Addressing the ZooKeeper Synchronization
Inefficiency

Babak Kalantari and André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
{babak.kalantari,andre.schiper}@epfl.ch

Abstract. In this paper we discuss the problem of synchronization in
ZooKeeper, a fault-tolerant distributed coordination framework. One of
the key features of ZooKeeper is to move away from blocking API such
as locks, in order to avoid problems with slow or faulty clients. Instead,
it provides an event like synchronization mechanism, allowing clients to
be notified upon state change on the server. However, such a mechanism
leads to very inefficient implementation of synchronization objects such
as queues or barriers. We propose a new solution to this problem.

The solution is to handle a sequence of client operations completely on
the server. This means that the client implements the required sequence
of operations as a single request, which is sent to the server for execu-
tion via a generic API. We present a prototype that shares some of the
concepts of ZooKeeper but, contrary to ZooKeeper, allows a very effi-
cient implementation of synchronization objects. The solution requires
a deterministic multi-threaded server, which we implement thanks to a
coroutine mechanism. Experiments show the significant gain in efficiency
of our solution on producer-consumer queues and synchronization barri-
ers.

Keywords: Coordination service; Synchronization; Deterministic scheduler.

1 Introduction

ZooKeeper [1] is a reliable service for coordinating distributed applications that
consist of several processes. A coordination service is a middleware that pro-
vides high level primitives and abstractions to such distributed applications.
Examples of coordination are: managing application states, providing locks and
queues, leader election, etc. Coordination services themselves achieve fault toler-
ance by replication, i.e., active replication (state machine replication) [2], [3] or
passive replication (primary-backup replication) [4], [5]. In the recent years there
has been several developments to address distributed coordination. Boxwood [6]
provided a lock service, reliable state management and a failure detection service,
each in a separate module. Later the Chubby [7] fault tolerant locking service,
which was partly inspired by Boxwood, provided a high level API that unifies
locks and state management into file-like operations, i.e., open/close, read/write,
etc. Similarly to Boxwood, Chubby also uses Paxos [8] to achieve fault tolerance.

The most recent interesting development along the same line, while providing
a more powerful API, is ZooKeeper [9]. The fault tolerance of the ZooKeeper ser-
vice is ensured using an atomic broadcast algorithm [10] slightly different from
Paxos. More important, contrary to Boxwood and Chubby, ZooKeeper moves
away from a blocking API (e.g., locks). The reason is to avoid having to ad-
dress the problem of slow or faulty clients, hence providing what the authors of
ZooKeeper call a wait-free client API. However synchronization, as an essential
coordination mechanism, cannot be left out. Therefore, ZooKeeper provides an
event-based synchronization mechanism called watch. A watch allows client pro-
cesses to block, waiting for the update of some server’s data. As we point out in
the paper, a watch is a synchronization mechanism that leads to inefficiency in
many applications. Watches also cause secondary problems such as herd effects,
discussed in the paper.

Solving the problem by adding a blocking API to ZooKeeper is not an option,
since this has been excluded by design. We show in the paper that another
solution is possible. Indeed, the problem is not so much the blocking operation
performed by the client; it is rather the fact that the corresponding unblocking
operation might not be invoked in case of the crash of the client. We prevent
this from happening by allowing clients to send a sequence of operations to
the server, including blocking and unblocking operations. This guarantees that,
once the first operation is executed on the server, all operations are available
for execution on the server, even if the client crashes. We have designed and
implemented a prototype of such a coordination framework, which shares some
of its concepts with ZooKeeper (e.g., a file system based shared memory). Our
server handles the clients’ requests in a minimal kernel with a deterministic
scheduler, providing semaphores to allow clients synchronization in an elegant
and efficient manner.

The paper is organized as follows. Section 2 provides an overview of ZooKeeper.
In Section 3 we discuss limitations of the synchronization mechanisms of ZooKeeper.
In Section 4 we present our solution. Section 5 is devoted to an experimental
evaluation: we compare the cost of the ZooKeeper synchronization mechanisms
and our prototype on a queue object and a barrier object. Finally, Section 6
concludes the paper.

