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Abstract

We show that computational problem of testing the behaviour of quantum circuits is hard for

the class of problems known as QMA that can be verified efficiently with a quantum computer. This

result is a generalization of the techniques previously used to prove the hardness of other problem on

quantum circuits. We use this result to show the QMA-hardness of a weak version of the problem of

detecting the insecurity of a symmetric-key quantum encryption system, or alternately the problem

of determining when a quantum channel is not private. We also give a QMA protocol for the problem

of detecting insecure encryption to show that it is QMA-complete.

1 Introduction

Testing the behaviour of a computational system is a problem central to the study of quantum comput-

ing. This is the problem faced by an experimentalist who has implemented a quantum computation

and wants to check that the implementation behaves (approximately) correctly on all input states. An

efficient solution to this problem would allow for the verification that a circuit provided by an untrusted

party correctly implements some desired operation. Unfortunately we show in a general model that

even a weak version of this problem is likely to be computationally intractable and so any solution to

this problem will need to make essential use of the structure of the operation that the circuit is supposed

to implement. The problem we consider is, given a quantum circuit, to decide between two cases: either

the circuit acts in the desired way on all input states, or the circuit misbehaves, acting in some malicious

way on a large subspace of input states. This problem is QMA-hard even when both the desired and

malicious behaviour are known (i.e. specified by uniform families of quantum circuits).

The class QMA is the set of all problems that can be verified up to bounded error on a quantum

computer. Several problems are known to be complete for QMA: these problems can be thought of as

alternate characterizations of the class, as they capture exactly the power of this computational model.

The first of these complete problems is the problem of determining the ground state energy of a local

Hamiltonian. This was first shown to be complete on k -local Hamiltonians [15] for k ≥ 5, before the

problem was shown to remain hard in the 2-local case [14]. The problem of determining if local descrip-

tions of a quantum system are consistent is also known to be QMA-complete [16], though only under

Turing reductions. Other problems related to finding ground states of physical systems are also known

to be complete for QMA [20, 21].

There are also problems on quantum circuits that are known to be QMA-complete. The first of these

is the Non-identity check problem [13], which given as input a unitary quantum circuit, the problem is
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to decide if there is an input on which the circuit acts non-trivially or if the circuit is close to the identity

for all input states. The problem of determining if a circuit is close to an isometry (i.e. a reversible

transformation that maps pure states to pure states) is also known to be QMA-complete [18].

In this paper we generalize the hardness proofs of [13, 18] to show that the QMA-hardness of the

problem of testing the properties of the outputs of quantum circuits. More specifically, we define the

circuit testing problem, which has as parameters two uniformly generated families of quantum circuits

C1 and C2. The problem is do decide, given an input circuit C , whether C acts like circuits from the

family C1 on a large input subspace, or whether C acts like circuits from C2 for all input states. Using

this result we reprove the QMA-hardness of non-identity check and non-isometry testing by making

choices for the families C1 and C2. We also show that some other circuit problems are hard, such asa

version of finding the minimum output entropy (this is similar in spirit to the results in [5], though our

model is incompatible), or determining when a channel has an pure (approximate) fixed point.

It is important to note that, despite the name, this problem is not related to property testing. In this

problem we have a significantly weaker promise—in one case the circuit only behaves in a certain way on

a subspace of the input. For an input space of dimension d , this subspace can be as large as d 1−δ for an

arbitrary constant δ> 0 but this subspace is still far from the whole input space. Essentially the problem

is to detect if the circuit behaves in a certain way only when a specific input state is provided on some

subset of the input qubits. Note also that while we can use this problem to show the QMA-hardness of

several circuit problems, this technique does not show that these problems are in QMA.

We then apply this hardness result to the problem of detecting insecure quantum encryption. This

is the problem of deciding, given a quantum circuit that takes as input a quantum state as well as a clas-

sical key, whether this circuit is ǫ-close to a perfectly secure encryption scheme (i.e. a private quantum

channel [2, 6]), or whether there is a large subspace of input states that the circuit does not encrypt at all

(up to error ǫ). To show that this problem is hard, we argue that this problem contains as a special case

an instance of the circuit testing problem. Finally, we give a QMA verifier for this problem to prove that

it is QMA-complete.

The remainder of the paper is organized as follows: Section 2 contains some mathematical back-

ground, a definition of the class QMA, and a discussion of private quantum channels. The hardness of

the circuit testing problem is shown in Section 3. Finally, Section 4 contains the proof that the problem

of detecting insecure encryption is QMA-complete.

2 Preliminaries

2.1 Background

Throughout the paper we let H ,K ,X ,Y , . . . represent (finite-dimensional) Hilbert spaces. The pure

quantum states are simply the unit vectors in these spaces. The set of density matrices on a space H
is denoted D(H ): these are the positive semidefinite operators with unit trace. We will use the notation

T(H ,K ) to represent the set of channels that map states in D(H ) to states in D(K ). More formally,

these transformations are exactly the completely positive trace preserving linear maps from L(H ) to

L(K ), where we use L(H ) to denote the set of all linear operators onH .

