@ﬁ | Trinity ¢ l-
2 THE IRISH SOFTWARE
J&r | College el RESEARCH CENTRE
42 / Dublin

The University of Dublin

Unifying Theories of Programming

Andrew Butterfield

Trinity College Dublin

Hamilton Institute, Maynooth, 2°th December 2023

What are Formal Methods?

Using mathematics to reason
about computing artefacts

Requirements

Specifications
Proving programs correct |

rather than just testing Hich L | Desi
igh Level Design

Low Level Design

Reasoning about relationships |
between different development levels Code

Trinity College Dublin, The University of Dublin

Why doesn’t everyone use them?

Too hard!

o S,
Proof reviewing Unrealistic!

way harder than

code review! o
Testing is good enough!

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
(Edsger W. Dijkstra)

H | SN
Ba) * e
Trinity College Dublin, The University of Dublin

Even a key player got pessimistic...

“Ten years ago, researchers into formal methods (and | was
the most mistaken among them) predicted that the
programming world would embrace with gratitude every
assistance promised by formalisation to solve the problems
of reliability that arise when programs get large and more
safety-critical. Programs have now got very large and very
critical — well beyond the scale which can be comfortably
tackled by formal methods. There have been many
problems and failures, but these have nearly always been
attributable to inadequate analysis of requirements or
inadequate management control. It has turned out that the
world just does not suffer significantly from the kind of
problem that our research was originally intended to solve.”
(Tony Hoare 1995)

Trinity College Dublin, The University of Dublin

Does anyone in industry use Formal Methods?

dWS

adWs

https://fbinfer.com/

. . The GNAT Pro Company
. https://www.ada .com/

https://www.microsoft. https://www.fmeurope.org/
https://fme-industry.github.io/

Trinity College Dublin, The University of Dublin

What to we do with formal methods?

Specification

Abstract Input — Abstract Output

“refinement” or “reification”

Concrete Input — Concrete Output

Implementation

Trinity College Dublin, The University of Dublin

Formal Pieces

A “Formal Notation” is a language with a mathematical meaning

We need Formal Notations for:
* Abstract and Concrete Inputs and Outputs
* Descriptions of Specifications and Implementations

* Descriptions of the Refinement relationship

Trinity College Dublin, The University of Dublin

Formal Semantics

Giving mathematical meaning to modelling, specification, and program languages

Three key approaches:

Algebraic

Denotational Operational

Trinity College Dublin, The University of Dublin

Operational Semantics

» Defined as some kind of State Machine (S)
The state typically includes variable values
and current line of code being executed

» Programming language elements define State Transitions.
These are usually defined using Inference Rules
similar to those used in Logic.

» If s1,55,55: S are states, then the semantics for P;Q might be

written:
(51,P) =52 (s2,Q) = 3

(s1,P;Q) — s3

“If P changes s; to sp and Q changes s, to si, then P;Q
changes s; to s3".

Trinity College Dublin, The University of Dublin

Denotational Semantics
» Defined as a function M from program text Prog to a
- mathematical object Damain:

M : Prog — Domain

» A Domain is a (often complex) mathematical structure

» A key principle is compositionality:
The meaning of a composite (e.g. P ; Q) is defined in terms
of the meanings of its sub-components:

M(P;Q) = seq(M(P), M(Q))

Here seq is the semantics of sequential composition.

» This ensures that the semantics will scale to large programs.

Trinity College Dublin, The University of Dublin

Algebraic Semantics

» Defined as rules defining equalities between program texts
(Often referred to as Laws of Programming)

> E.g.:
X =ki;y =k = y =k;x:=k
X:=e X: =€ = X =6 x ¢ e
x:=e;x:=e = x:=ele/X]

Trinity College Dublin, The University of Dublin

Advantages

Denotational
Best way to ensure a sound correct theory.

Used to justify Algebraic semantics.

Operational
Easiest to understand — close to real machine level.

Easiest for implementing and verifying compilers.
Easiest for implementing Model Checkers.
The most commonly used form of formal semantics.

Algebraic
Allows equational reasoning to be used to prove

program correctness in a compositional way.

Trinity College Dublin, The University of Dublin

Disadvantages

Denotational

Can be very complex, to the extent that it has not
been done for some languages.

Operational
Hard to use to prove correctness - not compositional!
Hard to “debug’ the rules to avoid inconsistencies.

Algebraic
Hard to know when we have enough laws.
Hard to know we have no internal contradictions.

