
Unifying Theories of Programming

Andrew Butterfield

Trinity College Dublin

Hamilton Institute, Maynooth, 20th December 2023

Trinity College Dublin, The University of Dublin

What are Formal Methods?

Using mathematics to reason
about computing artefacts

Proving programs correct
rather than just testing

Reasoning about relationships
between different development levels

Requirements
|

Specifications
|

High Level Design
|

Low Level Design
|

Code

Trinity College Dublin, The University of Dublin

Why doesn’t everyone use them?

Too hard!

Unrealistic!Proof reviewing
way harder than
code review!

Testing is good enough!
“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
(Edsger W. Dijkstra)

Trinity College Dublin, The University of Dublin

Even a key player got pessimistic…

“Ten years ago, researchers into formal methods (and I was
the most mistaken among them) predicted that the
programming world would embrace with gratitude every
assistance promised by formalisation to solve the problems
of reliability that arise when programs get large and more
safety-critical. Programs have now got very large and very
critical – well beyond the scale which can be comfortably
tackled by formal methods. There have been many
problems and failures, but these have nearly always been
attributable to inadequate analysis of requirements or
inadequate management control. It has turned out that the
world just does not suffer significantly from the kind of
problem that our research was originally intended to solve.”
(Tony Hoare 1995)

Trinity College Dublin, The University of Dublin

Does anyone in industry use Formal Methods?

https://fbinfer.com/

https://www.fmeurope.org/

https://aws.amazon.com/

https://www.microsoft.com/
https://fme-industry.github.io/

https://www.adacore.com/

Trinity College Dublin, The University of Dublin

What to we do with formal methods?

Specification

Implementation

Abstract Input Abstract Output

Concrete Input Concrete Output

“refinement” or “reification”

Trinity College Dublin, The University of Dublin

Formal Pieces

A “Formal Notation” is a language with a mathematical meaning

We need Formal Notations for:

• Abstract and Concrete Inputs and Outputs

• Descriptions of Specifications and Implementations

• Descriptions of the Refinement relationship

Trinity College Dublin, The University of Dublin

Formal Semantics
Giving mathematical meaning to modelling, specification, and program languages

Three key approaches:

OperationalDenotational

Algebraic

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

P. Landin, 1966
Communications of the ACM, Volume 9, Issue 3, pp 157–166, 1966

Trinity College Dublin, The University of Dublin

700 Formal Methods?

FM varieties:

• Nth-Order Logic, for 𝑵 ∈ {𝟏, 𝟐, … ,∞}

• Functions defined over tailored partial orders

• Monotonicity, continuity, fixpoint theory

• High-level approaches:

• Operational

• Algebraic/Axiomatic

• Denotational

• Certainly scope for many…

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Predicates

Trinity College Dublin, The University of Dublin

Programs as Predicates (syntax)

The While language – a simple language to explain ideas:

Trinity College Dublin, The University of Dublin

Programs as Predicates (semantics)

Here stands for the program before-state (values of all variables),
and stands for the program after-state

Note: the above semantics is Denotational

Trinity College Dublin, The University of Dublin

Programs as Predicates (laws)

Trinity College Dublin, The University of Dublin

What’s this got to do with Unification?

• We’ve just got started!
• Missing is stuff like:

• declaring global and local variables
• functions and procedures
• … but this could be for this language

• Different languages:
• Add in Object Orientation
• Functional Languages
• Logic Programming
• …

The really interesting challenge for unification is concurrency

Trinity College Dublin, The University of Dublin

Concurrency is HARD! Why?

Consider this simple program (incx):

incx = temp := x ; temp := temp+1; x := temp

We expect its behaviour to satisfy the property: x’ = x+1

Now, let’s add a parallelism construct to our language: P || Q

 What property should incx || incx satisfy?

 x’ = x+2 ?

Trinity College Dublin, The University of Dublin

It all depends on our model of concurrency

One approach is that each instance of incx has its own state (here x and temp).

 x1’ = x1+1 x2’ = x2+1

This then requires some way of communicating between parallel “threads”
if we want to have interactions.

Another approach: x is global and shared, temp is local to each instance.
Now, how do we schedule the running of the instances?

incx1 : temp1 := x; temp1=temp1+1; x := temp1

incx2 : temp2 := x; temp2 := temp2+1; x := temp2

Here we observe x’ = x + 1 !!
(this is pthreads behaviour!)