To measure the distance between quantum states we will make extensive use of the trace norm,

which for a linear operator X can be defined as ‖X ‖tr = tr
p

X ∗X . A useful alternate characterization

is that ‖X ‖tr is the sum of the singular values of X , or, in the case of a normal operator, the sum of the

absolute values of the eigenvalues. One important property of the trace distance




ρ−σ






tr
between two
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states is that it is monotone nonincreasing under the application of quantum channels.

We will also need the intuitive property that two states that are close together in the trace norm

produce similar measurement outcomes. This can be derived from the fact that an expression involving

the trace norm gives the maximum probability that two states can be distinguished [12],

Lemma 1. Let X ∈ L(H ) satisfy 0≤X ≤ 11. Then

tr(Xρ)≤ tr(Xσ)+




ρ−σ






tr

In addition to the trace norm, we will also need a distance measure on the quantum channels.

Such a measure is given by the diamond norm, which for a linear map Φ : L(H ) → L(K ) is given by

‖Φ‖⋄ = supX∈L(H⊗H ) ‖(Φ⊗ 11H )(X )‖tr /‖X ‖tr. See [15] for an alternate definition and some further prop-

erties of this norm. In the case that Φ is the difference of two completely positive maps, we may re-

place the supremum in the definition of the diamond norm with a maximization over pure states in the

spaceH ⊗H [19]. Similarly to the trace norm, the diamond norm can be used to characterize the dis-

tinguishability of two quantum channels: here the fact that the definition involves a reference system

captures the fact that the optimal strategy to distinguish two channels may involve the use of entangled

input states.

Since we consider computational problems on quantum channels, we must specify how they are to

be given as input. For this we use the mixed-state circuit model, first defined in [1], where circuits are

composed of some (universal) collection of the usual unitary gates, plus a gate that introduces ancillary

qubits in the |0〉 state and a gate that traces out (i.e. discards) qubits. For simplicity we will assume that

all Hilbert spaces we encounter are composed of qubits, i.e. that the dimension is always a power of two,

though this is not strictly needed.

We use this circuit model because it can (approximately) represent any quantum channel, and in

the case of efficient quantum circuits this representation is of size polynomial in the number of input

qubits. Using circuits does not (significantly) restrict the applicability of our hardness results: they also

apply in any model that can efficiently simulate the circuit model, such as the model of measurement

based quantum computation.

2.2 QMA

In order to prove results about the class QMA, we give a formal definition. A language L is in QMA if

there is a quantum polynomial-time verifier V such that

1. if x ∈ L, then there exists a witness ρ such that Pr[V accepts ρ]≥ 1− ǫ,

2. if x 6∈ L, then for any state ρ, Pr[V accepts ρ]≤ ǫ,

The exact value of the error parameter ǫ is not significant: any ǫ < 1/2 that is at least an inverse polyno-

mial in the input size suffices [15, 17].

Let L be an arbitrary language in QMA, and let x be an arbitrary input string. Our goal will be to

encode the QMA-hard problem of deciding if x ∈ L into the problem of detecting an insecure encryption

circuit. To do this it will be convenient to represent the verifier as a unitary circuit V , which represents

the algorithm of the verifier in a QMA protocol on some input x . We may “hard-code” the input string x

into the circuit for V , since the circuit V needs only to be efficiently generated given x .

The algorithm implemented by the verifier in an arbitrary QMA protocol is given in Figure 1. The

verifier receives a witness state |ψ〉, applies the unitary V on the witness state and any ancillary qubits
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|ψ〉
✔✗

V

✓
✓✼

❄

|0〉

Figure 1: Verifier’s circuit in a QMA protocol. The verifier accepts the witness state |ψ〉 if and only if the

measurement in the computational basis results in the |1〉 state.

|+〉⊗6

t
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t
t
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t
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X
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Z

Z

❄

Figure 2: Example implementation of the completely depolarizing channel Ω on three qubits. In order

to obtain a private channel the state the qubits in the |+〉 state are replaced by a classical key k to obtain

the channel Ωk .

needed, and finally measures the first output qubit to decide whether or not to accept. Any qubits not

measured are traced out. One of the main results of this paper is a reduction from an arbitrary QMA

verifier to the problem of testing the behaviour of quantum circuits.

2.3 Private Quantum Channels

Quantum channels that are secure against eavesdroppers are those channels for which the input state

cannot be determined by the output. These channels can also be viewed as encryption systems: the key

is simply the environment space of the channel, which, when combined with the output state, allows

the input to be recovered. We restrict attention to private channels of a special form: those which allow

the input to be recovered not with the quantum state of the environment but instead with a classical

key that can be pre-shared between two parties that wish to establish a secure quantum channel. These

channels, called, private channels, were introduced and studied in [2, 6].

An important example of a private quantum channel is the completely depolarizing channel. This

is the channel Ω that maps any input to the completely mixed state. One circuit implementation of this

channel is given in Figure 2.

In order to use the completely depolarizing channel as a private channel we must add a key. This can

be done to the implementation in Figure 2 by replacing the qubits in the |+〉 state with a classical string.