Trinity College Dublin, The University of Dublin

P. Landin, 1966

Communications of the ACM, Volume 9, Issue 3, pp 157-166, 1966

The Next 700 Programming Languages

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

“. . .today ... 1,700 special programming languages used to ‘com-
municate’ in over 700 application areas.”’—Compuler Software Issues,
an American Mathematical Association Prospectus, July 1965.

specifying functional relations. In fact these two areas are
closely related since any use of a user-coined name im-
plicitly involves a functional relation; e.g., compare

z(x+a) f(b+2c)

where z = b + 2 where f(z) = z(x+a)
IswiMm is thus part programming language and part pro-
gram for research. A possible first step in the research
program is 1700 doctoral theses called “A Correspondence
between 2 and Church’s A-notation.””?

Trinity College Dublin, The University of Dublin

700 Formal Methods?

FM varieties:

* Nth-Order Logic, for N € {1, 2, ..., o}

* Functions defined over tailored partial orders
* Monotonicity, continuity, fixpoint theory

* High-level approaches:
* QOperational
* Algebraic/Axiomatic

e Denotational

e Certainly scope for many...

Trinity College Dublin, The University of Dublin

Unifying Theories of Programming (UTP)

» Who: Tony Hoare and He Jifeng

» |dea: build a general semantics framework that can capture all
of the above.

» Formalism: Programs are Predicates

» The Book:
“Unifying Theories of Programming”,
C.A.R. Hoare, He Jifeng,
Prentice Hall series in Computer Science, 1998.

» Available online (free):
http://unifyingtheories.org/

Trinity College Dublin, The University of Dublin

Predicates

P € Pred ::= true always true
false always false
A Atomic predicates
P Predicate variables
- P Logical negation

P, A\ P, Conjunction (logic-and)
P,V P Disjunction (logic-or)
P, — P, Implication

P =P Equivalence

Vre P Universal quantification (for-all)
dr e P Existential quantification (there-exists)
| P] Universal Closure

P[E/x] Free-variable Substitution

Trinity College Dublin, The University of Dublin

Programs as Predicates (syntax)

The While language — a simple language to explain ideas:

P,Q¢€ Pred ::= ...
I1 skip
Vi=e vV i= e
P<dcr> Q if c then P else Q
P; Q P ; Q
c® P while ¢ do P

Trinity College Dublin, The University of Dublin

Programs as Predicates (semantics)

II = S =85 SKIP-DEF
vi=e = VvV =eAnS\V =5\v :=-DEF
Pdldc>Q = cAPV-cAQ < _[> -DEF
P,Q = 3S,eP[S,/S1ANQ[Sn/S] ;-DEF
c®P = (P,c®P)dcp Il ® -DEF

Here S stands for the program before-state (values of all variables),
and S’ stands for the program after-state

Note: the above semantics is Denotational

Trinity College Dublin, The University of Dublin

Programs as Predicates (laws)

11

VY=

P07

P; (Q; R)

s RN o A
F = Gl
=k P

P <true> Q
P < false > @)
(P det-0); R
c® P

Trinity College Dublin, The University of Dublin

gi=ig. FEA SKIP-ALT
P :-L-UNIT
& :-R-UNIT
S i A4 HD 2 :-ASSOC

r = fle/x] :=-SEQ

y:= fle/z];z:=e :=-SWAP
Plk/z| :=-INIT

P <>-TRUE
Q <I>-FALSE

P;R) <c> (Q; R) <>-;-DISTR
P;c® P)<c> Il ®-UNROLL

Q

What's this got to do with Unification?

 We've just got started!
* Missing is stuff like:
» declaring global and local variables
e functions and procedures
e ... but this could be for this language
* Different languages:
 Addin Object Orientation
* Functional Languages
* Logic Programming

The really interesting challenge for unification is concurrency

Trinity College Dublin, The University of Dublin

Concurrency is HARD! Why?

Consider this simple program (incx):
incx = temp := x ; temp := temp+l; x := temp

We expect its behaviour to satisfy the property: x’ =x+1

Now, let’s add a parallelism construct to our language: P || O
What property should incx || incx satisfy?
X' =x+2 ?

Trinity College Dublin, The University of Dublin

It all depends on our model of concurrency

One approach is that each instance of incx has its own state (here x and temp).

Xl’ = X1+1 Xz’ = X2+1

This then requires some way of communicating between parallel “threads”
if we want to have interactions.