2 ZooKeeper overview

The goal of ZooKeeper is to provide fault tolerant coordination services for
distributed applications, which consist of multiple processes. These processes
are clients! of the ZooKeeper coordination service. ZooKeeper coordination is
achieved by allowing processes to access a shared hierarchical name space of
data registers called znodes [9]. The name space structure is very similar to that
of a standard file system, with files and directories. Every znode has a unique,
fully qualified name (i.e. absolute node path), and can store application data and

L A client can itself act as a server in the user application; nevertheless for the coor-
dination service it remains a client.

children nodes. For fault tolerance, the ZooKeeper name space is replicated over
an ensemble of servers (hosts) using state machine replication: atomic broadcast
is used to ensure consistency of the state of the server replicas [10]. Whenever
coordination within the distributed application is required, the appropriate op-
eration on a ZooKeeper object is invoked, using the API provided. Invoking an
operation requires to open a connection to a single ZooKeeper server to establish
a session. Once the session is established, a client can submit operations.

The basic ZooKeeper operations allow the client to add/delete znodes (oper-
ations create and delete), to read/write the data stored in znodes (getData and
setData) and to obtain the children of a znode (getChildren).

For synchronization, ZooKeeper provides an event mechanism. Events are
provided through the watch mechanism. A client can attach a watcher (an event
handler) to a znode and wait. The client is later notified upon state change of
the znode through the triggering of the event handler. The notification does not
contain any information about the change itself.

3 Limitations of synchronization in ZooKeeper

The synchronization mechanism provided by ZooKeeper is rather poor because:
(a) by watching a znode, clients cannot reliably see every change that happens,
(b) notifications do not contain adequate information for most cases, and (c)
upon a change all the watchers are notified.? In order to understand deficien-
cies of ZooKeeper, we discuss the implementation of a very basic coordination
object, namely a producer-consumer queue. The queue object itself is not the
main issue here: the main issue is the mechanisms allowing an efficient queue
implementation (which are not specific to queues). As such we do not claim by
any means that our queue implementation is the most efficient one nor that it is
novel. But we demonstrate an alternative to ZooKeeper that can be significantly
more efficient.

A producer-consumer queue object has two operations enqueue(), to insert
element at the tail, and dequeue(), to remove an element from the head. More-
over, the dequeue() operation must block the client if the queue is empty, and the
enqueue() operation must block the client if the queue is full. Implementing such
a queue requires to solve two problems: (1) a communication problem, and (2) a
synchronization problem. The communication problem requires the consumer to
get the right queue element according to the FIFO policy. The synchronization
problem requires to correctly handle blocking and unblocking of client processes.

3.1 Queue example: Solving the communication problem

The communication problem can be solved using the shared znode data space.
This includes control data, i.e., to use the znode space for data that allows to

2 Watches are one-time triggers and there is a delay between getting the watch event
and setting the watch to get the next one. Moreover, a watch notification which was
set by getData does not provide the new data; the same is true for getChildren.

locate the head of the queue and the tail of the queue. However, such data
must be accessed in mutual exclusion, while ZooKeeper does not provide such
a mechanism.? For this reason, we have to solve the communication mechanism
differently, relying on the atomicity provided by ZooKeeper when creating and
naming znodes.

A queue in ZooKeeper can be represented by a regular znode, say zn, and
its children. The name 2zn is the queue name and each child of zn represents
an item in the queue. Therefore, creating or deleting a child to/from zn is in
fact adding or removing a queue item. To produce an item, a znode child (with
a unique sequence number appended to its name) is created under zn. This
sequence number is incremented atomically by ZooKeeper whenever a child is
created. This is done by using the create operation with mode=SEQUENTIAL.
To consume an item from the queue, the client has to read all the children of
zn using the getChildren operation, and sort them according to their sequence
numbers (these sequence numbers are extracted from the names). The child with
the smallest sequence number is the queue head. This child is then removed using
the delete operation. Note that the delete operation may fail if in the meantime
this child was removed by another client. If this happens, removing the next
(smallest) child in the list has to be tried.