The result is a channel that applies a key-specified Pauli to each of the input qubits. We will refer to this

channel as Ωk when a specific key is used. Notice that if Ωk ∈ T(H ), then |k | = 2log dimH , i.e. we use
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two key bits for each encrypted qubit. In the case of a perfect encryption channel this rate of two key bits

per qubit is optimal [2, 6, 7]. When the key k is unknown and uniformly distributed, the channel Ωk is

identical to Ω, i.e. if the key k is uniformly distributed in {0, . . . ,2m − 1}we have

1

2m

∑

k

Ωk =Ω. (1)

We use the following definition of an approximately private channel (i.e. secure encryption).

Definition 2. Let E be a channel that takes two inputs: an integer k ∈ {1, . . . , K } and a quantum state in

H and produces an output inK , where dimH ≤ dimK . For a fixed value of k we write Ek (·) = E (k , ·).
We call E a ǫ-private channel if

1. There is a decryption channel, i.e. there exists a channel D : {1, . . . , K } ⊗D(K )→ D(H ) such that

for all k

‖Dk ◦Ek − 11H ‖⋄ ≤ ǫ,

where the size of the circuit for D is bounded by a polynomial in the size of the circuit for E .

2. Without the key k , the output of E has almost no information about the input state, i.e.















1

K

∑

k

Ek −Ω
















⋄

≤ ǫ

where Ω ∈ T(H ,K ) is the depolarizing channel that maps all inputs to 11K /dimK .

The use of the diamond norm in this definition is significant: we require that both conditions hold

even for part of an entangled state. Specifically, a channel satisfying this definition both preserves any

entanglement with the transmitted state is and remains secure even in the case that an eavesdropper

is entangled with the input. We use this strong definition because one of the main results of the paper

is a hardness result: distinguishing secure and insecure encryption remains hard even when the secure

encryption is promised to be secure in this strong model. Our hardness result remains true for the weaker

model of private channels using only the trace norm.

This definition is a strengthened version of the model used by Ambainis and Smith [3], who define

security in a similar way, but only against adversaries that are not entangled with the input state. Another

similar model is considered by Hayden et al. [11], which also does not consider entangled adversaries,

but uses a stronger bound involving the operator norm. The hardness result in this paper does not apply

with respect to this stronger bound.

Like the perfect encryption schemes found in [2, 6], the encryption scheme constructed by our re-

duction uses 2log d key bits to encrypt a state of dimension d . As argued (implicitly) in [4, 11] this is

essentially optimal: any scheme using fewer than 2log d (1− poly(ǫ)) key bits cannot be secure against

entangled adversaries.

3 Testing Circuits

The problem of testing the behaviour of a quantum circuit can be informally stated as: given a circuit

C , decide between two cases, either the circuit acts like some known circuit C0 on a large subspace of

the input, or the circuit acts like some other known circuit C1 on the whole input space. We use uniform

circuit families C0 and C1 since it is important that the circuit C , which is provided as input, takes the

same number of input and output qubits as the circuits C0 and C1.
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Problem 3 (CIRCUIT TESTING). Let 0 < ǫ < 1, 0 < δ ≤ 1, and C0,C1 be two uniform families of quantum

circuits. The input to the problem is a circuit C ∈ T(X ,Y ). Let C0,C1 be the circuits drawn from C0 and

C1 that take as input states onX . The promise problem is to decide between:

Yes: There exists a subspace S of X with dimS ≥ (dimX )1−δ such that for any reference space R and

any ρ ∈D(S⊗R)




(C ⊗ 11R )(ρ)− (C0⊗ 11R )(ρ)






tr
≤ ǫ,

No: ‖C −C1‖⋄ ≤ ǫ, i.e. for any reference spaceR and any ρ ∈H ⊗R




(C ⊗ 11R )(ρ)− (C1⊗ 11R )(ρ)






tr
≤ ǫ.

When the values of ǫ,δ,C0, andC1 are significant we will refer to this problem as CT(ǫ,δ,C0,C1).

This problem is well-defined only for families C0 and C1 that do not violate the promise, i.e. any

circuits whose output is not too close together. These are the circuits C0 and C1 such that there does not

exist a subspace T of H of size dim T > dimH δ such that for any input states ρ ∈ D(T ⊗R) we have




(C0⊗ 11R )(ρ)− (C1⊗ 11R )(ρ)






tr
≤ 2ǫ, i.e. there does not exist a large subspace of pure states on which

C0 and C1 produce output that is close together. This condition can be difficult to verify, but in many

applications it is easy to see that the two circuits do not agree on too many pure states. The application

of this hardness result to detecting insecure encryption, for instance, uses C0 as the identity and C1 as

the completely depolarizing channel, and these two circuits never agree on a pure input state. We are

able to prove that this problem is QMA-hard for any circuit families that satisfy this condition.

Notice also the special case δ= 1: here the CT problem asks if there are any input states on which the

circuit C behaves like C0 or if it behaves like C1 for all input states. In this case the problem is well-defined

for any familiesC0 andC1 that do not agree on the whole space (up to error 2ǫ).

Concerning the parameters ǫ andδ, we may take ǫ = 2−p for any polynomial p using an amplification

result for QMA [15, 17], and we may take δ to be any constant satisfying 0<δ≤ 1.

3.1 Testing Circuits is QMA-hard

To show the hardness of CT we use a reduction from an arbitrary problem in QMA. This involves em-

bedding the verifier in a QMA protocol into an instance of CT with the property that the resulting circuit

runs C0 if the Verifier can be made to accept and runs C1 if the Verifier cannot be made to accept.