Another approach: x is global and shared, temp is local to each instance.
Now, how do we schedule the running of the instances?

incxy : tempq :=x; temp=temp;+1; x:=temp,

incx, : temp, := x; temp, := temp,+1; X :=temp,

Here we observe x =x+1 Il
(this is pthreads behaviour!)

Trinity College Dublin, The University of Dublin

Specifying concurrency

Sharing global variables is dangerous — requires careful techniques to get right

Many specification languages keep state local, and communicate via visible events

Many of these use operational semantics

Denotational semantics will typically map such languages to sets of event-sequences

Trinity College Dublin, The University of Dublin

Communicating Sequential Processes (CSP)

Devised by Tony Hoare and colleagues

Idea: processes perform events and synchronise on some:

skip : Terminate

e > P : Perform event e and behave like P

p. . f' o Started: ok
; 0 : Run P first, then Q Finished: ok’

Ple|@ : Runin parallel synchronising on event e Initial event-seq: tr

_ _ Final event-seq: tr’
What do these look like as predicates?

skip =0k = ok' ANtr' =tr
e - skip = ok = ok’ Atr' =tr + [e]
e o P = e — skip; P

Here state S = {ok, tr} so skip and P;Q are defined as for the sequential code

Trinity College Dublin, The University of Dublin

UTP Alphabets

UTP is based on the idea of alphabets:
— set of observation variables, both before- and after-values.

For the While language the alphabet is all the variables in scope
{x,temp,x’,temp’,....}

For CSP the alphabet is {ok,ok’tr,tr’,...}

Trinity College Dublin, The University of Dublin

UTP Healthiness Conditions

The idea behind “healthiness conditions” is to rule out “unhealthy” predicates.
Unhealthy predicates make statements that are either impossible, or undesirable.

Impossible predicate in CSP: tr = tr' + |e] -- can’t erase history
Relevant healthiness condition: H1: tr < tr' (prefix-of)

Often we can enforce/specify healthiness using a Predicate Transformer:
H1(P) =P Atr < tr

(now we are no longer doing 15t-order logic!)

Trinity College Dublin, The University of Dublin

Unification Example: Circus

Oliveira, M., Cavalcanti, A. & Woodcock, J. AUTP semantics for Circus . Form Asp Comp 21,3-32(2009).

Circus is a unification of two formal specification languages:
CSP — already discussed
Z — a specification language for While-like programs

The alphabet: {ok,tr,ref,wait,state,ok’,tr’,ref’, wait’,state’}
where state records variable values.

It fused the observations from the two theories,
and identified a common notion of healthiness

called a Design:
ok AP = ok' AQ

If the program starts and P is true initially,
then the program terminates as Q is true on termination.

Trinity College Dublin, The University of Dublin

Not the whole unification story

UTP looks at unifying the three main semantic techniques

Algebraic

/\

Denotational ——— Operational

UTP also links theories with different alphabets

[((3ce D(c) A L(c,a)) = S(a)] iff [D(c) = (VaeL(c,a) = S(a))]

i |
Refinement! A Galois Connection |

Trinity College Dublin, The University of Dublin

My contributions to UTP (1) “Slotted-Circus”

A timed variant of Circus was developed with events organised into time-slots.

Adnan Sherif and Jifeng He. Towards a time model for circus. ICFEM 2002, LNCS 2495,pp 613—-624, 2002.

| developed a version where the
time-slot itself had a richer
structure, to give a semantics for
Handel-C, a C-like language that
compiled to FPGA hardware.

Butterfield, A., Sherif, A., Woodcock, J. (2007).
Slotted-Circus. IFM 2007. LNCS 4591.

Trinity College Dublin, The University of Dublin

Allsal{esl|spl B

= Jdobsa, 0bsp ®

Alobsa/obs'] A Blobsg/obs'] A

/ sa < statea # sa < state V
if | sp < statep # sp < state V
saNsg #0
then — ok’ A slots < slots’
ok’ = oka N okp A
wait’ = (waita V 1.waitp) A
state’ = (sp < statea) ® (sa < statep) A
\ ValidMerge(cs)(slots, slots’, slotsa, slotsp)

else

/

My contributions to UTP (2) “Slotted-Circus++”

Adding priority to slotted-Circus

Gancarski, P., Butterfield, A. (2010). Prioritized slotted-Circus . ICTAC 2010. ICTAC 2010. LNCS 6255.