Trinity College Dublin, The University of Dublin

Specifying concurrency

Sharing global variables is dangerous – requires careful techniques to get right

Many specification languages keep state local, and communicate via visible events

Many of these use operational semantics

Denotational semantics will typically map such languages to sets of event-sequences

Trinity College Dublin, The University of Dublin

Communicating Sequential Processes (CSP)

Devised by Tony Hoare and colleagues

Idea: processes perform events and synchronise on some:

𝑠𝑘𝑖𝑝 : Terminate
𝑒	 → 	𝑃 : Perform event e and behave like P
𝑃;𝑄 : Run P first, then Q
𝑃|𝑒|𝑄 : Run in parallel synchronising on event e

What do these look like as predicates?

𝑠𝑘𝑖𝑝	 = 𝑜𝑘	 ⇒ 𝑜𝑘! ∧ 𝑡𝑟! = 𝑡𝑟
𝑒	 → 𝑠𝑘𝑖𝑝 = 	𝑜𝑘	 ⇒ 𝑜𝑘! ∧ 𝑡𝑟! = 𝑡𝑟 + 𝑒
𝑒	 → 𝑃	 = 	𝑒	 → 𝑠𝑘𝑖𝑝; 𝑃	

Started: ok
Finished: ok’
Initial event-seq: tr
Final event-seq: tr’

Here state 𝑆	 = 	 {𝑜𝑘, 𝑡𝑟} so skip and P;Q are defined as for the sequential code

Trinity College Dublin, The University of Dublin

UTP Alphabets

UTP is based on the idea of alphabets:
 – set of observation variables, both before- and after-values.

For the While language the alphabet is all the variables in scope
 {x,temp,x’,temp’,….}

For CSP the alphabet is {ok,ok’,tr,tr’,…}

Trinity College Dublin, The University of Dublin

UTP Healthiness Conditions

The idea behind “healthiness conditions” is to rule out ”unhealthy” predicates.

Unhealthy predicates make statements that are either impossible, or undesirable.

Impossible predicate in CSP: 𝑡𝑟 = 𝑡𝑟! + 𝑒 	 -- can’t erase history
Relevant healthiness condition: H1 : 𝑡𝑟 ≤ 𝑡𝑟′ (prefix-of)

Often we can enforce/specify healthiness using a Predicate Transformer:

𝑯𝟏 𝑃 = 𝑃	 ∧ 𝑡𝑟 ≤ 𝑡𝑟′

(now we are no longer doing 1st-order logic!)

Trinity College Dublin, The University of Dublin

Unification Example: Circus
Oliveira, M., Cavalcanti, A. & Woodcock, J. A UTP semantics for Circus . Form Asp Comp21, 3–32 (2009).

Circus is a unification of two formal specification languages:
 CSP – already discussed
 Z – a specification language for While-like programs

The alphabet: {ok,tr,ref,wait,state,ok’,tr’,ref’,wait’,state’}
where state records variable values.

It fused the observations from the two theories,
and identified a common notion of healthiness
called a Design:

𝒐𝒌	 ∧ 𝑷 ⇒ 𝒐𝒌! ∧ 𝑸

If the program starts and P is true initially,
then the program terminates as Q is true on termination.

Trinity College Dublin, The University of Dublin

Not the whole unification story

OperationalDenotational

Algebraic

UTP looks at unifying the three main semantic techniques

UTP also links theories with different alphabets

Refinement! A Galois Connection !

Trinity College Dublin, The University of Dublin

My contributions to UTP (1) “Slotted-Circus”

A timed variant of Circus was developed with events organised into time-slots.

Adnan Sherif and Jifeng He. Towards a time model for circus. ICFEM 2002, LNCS 2495,pp 613–624, 2002.

I developed a version where the
time-slot itself had a richer
structure, to give a semantics for
Handel-C, a C-like language that
compiled to FPGA hardware.

Butterfield, A., Sherif, A., Woodcock, J. (2007).
Slotted-Circus. IFM 2007. LNCS 4591.

Trinity College Dublin, The University of Dublin

My contributions to UTP (2) “Slotted-Circus++”

Bresciani, R., Butterfield, A. (2012). A UTP Semantics of pGCL as a Homogeneous Relation. IFM 2012. LNCS 7321.

Gancarski, P., Butterfield, A. (2010). Prioritized slotted-Circus . ICTAC 2010. ICTAC 2010. LNCS 6255.

Adding priority to slotted-Circus

Encoding Morgan and McIVer’s pGCL into UTP

Trinity College Dublin, The University of Dublin

My contributions to UTP (3)
Unifying Theory of Concurrent Programs (UTCP)

Butterfield, A. (2017). UTCP: Compositional Semantics for Shared-Variable Concurrency. SBMF 2017. LNCS 10623.

Trinity College Dublin, The University of Dublin

Why is Logic so hard?