3.2 Queue example: Solving the synchronization problem

We discuss only the synchronization of a consumer when the queue is empty. If
the queue is empty (zn has no child), then a watch is left on zn to get notified
whenever zn is modified (child added). After notification, the clients execute
again the above procedure (getChildren, sorting and deleting). If several con-
sumers are blocked by an empty queue, all of them concurrently execute the
procedure (but only one will succeed).

3.3 Queue example: discussion

From the above description, we see several sources of inefficiency in the queue
implementation. When consuming an item from the queue, requiring the client
to read all the queue items plus to order them is highly inefficient. When several
consumer clients are blocked because the queue is empty, awaking all of them
when an item is added to the queue is inefficient: all consumers — except one —
will have to block again. In Section 5 we will experimentally measure the cost of
this solution.

3.4 Why not locks or semaphores?

In Section 3.1 we have pointed out the absence of mutual exclusion mechanism
in ZooKeeper (which is not a queue specific problem). This leads to the ineffi-
cient queue implementation that we described. Therefore, why not add locks or

3 In [9], the authors of ZooKeeper suggest two ways to implement locks. Apart from
the overhead of the solution, the crash of a client holding the lock is not handled
properly (partial state update is not undone).

semaphores to ZooKeeper, in order provide mutual exclusion when needed, in
order to allow for a more efficient implementation?

To answer this question, assume for a while that ZooKeeper provides locks
with lock/unlock operations. A client could typically, using a mutex lock, ex-
ecute the following operations: (1) lock(mutez), (2) read/write znodes, (3) un-
lock(mutez). The problem is the crash of the client between (1) and (3): ZooKeeper
would have to handle the problem. For this reason, by design, ZooKeeper ex-
cludes providing locking mechanisms. ZooKeeper calls the lock operation a non
wait-free operation, and requires that all operations provided to clients are wait-
free.

4 Addressing the ZooKeeper inefficiency

To explain the solution, we start from the example introduced above, where a
client has to execute the following sequence of operations:

lock(mutex); read/write znodes; unlock(mutez).

As pointed out, this sequence of operations must be executed atomically (all
or nothing property). This property is violated if the client crashes before exe-
cuting unlock(mutez). The problem is not solved using transactions: transactions
also would require ZooKeeper to detect and handle the crash of clients, which
is excluded by design. The solution we propose is to send the whole sequence of
operations to the server. Even if the client crashes afterwards, the server is able
to execute the full sequence of operations.

However, the solution requires the server to be multi-threaded. Indeed, as-
sume a single-threaded server executing the operation lock(mutex). If the oper-
ation blocks the server thread, the server cannot handle a future unlock(mutex)
operation from another client. Unfortunately, a multi-threaded server leads to a
non-deterministic execution, which is incompatible with state machine replica-
tion [3]. We address the problem by relying on a deterministic scheduler. In the
rest of the section we describe first how we handle the execution of sequences
of operations in a prototype server written in Java, and then we describe our
deterministic Java thread scheduler.

4.1 Server request handling

Consider a client that wants to execute a sequence of operations on the server.
The sequence of operation corresponds to a method of some Java object obj of
class C. As an example, consider the methods produce, consume and object Q1
of class Queue. A request to produce item valuel in queue @1 has the following

format:
reql = {byteCode, Queue, Q1, produce, valuel}

The first argument byteCode is the Java byte code of class Queue, which has two
methods: produce and consume. The second argument Queue is the name of the
class. The third argument @1 is the name of the object. The fourth argument

produce is the name of the method invoked. The last argument valuel is the
parameter of the method called.

Assume that the server, upon receiving reql, has no code for class Queue and
no object Q1 exists. After execution of regl, the server state is the following:*

— File /byteCodes/Queue.class is created with content byteCode.

In other words, the server maintains the byte codes (provided by clients)
under the path /byteCodes/ in the file system hierarchy. As explained later,
this allows the class code not to be sent with each client request.