Formalizing this notion, let L be an arbitrary language in QMA and let x be an input string. The

QMA-complete problem is to decide whether or not x ∈ L. Since L ∈ QMA, there exists some unitary

circuit V :H ⊗A →K which can be constructed efficiently from x such that if x ∈ L, there exists a pure

state |ψ〉 ∈H such that measuring the first qubit of V (|ψ〉⊗|0〉) results in |1〉with probability at least 1−ǫ,

whereas if if x 6∈ L, then for any state |ψ〉 a measurement of V (|ψ〉 ⊗ |0〉) results in |1〉 with probability at

most ǫ. By using standard error-reduction techniques for QMA, we may take ǫ to be negligible in the

size of the circuit for V [15, 17]. Notice also that the restriction to pure witness states |ψ〉 can be made

without loss of generality using a convexity argument.

Our goal is to show that CT is hard for as many choices of parameters as possible. To this end, let

δ> 0 be constant and letC0 andC1 be uniform circuit families on which the problem CT(3
p
ǫ,δ,C0,C1)

is well-defined. These are any families Ci = {Ci ,n : n ≥ 1}, where the circuit Ci ,n takes an n qubit input

state, such that for any n the circuits C0,n and C1,n do not produce outputs that are not too close together

on some large subspace of pure input states. In particular, we require that for all n , there does not exist a
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|0〉 t t

t

❞

V V ∗

❄

U0 U1

X

|0〉

ρ

¨

Figure 3: Circuit output by the reduction. The circuit V is the unitary circuit applied by the QMA verifier

for the language L. The circuit Ui is the unitary circuit obtained from Ci by removing the gates that

introduce ancillary qubits and trace out qubits.

subspace T of the n-qubit input spaceX with dim T > dimX δ such that for any states ρ ∈D(T ⊗R)we

have




(C0⊗ 11R )(ρ)− (C1⊗ 11R )(ρ)






tr
≤ 6
p
ǫ.

The key idea to the reduction is that we construct a circuit that takes an input state and applies the

unitary V to a portion of it, makes a ‘copy’ of the output bit with a controlled-not gate, and then applies

V ∗. If the result of the QMA protocol would have been the verifier accepting (i.e. the copy of the output

qubit is measured in the |1〉 state), then we apply the circuit C0. On the other hand, if the output qubit

was in the |0〉 state, we apply the circuit C1. This results in a circuit that applies C0 if and only the input is a

state the Verifier in the QMA proof system accepts. In order to guarantee that the subspace of accepting

states in large enough, we add dummy input qubits that are ignored by the circuit V but are acted on

by either C0 or C1. By adding enough of these qubits, we can ensure that if there is at least one state V

accepts, then the result is a large subspace of states that are accepted.

The full construction of the circuit produced by the reduction is shown in Figure 3. Before describing

the circuit, we fix the notation that we will use. Let C0 and C1 be circuits drawn from C0 and C1 imple-

menting transformations in T(X ,Y ), whereX =F ⊗H and Y =F ⊗K , using the spacesH ,K from

the QMA Verifier for L. Further, we may let dimF =
 

dimH (1−δ)/δ
£

, since we are free to take any poly-

nomial number of input qubits to C0 and C1. We also assume without loss of generality that these circuits

are implemented by circuits that apply unitary circuits mapping X ⊗A → Y ⊗G , where the spaceA
holds any ancillary qubits needed by the circuit (initially in the |0〉 state) and the space G represents the

qubits traced out at the end of the computation. Any mixed-state circuit can be efficiently transformed

into a circuit of this form by moving the introduction of ancillary qubits to the start of the circuit and

delaying any partial traces to the end of the circuit. We may also assume that both the circuit V and

the circuits C0 and C1 use ancillary spacesA ,G of the same size, by simply padding the circuits using a

smaller space with unused ancillary qubits.

Let C be the circuit in Figure 3. This circuit takes as input a quantum state ρ on the space X =
F ⊗H . This circuit first applies V to the portion of ρ in H as well as any needed ancillary qubits in

the spaceA . Next, the circuit makes a classical copy of the ‘output bit’ of V , which is used as a control

for the application of the circuits C0 and C1. The circuit V ∗ is then applied, so that the result (provided

that V accepts or rejects with high probability) is a state that is close to the input state plus a qubit that

indicates whether V accepts or rejects the input state. The circuit then applies C0 if V accepts and C1 if V

rejects. These circuits use the same ancillary spaceA as the circuits V and V ∗, but as long as the Verifier

V either accepts of rejects the input state with high probability, these ancillary qubits will be returned to
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the |0〉 state, up to trace distance 2
p
ǫ.

Before proving the correctness of the reduction, it will be convenient to write down some of the

states produced by running the constructed circuit C . Let ρ be an arbitrary input state in D(H ⊗F ) and

let |ψ〉 ∈ H ⊗F ⊗R be a purification of ρ. The order of the spaces H and F has been changed for

notational convenience. After applying the unitary V to the portion of |ψ〉 inH , the state can be written

as

|φ〉= (V ⊗ 11F ⊗ 11R )(|ψ〉⊗ |0〉),

where the |0〉 qubits are in the space A . Then, there exist states |φ0〉, |φ1〉 on all but the first qubit of

K ⊗F ⊗R such that

|φ〉=
p

1−p |0〉⊗ |φ0〉+
p

p |1〉⊗ |φ1〉

where 0≤ p ≤ 1 is exactly the probability that the Verifier accepts in the original protocol on input trF ρ.