LOH=HOL
HOL=H A LA Stop vV Choice(H, L) vV WeakChoice(L, H)
WeakChoice(L, H) = CSP2(L A
(H A NOEVTS A wait') ;

(EIE . (FSTEVTS(E) >>)
PRI NE #0NE C sref(tail(slots))

V slots = slots’ A (—wait’ V —ok’)

Bresciani, R., Butterfield, A. (2012). A UTP Semantics of pGCL as a Homogeneous Relation. IFM 2012. LNCS 7321.

abort = true
skip = 0’ =0
z:=¢ = & =5{¢al}
A;B = 36m @ A(6,0m) A B(6m,0")
AdeD>B = 35,4,53oA(é{c},5A)/\B(5{ﬂc},5B)/\5’:6A+5B
A @B = 3(5A,5B0A(p-5,5A)AB((1—p)-5,5B)/\5,=(5A+5B

Trinity College Dublin, The University of Dublin

My contributions to UTP (3)

Unifying Theory of Concurrent Programs (UTCP)

P;;Q = W(Plg.1,4,/g,0ut] V Qlg:2,€4/g,in]) «sem:seq)
P||Q=W(A(in|ii]|lg,L42)V (-sem:par-)
Plg1::,€g1,4g1:/g, in, out] V
Q[QQ) 927692 /977'” O’U,t]
A(lgr:, Ly2: | it | out))
P+Q =W(Plgi/g]V Qlg2/g]) (:sem:NDC
P*=W(A(in || ly)V (-sem:star-
Ally | ii | £y.) V
ALy | i1 | out)
P

[g..;gg.aeg/gazn7 Out])

Butterfield, A. (2017). UTCP: Compositional Semantics for Shared-Variable Concurrency. SBMF 2017. LNCS 10623

Trinity College Dublin, The University of Dublin

Why is Logic so hard?

Inference Rules

» Inference rules take zero or more assumptions, and describe
how they support a conclusion.
(i.e from assumptions A, As, ..., A, we can conclude C)

» The standard presentation of these rules places assumptions
above a horizontal line and the conclusion below:
. A1 A2 An . .
inference-name: [side conditions]

C

Side conditions are properties of predicates

» A rule with no assumptions is an axiom—something taken as
(self evidently) true.

reflexivity-of-equals:
X =X

Trinity College Dublin, The University of Dublin

Axioms for Propositional Logic

PAQ
P=Q P= -Q Nk =5
: —
Vi-I: F
A " PVQ
P = R 0
Vo-I:
P ,p PVQ P—R Q=R
P o R
A-1: @
PAQ P P = Q
PAQ — -E: 0
Ar-E
F L (PrO
P = Q

Trinity College Dublin, The University of Dublin

Proof Towers/Trees for Propositions

—) —
BFB crHC

Bverse (VP
(PR)
(1) BVCHC,B
AFA (-I) (1)
(-R) BVC,~C+ B ~AF-A
L —A. A (BV C),~C, (B — —A) - -A (= L)
4, (ALy)
(\/Rz) (BvC),~C,((B— -A)A-C)F -4 1
(PL)
FAV-A A " (BVC),((B— —A) A—C),~CF A .
I ALs
(PR) AF A (BVC),((B— ~A) A~C),((B— ~A) A~C) - —=A
FA AV -A (-R) (CL)
) FoA, A (BVC),((B— ~A) A—C) - —A
(VRy) (PR) (PL)
AV A AV —A - A4,-A ((B— —A) A=C),(BVC) - —A
| —/
’ (CR) (B = —A) A—C), (A — (BV C)) - —4, -A (= L)
(CR)
FAV-A (B— —A)A—C),(A— (BVC)) F—A o
PL
(A= (BVC)),((B— ~4)A=C) - -4
(= R)
(A= (BVO))F (B— —A) A—C) — —A)
(= R)

F({(A— (BVC)) = ((B——4)A-C) — -A))

Trinity College Dublin, The University of Dublin

A more linear approach - “Natural” Deduction

Example of a proof

Number Formula Reason

1 A premise

2 AV A From (1) by disjunction introduction

3 (AV A) A A | From (1) and (2) by conjunction introduction
4 A From (3) by conjunction elimination

5 AFA Summary of (1) through (4)

6 FA— A From (5) by conditional proof

Trinity College Dublin, The University of Dublin

What is the issue?

Difference between logic as:

1. An object of study in its own right

2. Something for which tool-support is required
3. Atool to use to reason about stuff

The approach on previous slides is suitable for 1 & 2 above

It’s not great for 3.