— The Queue class is loaded into the running JVM,;

— A reference to class Queue is entered in classTable, an in-memory table;

— File /Queue/Q1/ is created: /Queue/Q1/ contains file headTail with an
index to the head of @1 (initially 0) and an index to the tail of Q1 (initially
0).

— A reference to object Q1 is entered in objectTable, another in-memory table;

— File item-1 with content valuel is created under /Queue/Q1/; the index to
the head and the index to the tail of Q1 are both set to 1.

Next consider a second request, req2, delivered to the server:

req2 = {byteCode, Queue, Q1, produce, valuel}
The server finds object @1 in the in-memory objectTable, and executes the pro-
duce method. After execution the new server state is as follows:

— /Queue/Q1/ contains the new file item-2 with content value2;
— file /Queue/Q1/headTail contains now 2 as the head index.

Obviously, it is stupid to send the byte code of a class in each request. By
default, in our implementation byteCode is not sent. When the server receives
a request invoking a method of some class C, if /byteCodes/C.class does not
exist, then the server asks the client the byte code. The current implementation
does not allow overloading: when some class C' is loaded, a second class with the
same name cannot be loaded.

4.2 Multi-threaded deterministic scheduling

Figure 1 shows the overall architecture of our server. The server executes the
following tasks:

1. Reception of client requests;

2. Ordering of client requests by interacting with the other server replicas
(atomic broadcast);

3. Execution of client requests;

4. Sending results to clients.

4 Although we assume here the same hierarchical file space as in ZooKeeper, this is
not necessary. The application state, in this case queue items and meta data, can be
more efficiently maintained as class variables, i.e., static class fields shared among
instances of a class.

coroutines
— kernel — — — — — - ===~

/
| Camephores> 1
other threads | executeCommand |
l\ |
—~— 7
% % % interactionWithClient
[JVM of GESMAS server j

Fig. 1: GESMAS server architecture

Item 3 is usually done by one single thread, in order to ensure determinis-
tic execution. In our server this is done by several threads that are scheduled
deterministically, as we explain below. In Figure 1, other threads and interac-
tion WithClient are scheduled by the JVM. The box called execute Command rep-
resents a procedure called by the thread interaction WithClient. The box called
kernel, dispatches deterministically the CPU allocated by the JVM to interac-
tion WithClient to the threads that execute client requests. To differentiate these
thread scheduled deterministically by the kernel from the threads scheduled by
the JVM, we call the former coroutines. The kernel in Figure 1 implements also
semaphores, which allow to synchronize client processes. Revisiting the queue
example using semaphores, the produce method becomes:

P(semaphorey); deposit the item; V(semaphores),

where semaphore; is initialized to the size of the queue, and semaphores is
initialized to 0. The consume method becomes:

P(semaphores); consume an item; V(semaphorey).

In the rest of the section we present the coroutine library that we have used,
the interaction WithClient thread, and finally the implementation of semaphores.

a) Coroutines

For coroutines, we use Java Continuations provided by JavaFlow, an Apache
Common library [11]. A Continuation is like a coroutine: it has the following
methods: startSuspended With, run, continue With and suspend. The method run
is the code executed by the Continuation. The method startSuspended With cre-
ates a Continuation and suspends it immediately. The method continue With(co)
transfers execution to the Continuation co: the execution of co resumes at
the point where it was suspended. The suspend method suspends the running
Continuation: if Continuation col has executed continue With(co2), when co2
executes suspend, the execution of col continues immediately after continue-
With(co2). In the sequel we use term Coroutine instead of Continuation.

Algorithm 1 Interaction with client

1: Global variables:

2: readyList initially empty {List of coroutine WithRequest not blocked}
3: current initially null {currently executing coroutine WithRequest}
4 request Wanted

5 req

6: thread interactionWithClient
7: requestWanted = true
8 while true do

9: req = null;

10: if requestWanted then

11: req = get new client request
12: end if

13: executeCommand (req)

14: end while

15: end

16: function executeCommand (req)
17: if req # null then

18: current = new CoroutineWithRequest(req)
19: continueWith(current.continueRef)

20: else

21: current = remove coroutine at the head of readyList
22: continueWith(current.continueRef)