Applying the controlled-not gate results in

|φ′〉=
p

1−p |00〉⊗ |φ0〉+
p

p |11〉⊗ |φ1〉.

We then bound the trace distance of |φ′〉 to |0〉|ψ〉 and |1〉|ψ〉. In the case of |0〉|ψ〉we have





|φ′〉〈φ′| − |0〉〈0| ⊗ |φ〉〈φ|






tr
= 2

q

1−
�

�〈φ′|0φ〉
�

�

2
= 2
p

1− (1−p )2 < 3
p

p , (2)

and in the similar case of |1〉|ψ〉 we have





|φ′〉〈φ′| − |1〉〈1| ⊗ |φ〉〈φ|






tr
= 2

q

1−
�

�〈φ′|1φ〉
�

�

2
= 2
p

1−p 2 < 3
p

1−p . (3)

These two equations show that, when p is close to 0 or 1, the fact that we make a classical copy of the

output qubit does not have a large effect on the state of the system. (This fact can also be argued from

the Gentle Measurement Lemma [22].) The remainder of the circuit then applies V ∗ and, depending on

the value of the control qubit, one of C0 and C1. We consider two cases, which are argued in two separate

propositions.

Proposition 4. If x ∈ L, then there exists a subspace S of X with dimS ≥ dimX 1−δ such that for any

reference systemR and any ρ ∈S⊗R




(C ⊗ 11R )(|ψ〉〈ψ|)− (C0⊗ 11R )(|ψ〉〈ψ|






tr
≤ 3
p
ǫ. (4)

Proof. If x ∈ L, then there is some input state |ψ〉 on which the Verifier accepts with probability p ≥
1− ǫ. Applying the remainder of the circuit, up to the partial trace, to the state |1〉|φ〉 results in the state

|1〉⊗ (U1⊗11R )(|ψ〉⊗|0〉). Tracing out the spaceG as well as the copy of the output qubit, results in exactly

the state trG (U1⊗11R )(|ψ〉〈ψ|⊗ |0〉〈0|)(U ∗1 ⊗11R ) = (C1⊗11R )(|ψ〉〈ψ|). This is not quite equal to the output

of the constructed circuit C , however, as in this evaluation we have replaced the state |φ′〉 with the state

|1〉|φ〉. However, using the monotonicity of the trace norm under quantum operations, the remainder of

the circuit cannot increase the norm of the two states, and so applying Equation (3), we have





(C ⊗ 11R )(|ψ〉〈ψ|)− (C0⊗ 11R )(|ψ〉〈ψ|






tr
≤ 3
p

1−p ≤ 3
p
ǫ. (5)

It remains to show that this occurs on a large subspace ofX =H ⊗F . Since we have assumed the

Verifier V accepts with high probability on the state |ψ〉, this implies that there is some state |γ〉 ∈H for
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which V also accepts with probability at least 1− ǫ, as V ignores the qubits in F . Then, since |ψ〉 was

arbitrary, Equation (5) also applies to |γ〉 ⊗ |ξ〉 ∈ H ⊗F for any state |ξ〉 ∈ F . The subspace S of states

whose reduced state onH is equal to |γ〉 has dimension dimF . Then, since dimF =
 

dimH (1−δ)/δ
£

,

we have

dimX = dimH ⊗F = dimH dimF ≤ dimF δ/(1−δ)dimF = dimF 1/(1−δ),

which implies that dimF ≥ dimX 1−δ, as required. Thus, when x ∈ L the Verifier V can be made to

accept, and so the result is a yes instance of CT.

The remaining case is when x 6∈ L, i.e. the Verifier V rejects every state with high probability. This

proof of this case is extremely similar to the previous one.

Proposition 5. If x 6∈ L, then for any reference systemR and any ρ ∈X ⊗R , ‖C −C1‖⋄ ≤ 3
p
ǫ.

Proof. This proof is similar to the proof of Proposition 4. If x 6∈ L, then V accepts any state |ψ〉 with

probability p ≤ ǫ. If we consider applying V ∗ and the remainder of the circuit to the state |0〉|φ〉, the

result is (C1 ⊗ 11R )(|ψ〉〈ψ|), similarly to the previous case. Once again, we do not run this part of the

circuit on this state, but the state |φ′〉which is very close to it. Once again we can apply the monotonicity

of the trace norm under quantum operations and Equation (2) to show that





(C ⊗ 11R )(|ψ〉〈ψ|)− (C1⊗ 11R )(|ψ〉〈ψ|






tr
≤ 3
p

p ≤ 3
p
ǫ.

Since this equation applies for all reference systems R and all states |ψ〉, this proves that if x 6∈ L, then

we have ‖C −C1‖⋄ ≤ 3
p
ǫ.

Taken together, these two proposition prove the hardness of the CT problem. Note once again that

in order for the CT problem to be well defined (i.e. the set of ‘yes’ instances does not intersect the set

of ‘no’ instances) we require that circuits from the two families are not too close together for any large

subspaces of pure input states. See the discussion following Problem 3 for a technical condition that is

equivalent to this requirement.