Trinity College Dublin, The University of Dublin

Equational Inference Rules

- - P P=Q
quanimity:
Q
s P=Q Q=R
Transitivity:
P=R
- P
Substitution: [no capture]
P[b <+ Q]
L F=¢G .
Liebniz: [v a variable]

Plv <= F] = P[v <= G]

David Gries, Fred B. Schneider:
A Logical Approach to Discrete Math. Texts and Monographs in Computer Science, Springer 1993, ISBN 0-387-94115-0

Trinity College Dublin, The University of Dublin

https://dblp.uni-trier.de/pid/g/DavidGries.html
https://dblp.uni-trier.de/pid/s/FredBSchneider.html
https://dblp.uni-trier.de/db/series/mcs/index.html

Linearising proof trees

A

= “why A=B"
B

= “why B=C"
C

= “why C=D"
D

= “why D=E”
E

The proof that A = B can also be linearised, and can simply be
inserted into the proof above where “ why A= B ” appears.

Trinity College Dublin, The University of Dublin

true TRUE

P=P =-REFL
(P=Q)=R)=(P=(Q=R)) =-ASs0C
P=Q=Q=PFP =-SYMM
(true=P)=P
= “=-assoc (L2R)”
true = (P = P)
= “ =-REFL (all) ”
true = true
= “ =-REFL (all) ”
true

Trinity College Dublin, The University of Dublin

~(P=Q)=-P=Q —-=-DISTR
false = —true FALSE-DEF

(—P=Q)=(P=-Q)

— “ =-=-DISTR (R2L) ”
-(P=Q)=(P=-Q)

— “=-symm (L2R) ”
-(P=Q)=(-Q=P)

— “ =-=-DISTR (R2L) ”
~(P=Q)=~(Q=P)

— “=-symm (L2R) ”
~(P=Q)=-(P=Q)

= “ =-REFL (all) ”

true

Trinity College Dublin, The University of Dublin

Why Equational Reasoning is so good

It’s very similar in style to so-called regular mathematics proofs

Each step in the proof only depends on the law being applied,
and the two expressions involved in that step — simple, and local

Developed in 70s and 80s by Formal Method researchers

Trinity College Dublin, The University of Dublin

So good | wrote a
theorem-prover!

cond_symm : (PQ)=(Q<~ b>P)
by 'red-R2L'
(0<~ b>P)
= 'match-lhs cond def @[]'
{P—Q, Q—P, b—"Db}
- bAQV—(~ b)AP
= 'match-lhs lnot invol @[2,1]'
{P —b }
= bAQVDAP
= 'match-lhs lor symm @[]'
{ P —7 bAQ, Q —DbAP }
bAPV- bAQ
= 'match-rhs cond def @[]’
{ P —P, Q —Q, b —«BI (Id "b" 0)» }
(PQ)

sgsupseteq lor_distr : (PVQ3R)=(PIR)A(QZR)

by 'red-L2R'

PVQIR

= 'match-lhs sqgsupseteq def @[]’
{ P —PvVQ, Q —R }

[PVQ— R]

= 'match-lhs ante_lor distr @[1]'
{P —P, Q —Q, R—R}

[(P= R)A(Q= R)]

= 'match-rhs land [] distr @[]’
{ P —-P= R, Q —0= R }

[P= R]A[Q= R]

= 'match-rhs sgsupseteq def @[1]'
{P —P, Q =R}

(PIR)A[Q— R]

= 'match-rhs sgsupseteq def @[2]'
{P—Q, Q —R}

(}’QR) A (Q2R)

sgsupseteq trans : (P2Q)A(QZR)= (P=R)
by 'red-All'
(PIQ)A(QIR)=— (PIR)
= 'match-lhs sgsupseteq def @[2]'
{ P —P, Q —R }
(PEQ)A(Q2R)= [P= R]
= 'match-lhs sgsupseteq def @[1,1]'
{P —P, Q —Q}
[P= Q]JA(QZR)= [P= R]
= 'match-lhs sgsupseteq def @[1,2]'
{P—Q, 0 —R}
[P= Q]JA[Q= R]= [P= R]
= 'match-lhs land [] distr @[1]'
{ P —P= Q, Q —0= R }
[(P= Q)A(Q= R)]= [P= R]
= 'match-ante implies trans @[1,1]'
{P —P, 0 —Q, R —R}
[((P= Q)A(Q= R))A(P= R)]= [P= R]
= 'match-rhs land [] distr @[1]'
{P —(P= Q)A(Q= R), Q —P= R}
[(P= Q)A(Q= R)]JA[P= R]= [P= R]
= 'match-lhs implies def @[]’