23: end if

24: if readyList is empty then

25: request Wanted = true

26: else

27: request Wanted = false

28: end if

29: end

b) Thread “interactionWithClient”

The thread interaction WithClient is given by Algorithm 1. The boolean variable
request Wanted is true if the thread is ready to get a new request from a client;
otherwise there are still client requests ready to be executed. Consider the queue
example and request consume of client ¢; that is blocked due to an empty queue.
Request produce of client ¢o unblocks the request of ¢;. When the request of ¢,
is fully handled, the request of ¢; can be resumed: no new client request needs
to be requested. If request Wanted, then the thread interaction WithClient gets a
new client request.

We discuss now executeCommand(reg). If req # null a new coroutine is cre-
ated (in suspended mode) to handle the request: the context of each coroutine is
a request, namely the request that the coroutine handles, see Algorithm 2. Then
the new coroutine starts executing (line 19).

Algorithm 2 Class CoroutineWithRequest
1: Instance variable:

2: req {request handled by coroutine}
3: coroutineRef
4: function CoroutineWithRequest (request) {constructor}
5: req = request

6: coroutineRef = Coroutine.startSuspendedWith (this)

7: function run():
8: results = handleRequest(req)
9: send(results, req.requestld)

If req is equal to null, the readyList is used. As indicated by its name, the
readyList contains coroutines that are ready to be executed, i.e., that are not
blocked. So, when req is equal to null, a coroutine is removed from the head of
the readyList, and its execution is resumed.?

When executing, i.e., handling a client request, the coroutine can call a syn-
chronization operation, namely P or V on a semaphore. Operation V' can unblock
a coroutine, in which case the unblocked coroutine is added to the readyList. Op-
eration P may suspend the coroutine, in which case the reference of the coroutine
is added to the waiting queue of the semaphore.® The execution of suspend re-
sumes the execution of the thread interact WithClient at line 24 (Alg. 1). If the
readyList is empty, then request Wanted is set to true, otherwise it is set to false,
and the function executeCommand() terminates.

5 Performance evaluation

In this section we evaluate experimentally the cost of the ZooKeeper synchro-
nization mechanisms and the alternate implementation we have described, called
GESMAS (GEneric State Machine and Application Service). After describing
our experimental setup we present the performance evaluation for two objects:
the queue object (see Sect. 2 and 4) and the barrier object. We also use the
queue object to study the herd-effect in the two solutions.

5.1 Setup

Our hardware setup consists of three machines with single-core 2.8 GHz cpu,
1GB RAM running Linux-2.6.18 which are connected via a 1 Gigabit/s Ethernet
switch. On each machine we run one replica. Clients are also run on similar
machines.

5 In our implementation, the coroutine currently executing is not in the readyList.
5 Note that a coroutine looses the CPU only when executing a blocking operation. In
other words, there are no race issues among coroutines executing client operations.

We have used ZooKeeper release 3.3./ (the latest stable release at the time
of our experiments) with Java bindings. Our ZooKeeper server consists of three
replicas. Our GESMAS state machine replication (with three replicas) is imple-
mented using JPaxos [12], a Java implementation of Paxos.

5.2 Queue performance results

We did experiments to measure latency and throughput of produce and consume
operations.

Latency: We measured the latency of the produce and the consume operations,
including the latency as a function of the number of items” in the queue. All the
measurements were done after a warm-up period. Figure 2 shows the latency

5}

=]

Time (seconds)

8 / /
3)
2 e —
o o
a 1000 2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 6000
MNo. operations No. aperations
—e— Zookeeper —s— GESMAS —e— TooKeeper —s— GESMAS
Fig. 2: Latency of produce operation. Fig. 3: Latency of consume operation.

measurements for the produce operation. To measure the cost of N produce
operations, the client invokes the operation on the queue, waits until the response
is received, performs the next produce operation, etc. This is repeated N times
and the total duration is measured. We can see in Figure 2 that ZooKeeper has
lower latency compared to GESMAS. This can be explained by the fact that the
produce operation in ZooKeeper requires only the creation of one file, while in
GESMAS it involves additionally to write to the headTasl file.