Theorem 6. CT(ǫ,δ,C0,C1) is QMA-hard for any 0< ǫ < 1 such that ǫ ≥ 2−p for some polynomial p, any

constant 0<δ≤ 1, and any uniform circuit familiesC0,C1 for which the problem is well-defined.

Proof. The correctness of the reduction is argued in In Propositions 4 and 5. It remains only to verify

that the reduction can be performed efficiently. To see that the reduction can be performed in time

polynomial in the size of the input x (which is at most polynomially smaller than the size of the circuit

V : the only part of the reduction that can cause a problem the size of the spaceF , since we have taken

dimF =
 

dimH (1−δ)/δ
£

. This implies that the space F requires a factor of (1−δ)/δ more qubits than

the space H , which is linear in the input dimension so long as δ is a constant. This implies that the

reduction can be performed in (classical deterministic) polynomial time.

3.2 Applications

In this section we apply Theorem 6 to reprove the hardness of some of the circuit problems that are

known to be hard for QMA as well as to show the QMA-hardness of some new circuit problems.

The first problem we consider is a slightly generalized version of the problem NON-IDENTITY CHECK

studied by Janzing, Wocjan, and Beth [13], who show that it is QMA-complete. Our version of the prob-

lem differs in that we allow the input circuit to be a mixed-state circuit. We do still require, however, that
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if the circuit does not act like the identity everywhere, then it acts like some efficient unitary circuit U on

some input state for which U is far from the identity. This requirement is not needed to prove that this

problem is hard, but it is hard to see how to put the problem into QMA without it.

Problem 7 (MIXED NON-IDENTITY CHECK [13]). Let 0 < ǫ < 1. On input C , a circuit in ∈ T(X ,X ), the

promise problem is to decide between:

Yes: ‖C − 11‖⋄ ≥ 2− ǫ and there exists an efficient unitary U such that on some pure state |ψ〉 ∈ X we

have




C (|ψ〉〈ψ|)−U |ψ〉〈ψ|U ∗






tr
≤ ǫ and




U |ψ〉〈ψ|U ∗− |ψ〉〈ψ|






tr
≥ 2− ǫ.

No: ‖C − 11‖⋄ ≤ ǫ.

The QMA-hardness of this problem follows from Theorem 6 and the fact that CT(ǫ,1,U ,11) is a special

case of the problem, whereU is any uniform family of quantum circuits that are not close to the identity

(one such example is the family of circuits that apply Pauli X to the first input qubit).

The next problem we consider is the problem of detecting whether a (mixed-state) circuit is close to

an isometry, which was shown to be QMA-complete in [18]. This can be formalized as the problem of

detecting if there is a pure input state one which the output state is highly mixed.

Problem 8 (NON-ISOMETRY [18]). Let 0< ǫ < 1/2. On input a circuit C ∈ T(X ,Y ) the promise problem is

to decide between:

Yes: There exists |ψ〉 ∈X such that




(Φ⊗ 11X )(|ψ〉〈ψ|)






∞ ≤ ǫ,

No: For all |ψ〉 ∈X ,




(Φ⊗ 11X )(|ψ〉〈ψ|)






∞ ≥ 1− ǫ.

The QMA-hardness of this problem follows from Theorem 6, since CT(ǫ,1,Ω,11) is a special case.

We can also apply Theorem 6 to show the hardness of the problem of determining if a channel has a

pure fixed point. This problem can be stated as follows.

Problem 9 (PURE FIXED POINT). Let 0< ǫ < 1. On input a circuit C ∈ T(X ,X ) the promise problem is to

decide between:

Yes: There exists |ψ〉 ∈X such that




C (|ψ〉〈ψ|)− |ψ〉〈ψ|






tr
≤ ǫ

No: For any |ψ〉 ∈X ,




C (|ψ〉〈ψ|)− |ψ〉〈ψ|






tr
≥ 2− ǫ

The QMA-hardness of this problem follows from the fact that CT(ǫ,1,11,Ω) is a special case.

A related problem is determining if the minimum output entropy of a quantum channel is small.

Related results can be found in [5], though the model used there seems to be incompatible with the

model used in the present paper. In order to define this problem, let Smin(C ) = minρS(C (ρ)) be the

minimum output entropy of the channel C (where S is the von Neumann entropy).

Problem 10 (MINIMUM OUTPUT ENTROPY). Let 0 < ǫ < 1/2. On input a circuit C ∈ T(X ,X ) the promise

problem is to decide between:

Yes: Smin(C )≤ ǫ log dimX

No: Smin(C )≥ (1− ǫ) log dimX

As in the previous case, the QMA-hardness of this problem follows from Theorem 6 and the fact that

CT(ǫ/2,1,11,Ω) is a special case. The log dimX terms in the statement of the problem are due to the use

of Fannes Inequality [10] to transform trace distance bounds to entropy bounds.
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4 Detecting Insecure Encryption

In this section we consider the problem of detecting when a two-party symmetric key quantum encryp-

tion system is insecure. We first use Theorem 6 to show that this problem is hard, and then give a QMA-

verifier to show that it is QMA-complete. The problem can be defined as follows.