{ P —=[(P= Q)A(Q= R)]A[P= R], Q —[P= R] }

[(P= Q)A(Q= R)]JA[P= R]V[P= R]=[P= R]
= 'match-rhs lor symm @[1]'

{ P —[P= R], Q —[(P= Q)A(Q= R)IA[P= R] }

[P= R]V[(P= Q)A(Q= R)]JA[P= R]=[P= R]
= 'match-lhs land symm @[1,2]'

{P —[(P= Q)A(Q= R)], Q —[P= R] }
[P= R]V[P= RIA[(P= Q)A(Q= R)]=[P= R]
= 'match-lhs lor land absorb @[1]'

{ P —[P= R], Q —[(P= Q)A(Q= R)] }
[P— R]=[P— R]
= 'match-all equiv_refl @[]’

{ P —-[P= R] }
true

Trinity College Dublin, The University of Dublin

REASONEQ

» REASONEQ is a theorem prover designed to support
equational reasoning, from the ground up.

» Text-based user interface (GUls are possible)

» Written using Haskell.
Can run on Unix, macOS, and Windows (WSL2 is best)

» Open-source
(https://github.com/andrewbutterfield/reasonEq).

» Under development, but already useable.

Trinity College Dublin, The University of Dublin

History

) SAOITHIN Early development version, with wxWindows GUI, ran
on Windows only.

“Saoithin: A Theorem Prover for UTP”, UTP 2010.

U-(TP)? Improved (renamed) version, with GUI, ran on
Windows, Ubuntu.

“The Logic of U - (TP)?", UTP 2012.

“U - (TP)2: Higher-Order Equational Reasoning by Pointing”, UITP 2014.

REASONEQ Completely re-engineered version, abstract Ul
motivated by ongoing difficulties with wxHaskell.

UTPCalc Predicate “calculator” for rapid prototyping of UTP
theories. Requires knowledge of Haskell.

“UTPCalc — A Calculator for UTP Predicates”, UTP2016.

Future? REASONEQ and UTPCalc will merge

Trinity College Dublin, The University of Dublin

Why Formal Methods is making a comeback (1)

Tool Support — “Industrial-Strength”

https://isabelle.in.tum.de/

Ada

The GNAT Pro Company

https://coq.inria.fr/ https://www.ada ©.com/

H VS https://pvs.csl.sri.com/

Trinity College Dublin, The University of Dublin

Why Formal Methods is making a comeback (2)

Multi-core !

Trinity College Dublin, The University of Dublin

A change in direction: ESA

2010: Lero enters talks with European Space Agency on research collaboration

2011: we start a project looking at
* Autonomous systems (Mike Hinchey, Emil Vassev)
» Software product lines (Goetz Botterveck)

* Formal modelling and verification of hypervisors
(myself, David Sanan)

| do another project as a consultant
— involving the big players: Thales, Airbus and CNES

Trinity College Dublin, The University of Dublin

RTEMS pre-Qualification

* RTEMS = Real-Time Executive for Multiprocessor Systems
(www.rtems.org).
* Open-source, freely available, BSD-2 license

RTEMS was qualified for spaceflight in 2006-2008, for a single-core processor

Trinity College Dublin, The University of Dublin

ESA clients want to use multi-core

A recent ESA-sponsored activity (2018-2021):

Qualified RTEMS on multicore for spaceflight

All resources produced fed back to RTEMS open-source
(https://git.rtems.org/rtems-central/.)

All such resources fit with RTEMS community guidelines

My role (with Frédéric Tuong) was to investigate the role Formal
Methods could play in spaceflight software qualification

Trinity College Dublin, The University of Dublin

Chosen Formal Verification approach: Promela/SPIN

Programmatic modelling language

Builds a non-deterministic finite-state machine (a.k.a. model)
Properties are checked by exhaustive search

A failed check produces the path through the model that leads to failure:

A “counter-example”

Trinity College Dublin, The University of Dublin

Test Generation ???