The same latency measurements were done for the consume operation. To
measure the latency of N consecutive consume operations, the queue was first
filled with IV items. The result is shown in Figure 3. The figure shows that
the latency of the consume operation in ZooKeeper is much higher than the
latency of the produce operation, and also much higher than the latency of the
consume operation with GESMAS. This result is not surprising, considering the
ZooKeeper implementation, where each consume operation consists of getting
the list of all queue items and then performing a linear search (to locate the head
item). This is in contrast to GESMAS, where the consume operation involves
steps similar to those of the produce operation.

" Each item in the queue stores only one integer, hence very few bytes.

Finally, in the last latency experiment we studied the latency of the consume
operations as a function of the number of items in the queue. In this experiment,
we measured the latency of 1000 consume operations, for different initial queue
sizes, starting with a queue size of 1000. The results appear in Figure 4: with
GESMAS the latency is constant, while with ZooKeeper it increases linearly
with the initial size of the queue.

w
=]

A

\

/
/
—

=]

Time to consume 1000 item (sec)
]

s operation
—— produce|consume
q framework
’ " o e e (.ue..emm - o ZooKeeper 1260 270
[Toskaepn ——ceovis | GESMAS 1041 1265

Fig.4: Dependency to no. items in the Table 1: Throughput (op-
queue. Latency of 1000 consume operation. erations per second)

Throughput: In this experiment we measured the maximum number of produce
and consume operations per second that can be executed on a queue. In order
to generate high loads, we had to consider more than one client.

For produce operations, we measured the number of operations executed
on the server during 1 second. The load was continuously increased by adding
clients, and the number of operations per second was measured, until the maxi-
mum was reached. Table 1 shows the maximum throughput of 1260 for ZooKeeper
and 1041 for GESMAS.

For consume operations, we could not proceed in the same way for ZooKeeper
and GESMAS. For GESMAS, before running the experiments, we initialized the
queue with “enough” elements such that consume would never block. Then, we
did the measurements in the same way as for produce operations.

For ZooKeeper, the same procedure would lead to very bad results,® due
to the fact that consume is very expensive if the number of the items in the
queue is large. Therefore, we did the measurements differently. We considered
four clients, two producers and two consumers, and a queue initially empty. All
four clients were running on a different JVM and were started at the same time:
each client sends a request, waits for the response, and then sends the next
request immediately. We ran the same experiment also for GESMAS to show
the relevance of the experiment. The results are shown in Figure 5. The figure
shows, for both ZooKeeper and GESMAS, the number of operations per second,
as a function of the total number of operations executed by each client, from 500

8 About 40 operations per second when queue was filled with 10000 items and four
clients.

to 5000.° Results for ZooKeeper in Figure 5 show the maximum of 442 at 1000
operations (combined produce and consume) per client. With four clients, this
means 2000 (= 4-500) produce and 2000 consume. Processing these 4000 requests
took 4000/442 = 9 seconds. From Table 1, 2000 produce take 1.6 seconds. This
leads to 7.4 seconds (9secs—1.6secs) for 2000 consume, which means 270 consume
operations per second, to be compared with the 1265 consume per second for
GESMAS (see table 1).

We can perform a similar derivation for the consume operation with GES-
MAS, and compare the results with Table 1. Figure 5 shows a maximum of
1141 operations per second for GESMAS at 4000 operations per client. Having
four clients (8000 produce and 8000 consume), that means that processing 16000
requests took 16000/1141=14 seconds. From Table 1, 8000 produce takes 7.7 sec-
onds. This means in 6.3 seconds for 8000 consume, or 1269 consume operations
per second. Table 1 reports 1265 consume operations per second.

1200

1000 W
//
o B00
ol
" \\’*\‘\,\hﬂ N (clients)|ZooKeeper| GESMAS
a 50 498 212
’ L 100 1096 432
[Zokeeper = cesas | 200 4144 810

Fig.5: Throughput of combined pro- Table 2: Time (ms) until
duce/consume operations. N clients are unblocked.