Problem 11 (DETECTING INSECURE ENCRYPTION). For 0< ǫ < 1 and 0< δ ≤ 1 an instance of the problem

consists of a quantum circuit E that takes as input a quantum state as well as a m classical bits, such that

for each k ∈ {0,1}m the circuit implements a quantum channel Ek ∈ T(H ,K )with dimK ≥ dimH . The

promise problem is to decide between:

Yes: There exists a subspace S of H with dimS ≥ dimH 1−δ such that for any reference space R , any

ρ ∈D(S⊗R), and any key k ,




(Ek ⊗ 11R )(ρ)−ρ






tr
≤ ǫ.

No: E is an ǫ-private channel, i.e.




Ω− 1
2m

∑

k∈{0,1}m Ek







⋄ ≤ ǫ, where Ω is the completely depolarizing

channel in T(H ,K ), and there exists an polynomial-size quantum circuit D such that for all k we

have ‖Dk ◦Ek − 11H ‖⋄ ≤ ǫ.

When the values of ǫ and δ are significant, we will refer to this problem as DIǫ,δ.

Informally, this is the problem of distinguishing two cases: either the channel fails to encrypt a large

subspace of the input qubits (for any key), or the channel is very close to a perfect encryption channel.

Theorem 12. DIǫ,δ is QMA-hard for all 0<ǫ < 1/2 and all 0<δ≤ 1.

Proof. Let Ek = {Ωk ,n} where Ωk ,n is the n-qubit channel that applies the k th Pauli operator to the input

qubits. As in Equation (1) averaging over all over all keys k results in the completely depolarizing channel

on n qubits. Then, Theorem 6 implies that CT(ǫ,δ,11k ,Ek ) is hard for QMA, where 11k is the channel that

discards the key k and does nothing to the quantum input.

The problem CT(ǫ,δ,11k ,Ek ) involves a slight redefinition of the problem CT to include both a quan-

tum input, as well as a classical input k . This can be done without difficulty by including the classical

input as part of the quantum input (to circuits in the families 11k and Ek ) that is immediately measured

in the computational basis (and in the case of 11k , discarded). The problem CT(ǫ,δ,11k ,Ek ) remains hard

after this modification.

The QMA-hardness of DIǫ,δ then follows immediately from the fact that the problem of detecting

insecure encryption is simply CT(ǫ,δ,11k ,Ek ) with a weakened promise. Since the sets of ‘yes’ instances

of the two problems are identical, we need only verify the ‘no’ instances. Let the circuit C ∈ T(H ,K ) be a

‘no’ instance of CT(ǫ,δ,11k ,Ek ) and let Ck (·) =C (|k 〉〈k |⊗ ·) be the circuit defined by hardcoding the input

in the ‘key’ portion of the input space. Then, for any input ρ and any key k , we have ‖Ck −Ωk ‖⋄ ≤ ǫ,

since this follows for the versions of these circuits without a hardcoded key (which is just a restriction of

the input space). From this equation, the triangle inequality implies that















Ω− 1

2m

∑

k

Ck
















⋄

≤ 1

2m

∑

k

‖Ωk −Ck ‖⋄ ≤ ǫ,

which is the property required by ‘no’ instances of DI. To see further that the output of Ck can be de-

crypted with knowledge of k , observe that Ω−1
k
◦Ωk = 11, and so it follows that





Ω−1
k
◦Ck − 11






⋄ ≤




Ω−1
k
◦Ck −Ω−1

k
◦Ωk







⋄+




Ω−1
k
◦Ωk − 11






⋄ ≤ ‖Ck −Ωk ‖⋄ ≤ ǫ,

which implies that instances of CT(ǫ,δ,11k ,Ek ) are equivalent to instances of DIǫ,δ, as required.
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4.1 QMA Protocol

To test the security of an encryption system in QMA the Verifier will need a tool to compare two quantum

states. Such a tool is provided by the swap test, introduced in [8], though here we essentially use it to test

the purity of quantum states as is done in [9].

The swap test is an efficient procedure that makes the projective measurement onto the symmetric

and antisymmetric subspaces of a bipartite space. Let W be the swap operation onH ⊗H , i.e. W (|ψ〉⊗
|φ〉) = |φ〉 ⊗ |ψ〉 for all |ψ〉, |φ〉 ∈ H . The swap test performs the two-outcome projective measurement

given by the projection onto the symmetric subspace, given by (11H⊗H +W )/2, and the projection onto

the antisymmetric subspace, given by (11H⊗H −W )/2.

Given two pure states |ψ〉, |φ〉, the swap test returns the symmetric outcome with probability (1+
�

�〈ψ|φ〉
�

�

2
)/2. When applied to mixed states ρ,σ, the swap test can also be used to estimate the overlap,

as the result is symmetric with probability (1+ tr(ρσ))/2, as observed in [9]. Notice that this implies that

the swap test can be used to estimate the purity of a state, given two copies.