Lie to the model-checker |

Trinity College Dublin, The University of Dublin

Trinity College Dublin
Colaiste na Triondide, Baile Atha Cliath
The University of Dublin

Modelling an API Call

inline barrier_release(self ,bid,nreleased,rc) {

atomicq{
if
H nreleased == -> rc = RC_InvAddr;
Model bad calls ! .: bid >= MAX_BARRIERS || bid <= 0 || !barriers[bid].isInitialised ->
rc = RC_InvId
else ->
nreleased = barriers[bid].waiterCount;

i |
Model correct behaviour too! barrierRelease (self .bid);

printf ("@@@ %d LOG Barrier %d manually released\n", _pid, bid)
rc = RC_OK
fi

Whatthe @@Q@ ? (later!)

Trinity College Dublin
Colaiste na Triondide, Baile Atha Cliath
The University of Dublin

Counter-Examples

spin: barrier-mgr-model.pml:1154, Error: assertion violated
spin: text of failed assertion: assert(9)
Barrier Manager Model finished !
spin: trail ends after 354 steps
#processes: 1
tasks[1].nodeid = 1
tasks[1].state = Zombie

barriers[l1].isAutomatic = @
semaphore[1] = ©
task_in[1].doCreate = 1

task_in[2].doAcquire

=1
task_in[3].doAcquire = 1
task2Sema = 1
tasklCore = 1
task2Core = @
scenario = ManAcgRel stopclock = 1

SPIN counterexamples look like this !
Dump of final variable values,
And references to code line-numbers

Hard to parse!

Even harder to process !!

354: proc © (:init::1) barrier-mgr-model.pml:1158 (state 142) <valid end state>
6 processes created

(VA Trinity College Dublin
Colaiste na Trionéide, Baile Atha Cliath
The University of Dublin

Observations

@@@ 1 LOG System running...

@@@ 1 LOG Loop through tasks...
@@@ 2 LOG Clock Started

@@@ 5 TASK Workerl

@@@ 5 CALL NormalPriority

@@@ 5 CALL SetProcessor 0

@@@ 5 WAIT 2

@@@ 4 TASK Worker@

@@@ 4 CALL NormalPriority

©@@@ 4 CALL SetProcessor 0

@@@ 4 WAIT 1

@@@ 3 TASK Runner

@@@ 3 CALL NormalPriority

@@@ 3 CALL SetProcessor 1

@@@ 3 CALL barrier_create 0 0 0 1
@@@ 3 SCALAR rc 3

@@@ 3 SIGNAL 1

@@@ 4 LOG WAIT 1 Over

Promela has a printf() function.
It is ignored for verification, but not for counter-example display

We have defined an “observation language” using it.
This abstracts the key features we want to observe.

Barrier Manager Model running.
Setup...

@ee
@ee
@ee
@ee
@ee
@ee
@ee
@ee
@ee
@ee
@ee
@ee

0

(SIS RS TS I S I S T S I S TS)

LOG TestName: Barrier_Manager_TestGen
DEF MAX_BARRIERS 2

DEF BARRIER_MAN 0

DEF BARRIER_AUTO 1

DEF MAX_WAITERS 3

DEF TASK_MAX 4

DEF SEMA_MAX 3

DCLARRAY Semaphore semaphore SEMA_MAX
INIT

LOG scenario ManAcqRel

LOG sub-senario bad create, invalid name
LOG sub-senario multicore enabled, cores:(1,0,0)

CSAVA Trinity College Dublin
Colaiste na Triondide, Baile Atha Cliath
The University of Dublin

L=rO

Refinement

.) . Simple binary semaphores
A YAML file defines a mapping

. SIGNAL: |
from the observation Ianguage ReleaseSema(semaphorel[{}]);
to C code

WAIT: |

in which arguments get substituted !
ObtainSema(semaphorel[{}]);

C test code for a call to rtems_barrier_create:

barrier_create: |
T_log(T_NORMAL, "Calling BarrierCreate(%d,%d,%d,%d)", {e}, {1}, {2},
{3});
rtems_id bid;
initialise_id(&bid);
rtems_status_code rc;
rtems_attribute attribs;
attribs = mergeattribs({1});
rc = rtems_barrier_create({0}, attribs, {2}, {3} ? &bid : NULL);
T_log(T_NORMAL, "Returned 0x%x from Create", rc);

RTEMS Documentation Project

A RTEMS Software Engineering

Search docs

1. Preface

2. RTEMS Project Mission Statement
3. RTEMS Stakeholders

4. Introduction to Pre-Qualification

5. Software Requirements Engineering
6. Software Development Management

7. Software Test Plan Assurance and
Procedures

8. Software Test Framework

9. Formal Verification
9.1. Formal Verification Overview
9.2. Formal Verification Approaches
9.3. Test Generation Methodology
9.4. Formal Tools Setup
9.5. Modelling with Promela
9.6. Promela to C Refinement

10. BSP Build System

11. Software Release Management

12. User’s Manuals

13. Licensing Requirements

14. Appendix: Core Qualification
Artifacts/Documents

15. Appendix: RTEMS Formal Model
Guide

@A » 9. Formal Verification » 9.1. Formal Verification Overview

9.1. Formal Verification Overview

Formal Verification is a technique based on writing key design artifacts using notations that have a
well-defined mathematical semantics. This means that these descriptions can be rigorously
analyzed using logic and other mathematical tools. The term formal model is used to refer to any
such description.