Summary: The results for the consume operation point out the cost of the
ZooKeeper approach. Even with a benchmark designed to penalize ZooKeeper as
little as possible, the throughput is about five times smaller than with GESMAS.

The result for the produce operation show better performances for ZooKeeper
than for GESMAS, which can be explained by the need to access an additional
file. However, the small GESMAS overhead of produce operations is largely com-
pensated by the ZooKeeper overhead of consume operations, and by the gener-
ality provided by GESMAS.

5.3 Herd effect experiment

The ZooKeeper queue implementation can cause another problem known as
thundering herd effect.'® The herd effect occurs when many processes or clients

9 For example, in the first measurement, producers execute each 500 produce and con-
sumers execute each 500 consume. The number of operations per second is obtained
by dividing the 4-500 operations by the time it took the server to execute them.

10 1n [9] a recipe for a lock without herd effect has been proposed, which makes use
of watch and other ZooKeeper API. Thus, one could argue that the problem is

are waiting (i.e. blocked) for an event, e.g., a resource to become available.
When that event occurs, all processes are awaken but only one can proceed
since processes compete for the same resource. Herd effect normally leads to
huge overheads and is a serious source of inefficiency. To study this effect in
ZooKeeper we did the following experiment.

First we created an empty queue. Then we started N clients in one JVM.
Each client runs in a separate thread and has its own connection to the server.
When started, each client invokes one consume operation followed by one produce
operation. Hence at startup all NV clients are blocked waiting for an item. Next,
we produced one item, which causes one of the blocked clients to unblock. The
unblocked client produces one item, which unblocks another client, and so on.
We measured the time between the first produce operation until all N clients are
unblocked. We did the same measurement with GESMAS. The results appear
in Table 2.

We can observe that GESMAS performs clearly better than ZooKeeper.
Moreover, the performance gap increases when increasing the number of clients.
With GESMAS the time increases linearly with the number of clients, an ex-
pected result, considering that in GESMAS whenever an item is produced only
one consumer is unblocked. As described in Section 4, this is achieved using
semaphores. The time increase is not linear in the case of ZooKeeper. For exam-
ple, increasing the number of client by a factor of 2 (from 100 to 200) leads to
an increase of measured time by a factor of about 4 (from 1096 ms to 4144 ms).

5.4 Barrier object experiment

The second object we used for performance evaluation of synchronization mech-
anisms is a barrier. A barrier b is a synchronization object that enables a group
of processes to block at b until all processes have reached barrier b. The barrier
blocking operation is called here wait.

a) ZooKeeper barrier implementation: A barrier in ZooKeeper can be repre-
sented by a znode b. When invoking the wait operation, process p creates a
child znode!'! under b. Processes can pass the barrier when the number of child
znodes of b equals the barrier threshold. Otherwise they block using watches,
until enough processes reach the barrier. Creation of each znode child under b
triggers the watches, whereupon every process checks if the number of children
has reached the barrier threshold. If yes, processes can pass the barrier, i.e., con-
tinue execution; otherwise processes set the watch again and wait for the next
trigger.

solved. However, the proposed solution introduces a performance penalty, and not
only because of the linear search it involves.

11 The znode created is an ephemeral znode, which means that it is not stored on
persistent memory.

b) GESMAS barrier implementation: In GESMAS, a barrier with name b, simi-
larly to ZooKeeper, is represented by a file directory b. However, unlike ZooKeeper,
there is only one file under b. This file contains a counter representing the number
of client processes that have reached the barrier.!? Synchronization is achieved
using a semaphore, say bSem, with initial value 0.

When a client invokes the wait operation the counter is incremented. If the
new value is smaller than the threshold the client blocks by invoking P(bSem).'3
Otherwise the threshold has been reached, and V(bSem) is invoked threshold—1
times, so that all blocked clients are unblocked and can pass the barrier.

¢) Performance results: We performed the following 12 experiments. Each ex-
periment is defined by a pair (¢, b), where ¢ represents the number of clients and
b the number of consecutive barriers that each client has to pass, each barrier
with threshold c¢. We did experiments with ¢ equal 50, 100 and 200, and with
b equal 200, 400, 800 and 1600. For each client, all wait invocations are done
using the same connection to the server. The total accumulated time is reported
in Table 3.

