we get
—Z
LZL_1> — Hb(ZL).

2z = (1 — 21)2EEY) + Lz log (
(71)

=

We now claim that
2(zH)) < Llog(1 — z1).
We prove this by induction. It is easy to check tBdt(")) = log(1 — z;). Let (Z1) hold for
(72)

—_

ZL—1> — Hy(21)

)

L —1,L > 1. Then we have

2(zH)) = (1 — 21)2(2FY) + Lzg log <
(L —1)(1 — 2)log(1 — z1_1) + (L — )2z log (21_1) + L2z log < -
(73)
(74)
(75)

b

— Hb(ZL)
—(L = 1)d(zr,21-1) + Llog(1 — zr)
< LlOg(l - zL)v
where ina, we have used the induction hypothesis and the factthatg(z;_1) < 0, in b,
1—=x

(76)

d(z,y) = xlog <§> + (1 —xz)log <
is the relative entropy betweém, 1 — z] and[y,1 — y] and is always nonnegativel_{59) now
follows from (71) sincdog(1 — z;) < 0. The equality condition follows straightforwardly.C]

It is not difficult to see that the sufficient condition for 16 hold is thatdH (n,z)/dn < 0.
This condition is, of course, not true for many distribus@uch as a distribution whose sequence

of entries are non-increasing. Suppase- M, (x) has some zero entries in its interior, i.e.,
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z; = 0 andz;41 # 0 for somei. Then one can easily check théll (n, z)/dn = —oo and [16)
holds. It also follows from[{85) that if, for distributionsith finite non-zero entries of the form
z =|20,21,,20-1,0,...] andzy_1 > 1/L, then [16) holds.

We now show tha{((16) holds # (z) is sufficiently large.

Lemmab. For agivenn € (0,1), z € P, (I8) holds if H(z) islarge enough.

Proof. Using [49), we need to show that

g [eH(n,z)—ndH(nvx)/dn _ 1] > H(n,z). 77)
We have
g [eH(mz)—ndH(n,m)/dn } H(n,z) + § — e~ H@)tndH(n2)/dn (78)
2 H(n,z) + 6 — e HO2)H1 (79)
> H(n,z), (80)

where ina, we use the inequality thate® — 1) > 2 + 1 — e~ and we use Lemmnid 4 to get
ndH (n,z)/dn < 1 — ¢ for somed > 0, in b, we usendH (n,z)/dn < 1 and the last inequality
would hold if H(n,z) > 1 — log(d) or if H(n,z) is large enough.

We now show that ifd (z) is large, then so i#f (n, z) for n € (0,1). Define

H(n,x
() 2 2] 6D)
Differentiating w.r.t.n, we get using[(59),
dg(n,z) 1 [ dH(n,z)
= — —H 82
an il (n,) (82)
<0 (83)

Hence,q(n, z) is a decreasing function of and H (n,z) > nH (z). Similarly, using [(58), we

get
1 1
/ dH (B,z) < / % (84)
n n B

H(n,x) > H(z) + log(n). (85)

Hence,
H(n,z) = max{nH(x), H(z) +log(n)} . (86)
This shows that iff (z) is large, then so i#l (n, ) and hence[(16) would hold for amyc (0, 1]
for large H (z). O
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5 Discussion

It is, of course, of great interest to see if these result$dcbe generalized for the cases where
pa andpp do not have the special structure such as the eigenvectoig the number states etc.
It would seem that our results may extend over to cover sontieeske cases if the following is
established. Suppose there existezan P such that
d hln, Ms(z)] ‘
dn n n=
Then, it follows from [[46) that
d h(n,z) ‘
dnn  In=s

1<0v5e(0,1]. (87)

<0V pe(0,1]. (88)

This would then imply thak (3, z) is a strictly decreasing function ¢f € (0, 1] and hence[(16)
holds with strict inequality.

An example of suchaisz = [o,1 — ,0,...], « # 1, andMp(z) = [1 — (1 — a)f, (1 —
a)f,0,...], and [18) is strict using (51).

For finiten and any state defined on the number states as

o= &;li){l, (89)
i,j=0
we define a function .
fln,o) =" & lef) (€], (90)
i,j=0

where{|e]")} is the standard basis for the Hilbert space of dimensianl, i.e.,(e;| = [0, ...,0

,1,0,...,0],7 =0,1,...,n. Itfollows thatS(c) = S[f(n,o)].
Now consider the input states such that

pa= > Nijli)a(ila (91)
i,j=0

pB =Y %ijli)p (ilg (92)
i,j=0

pa=al0), 0, + (1 —a)[1), (1, (93)

pr =105 (05, (94)

wheren 4, np are finite and| f (na, pa) — f(na, pa)lle: < dand||f(ng, ps)—f(ng, pB)||t: <
J.

It is not difficult to see that under the action 6f the outputp of beam splitter withp 4
andpp as inputs is close to the outppt with p4 andpp as inputs, i.e.||f(na + np, pc) —
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fna+ng, pc)lle < €, where we could makeas small as possible by choosifigmall. Using
Fannes’ inequality [9, 10], this would result in a small dgign in the von Neumann entropies
of pa, pp @andpc as compared t 4, pp and pc respectively that can be absorbed while still
preserving the inequality since the inequality is strict.
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