Having a formal model of a software engineering artifact (requirements, specification, code) allows
it to be analyzed to assess the behavior it describes. This means checks can be done that the model
has desired properties, and that it lacks undesired ones. A key feature of having a formal description
is that tools can be developed that parse the notation and perform much, if not most, of the
analysis. An industrial-strength formalism is one that has very good tool support.

Having two formal models of the same software object at different levels of abstraction
(specification and code, say) allows their comparison. In particular, a formal analysis can establish if
a lower level artifact like code satisfies the properties described by a higher level, such as a
specification. This relationship is commonly referred to as a refinement.

Often it is quite difficult to get a useful formal model of real code. Some formal modelling
approaches are capable of generating machine-readable scenarios that describe possible correct
behaviors of the system at the relevant level of abstraction. A refinement for these can be defined
by using them to generate test code. This is the technique that is used in Test Generation
Methodology to verify parts of RTEMS. Formal models are constructed based on requirements
documentation, and are used as a basis for test generation.

Q® Previous Next ©

© Copyright 1988, 2023 RTEMS Project and contributors

Built with Sphinx using a theme provided by Read the Docs.

Trinity College Dublin, The University of Dublin

Model-based Test Generation is a big hit!

Developers don’t need to understand the model

They really understand the concrete test code.

Trinity College Dublin, The University of Dublin

Refinement Mechanisms
Direct Output - no lookup ———— .. .
Keyword Refinement g- € *&‘% \f Tl’lnlty College Dublin
Name Refinement - maé) q‘@}; Colaiste na Triondide, Baile Atha Cliath
The same name may appear in dif Eﬁﬁﬁ ThsiOnbesitralibkln

Futu r-e Plans # We add '_XXX' suffixes to looku
_DCL - A variable declaration
_PTR - The pointer value itself
_FSCALAR - A scalar that is a struct field
_FPTR - A pointer that is a struct field

More Semaphore Manager # Type Refinement - lookup (first) type
Typed-Name Refinement — lookup type-name
* Gateway to scheduler thread queves =~

I+

Refactoring
Beyond Synchronisation
e E.g., Tasks? Objects?
Beyond Classic API
e POSIX?
Beyond RTEMS?
* This technology is not tied to RTEMS, or C !

Direct Output

def refineSPINLine(self, spin_line):
match spin_line:

NAME <name>
Keyword Refinement (NAME)
case [pid, 'LOG', xrestl:

if self.outputLOG:

1In = ' '.join(rest)

self.addCode(pid, ["T_log(T_NORMAL,{});".format(1ln)])
else:

pass

case [pid, "NAME", namel:
if 'NAME' not in self.ref_dict_keys:
self.addCode(pid, [self.EOLC+" CANNOT REFINE 'NAME'"])
else:
self.addCode(pid, self.ref_dict["NAME"].rsplit('\n'))
INIT
Keyword Refinement (INIT)
case [pid, "INIT"]:
if 'INIT' not in self.ref_dict_keys:
self.addCode(pid, [self.EOLC+" CANNOT REFINE 'INIT'"])
else:
self.addCode(pid, self.ref_dict["INIT"].rsplit('\n'))
TASK <name>
Name Refinement (<name>)

nTACUN +anls mamale

Amaa~ Tnia

Final Thoughts

» We have successfully used Promela/SPIN to do RTEMS Test
Generation

» Some is already part of RTEMS

» We have more ready add at the moment (it's a process)
» We expect to keep going

» \We have three languages involved

» Promela
» our Observation language

» RTEMS test framework (C + libraries)
A case study for UTP unification

Trinity College Dublin, The University of Dublin

\a o ° °
kA Welvilyy l_e O THE RISt SOFTWARE
+J§ = | College RESEARCH CENTRE

The University of Dublin

Thank you! Any (further) Qs?