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Axioms for Propositional Logic

Trinity College Dublin, The University of Dublin

Proof Towers/Trees for Propositions

Trinity College Dublin, The University of Dublin

A more linear approach - “Natural” Deduction

Trinity College Dublin, The University of Dublin

What is the issue?

Difference between logic as:
1. An object of study in its own right
2. Something for which tool-support is required
3. A tool to use to reason about stuff

The approach on previous slides is suitable for 1 & 2 above

It’s not great for 3.

Trinity College Dublin, The University of Dublin

David Gries, Fred B. Schneider:
A Logical Approach to Discrete Math. Texts and Monographs in Computer Science, Springer 1993, ISBN 0-387-94115-0

https://dblp.uni-trier.de/pid/g/DavidGries.html
https://dblp.uni-trier.de/pid/s/FredBSchneider.html
https://dblp.uni-trier.de/db/series/mcs/index.html

Trinity College Dublin, The University of Dublin

Linearising proof trees

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Why Equational Reasoning is so good

It’s very similar in style to so-called regular mathematics proofs

Each step in the proof only depends on the law being applied,
and the two expressions involved in that step – simple, and local

Developed in 70s and 80s by Formal Method researchers

Trinity College Dublin, The University of Dublin

So good I wrote a
theorem-prover!

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Trinity College Dublin, The University of Dublin

Why Formal Methods is making a comeback (1)

Tool Support – “Industrial-Strength”

https://isabelle.in.tum.de/

https://coq.inria.fr/

https://pvs.csl.sri.com/

https://www.adacore.com/

Trinity College Dublin, The University of Dublin

Why Formal Methods is making a comeback (2)

Multi-core !

Trinity College Dublin, The University of Dublin

A change in direction: ESA

2010: Lero enters talks with European Space Agency on research collaboration

2011: we start a project looking at
• Autonomous systems (Mike Hinchey, Emil Vassev)
• Software product lines (Goetz Botterveck)
• Formal modelling and verification of hypervisors

 (myself, David Sanan)

I do another project as a consultant
 – involving the big players: Thales, Airbus and CNES

Trinity College Dublin, The University of Dublin

RTEMS pre-Qualification

• RTEMS = Real-Time Executive for Multiprocessor Systems
(www.rtems.org).

• Open-source, freely available, BSD-2 license

RTEMS was qualified for spaceflight in 2006-2008, for a single-core processor

Trinity College Dublin, The University of Dublin

ESA clients want to use multi-core

A recent ESA-sponsored activity (2018-2021):
• Qualified RTEMS on multicore for spaceflight
• All resources produced fed back to RTEMS open-source
• (https://git.rtems.org/rtems-central/.)
• All such resources fit with RTEMS community guidelines

My role (with Frédéric Tuong) was to investigate the role Formal
Methods could play in spaceflight software qualification

Trinity College Dublin, The University of Dublin

Chosen Formal Verification approach: Promela/SPIN

Programmatic modelling language

Builds a non-deterministic finite-state machine (a.k.a. model)

Properties are checked by exhaustive search

A failed check produces the path through the model that leads to failure:

A “counter-example”

Trinity College Dublin, The University of Dublin

Test Generation ???

Lie to the model-checker !

Trinity College Dublin, The University of Dublin

Modelling an API Call

Model bad calls !

Model correct behaviour too!

What the @@@ ? (later!)

Trinity College Dublin, The University of Dublin

Counter-Examples

SPIN counterexamples look like this !

Dump of final variable values,
And references to code line-numbers

Hard to parse!

Even harder to process !!

Trinity College Dublin, The University of Dublin

Observations
Promela has a printf() function.
It is ignored for verification, but not for counter-example display

We have defined an “observation language” using it.
This abstracts the key features we want to observe.

Trinity College Dublin, The University of Dublin

Refinement

A YAML file defines a mapping
from the observation language
to C code
in which arguments get substituted

Simple binary semaphores

C test code for a call to rtems_barrier_create:

Trinity College Dublin, The University of Dublin

TITLE

Trinity College Dublin, The University of Dublin

Model-based Test Generation is a big hit!

Developers don’t need to understand the model

They really understand the concrete test code.

Trinity College Dublin, The University of Dublin

Future Plans

• More Semaphore Manager
• Gateway to scheduler thread queues

• Refactoring
• Beyond Synchronisation

• E.g., Tasks? Objects?
• Beyond Classic API

• POSIX?
• Beyond RTEMS?

• This technology is not tied to RTEMS, or C !

Trinity College Dublin, The University of Dublin

Thank you! Any (further) Qs?