The idea behind the protocol is that if the encryption system specified by E is insecure then, regard-

less of the key chosen, it acts trivially on some subspace of the input states. In this case a proof can

consist simply of two copies of some pure state in this subspace. The Verifier runs E on both of these

states in parallel and tests that they have not been changed by performing the swap test. In the case

that the circuit is insecure, this proof state will cause the Verifier to obtain the symmetric outcome of the

swap test with probability approaching 1. Note that this protocol does not check that the input state is

unchanged, only that the output states of the two applications of E are (close to) the same pure state.

If E represents a secure encryption system, then without knowledge of the key, the output of E is

close to the completely mixed state, regardless of the input state. In this case the Verifier performs the

swap test on two highly mixed states and the result is antisymmetric with probability close to 1/2.

This protocol can be formalized as follows. A circuit implementation can be found in Figure 4.

Protocol 13. On input a circuit E : {1, . . . , K }⊗D(H )→D(K ), an instance of DIǫ,δ, as well as a quantum

proof |φ〉 in D((H ⊗R)⊗2) (where dimR = dimH ), the Verifier performs the following protocol.

1. The Verifier generates random keys k1,k2 ∈ {1, . . . , K }.

2. The Verifier applies (Ek1 ⊗ 11R )⊗ (Ek2 ⊗ 11R ) to the state |φ〉.

3. The Verifier applies the swap test to the resulting state, accepting if the outcome is symmetric.

The reference spaceR appears in this protocol, but Problem 11 places no upper bound on the size

of this space, and the value of the norm being verified may increase with the size of the spaceR . Fortu-

nately, this process stabilizes when dimR = dimH , and so we may assume that this space is of this size,

which at most doubles the number of input qubits to the protocol.

A straightforward argument based on the continuity of measurement probabilities (here given as

Lemma 1) can be used to show that this protocol is correct.

Proposition 14. For 0< ǫ < 1/8, Protocol 13 is a QMA protocol for DIǫ,δ.

Proof. If E is a ‘yes’ instance of DIǫ,δ, then there exists a state |ψ〉 ∈ H ⊗R such that for any key k ∈
{1, . . . , K } we have





Êk (|ψ〉〈ψ|)− |ψ〉〈ψ|






tr
≤ ǫ, where throughout this proof we use the shorthand nota-

tion Êk = Ek ⊗ 11R . Let the input state be |φ〉 = |ψ〉 ⊗ |ψ〉. Fixing notation further, let Êk (|ψ〉〈ψ|) = σk .

Applying Êk1 ⊗ Êk2 to |ψ〉⊗ |ψ〉 results in a stateσk1 ⊗σk2 that satisfies




σk1 ⊗σk2 − |ψ〉〈ψ| ⊗ |ψ〉〈ψ|






tr
≤ 2ǫ, (6)
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|0〉

Ω

E

Ω

E

swap

test

|0〉

Figure 4: The Verifier’s circuit in the QMA protocol.

which follows from the triangle inequality. Then, since the state |ψ〉〈ψ| ⊗ |ψ〉〈ψ| is symmetric and we

can view the swap test can be viewed as a projective measurement, Lemma 1 shows that the swap test

returns the symmetric outcome on σk1 ⊗σk2 with probability at least 1− 2ǫ. This implies that when the

circuit E is not secure the Verifier accepts with high probability.

It remains to show that when the circuit E is a ‘no’ instance of DIǫ,δ the Verifier does not accept

any proof state with high probability. In this case we know that






∑K

k=1 Ek −Ω






⋄/K ≤ ǫ. Once more, a

straightforward argument using the triangle inequality can be used to argue that the tensor product of

two copies satisfies the equation






∑K

k ,j=1 Ek ⊗ E j −Ω⊗Ω






⋄/K
2 ≤ 2ǫ. This implies that regardless of the

proof state |ψ〉 the input to the swap test is within trace distance 2ǫ of the completely mixed state. On

such a state, Lemma 1 implies that the swap test returns the symmetric outcome with probability at most

1

2
− 1

2
tr

�

�

11K
dimK

�2
�

+ 2ǫ =
1

2
− 1

2dimK + 2ǫ,

and so the probability the Verifier accepts is bounded above by 1/2+ 2ǫ. Thus, when ǫ < 1/8, there is a

constant gap between the acceptance probabilities in the two cases, and so DIǫ,δ ∈QMA.

Combining the previous Proposition with Theorem 12 we obtain the main result.

Theorem 15. For 0< ǫ < 1/8 and 0<δ≤ 1, the problem DIǫ,δ is QMA-complete.

5 Discussion

We have shown the QMA-hardness of a general version of the problem of testing the behaviour of a

quantum circuit. This result generalizes the proofs of hardness for many of the known circuit problems

that are QMA-hard [13, 18], as well as allows for simple proofs of hardness for new circuit problems. As an

application of this result we have shown that the problem of detecting insecure encryption is complete

for QMA by in addition finding an efficient QMA verifier for the problem.

13



An open problem related to this is to find a QMA verifier for the PURE FIXED POINT problem, or an

argument that the problem is likely to lie outside of the class. The direct approach to construct a verifier

using the swap test on (ideally) two copies of the fixed-point state, similar to the verifier in [18], does not

seem to work: the circuit that measures a qubit in the computational basis and then applies the Pauli X

gate, when applied to half of the input space, maps the symmetric state |01〉+ |10〉 to a symmetric state.

This circuit, however, does not have any pure (approximate) fixed points.
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