ZooKeeper GESMAS

) barrier threshold| /150 | 900 || 50 100 200
no. barriers
200 12.6/412| 138 [|3.2[6.1]12.0
400 247 78.1266.2([6.3 [12.4] 25.6
800 12.2[140.6|497 1[[12.7|24.5| 53.6
1600 89.9]267.2951.3([26.4[49.3[103.9

Table 3: Total accumulative time to pass all barriers (seconds)

As we can observe, GESMAS is significantly more efficient than ZooKeeper,
and as the threshold gets larger the gap between ZooKeeper and GESMAS
increases. This is not surprising, considering that with ZooKeeper at each wait
invocation, all clients are awaken to check if the threshold has been reached.
Almost always this condition is false, which leads to a high overhead (see also
herd-effect experiment in Section 5.3). In GESMAS, synchronization is cheap:
clients are awaken only when the threshold has been reached. Therefore, as
expected GESMAS always performs better than ZooKeeper (by a factor of 4, 7
and 10 at thresholds of 50, 100 and 200 respectively).

6 Conclusive discussion

In the paper we have addressed an important source of inefficiency in the ZooKeeper
coordination service with a radically different approach, which led us to develop
GESMAS. We have concentrated on synchronization. Since in GESMAS client’s

12°As in GESMAS every operation is implemented by a class, the counter could be a
class variable instead of a file.

13 There is here no race issue to worry about, because of the coroutine schema for the
execution of operations (see also Footnote 6).

request contains the object implementation (the byte code), any kind of (syn-
chronization) object can be implemented. However, having clients send byte
code to be executed on the server(s), raises a security issue. This problem is
not difficult to address, as we now briefly sketch. A simple restrictive solution
would be to only allow sending the code by well identified, trusted, expert, code
developers. Another option can be signing the code. Note that the solution is
not costly, considering the optimization mentioned at the end of Section 4.1,
where by default the code is not sent (with the assumption that it has already
been sent earlier). Another related issue is protection of resources accessed by
the Java servers which can be controlled by sandboxing. One recent interesting
sandboxing technique is presented in [13].

References

1. http://hadoop.apache.org/zookeeper/.

2. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Trans. Program. Lang. Syst. 6 (April 1984) 254-280

3. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Comput. Surv. 22(4) (December 1990) 299-319

4. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. Com-
puter 30 (April 1997) 68-74

5. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding
replication in databases and distributed systems. In: In Proceedings of 20th In-
ternational Conference on Distributed Computing Systems (ICDCS2000. (2000)
264-274

6. MacCormick, J., et al.: Boxwood: abstractions as the foundation for storage infras-
tructure. In: Proceedings of the 6th conference on Symposium on Operating Sys-
tems Design & Implementation - Volume 6. OSDI’04, Berkeley, CA, USA, USENIX
Association (2004) 8-8

7. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th symposium on Operating systems design and implementa-
tion. OSDI ’06, Berkeley, CA, USA, USENIX Association (2006) 335-350

8. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16 (May
1998) 133-169

9. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordina-
tion for internet-scale systems. In: Proceedings of the 2010 USENIX conference
on USENIX annual technical conference. USENIXATC’10, Berkeley, CA, USA,
USENIX Association (2010) 11-11

10. Reed, B., Junqueira, F.: A simple totally ordered broadcast protocol. In: Proceed-
ings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware.
LADIS ’08, New York, NY, USA, ACM (2008) 2:1-2:6

11. http://commons.apache.org/sandbox/javaflow/.

12. Santos, N., Konczak, J., Zurkowski, T., Wojciechowski, P., Schiper, A.: Jpaxos:
State machine replication based on the paxos protocol. Technical Report 167765,
EPFL (July 2011)

13. Watson, R., et al.: A taste of capsicum: practical capabilities for unix. Commun.
ACM 55(3) (2012) 97-104

