
ar
X

iv
:1

20
7.

25
31

v1
  [

cs
.L

O
] 

 1
1 

Ju
l 2

01
2
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Abstract. We combine quantified differential dynamic logic (QdL) for rea-
soning about the possible behavior of distributed hybrid systems with tem-
poral logic for reasoning about the temporal behavior during their opera-
tion. Our logic supports verification of temporal and non-temporal prop-
erties of distributed hybrid systems and provides a uniform treatment of dis-
crete transitions, continuous evolution, and dynamic dimensionality-changes.
For our combined logic, we generalize the semantics of dynamic modalities
to refer to hybrid traces instead of final states. Further, we prove that this
gives a conservative extension of QdL for distributed hybrid systems. On
this basis, we provide a modular verification calculus that reduces correct-
ness of temporal behavior of distributed hybrid systems to non-temporal
reasoning, and prove that we obtain a complete axiomatization relative to
the non-temporal base logic QdL. Using this calculus, we analyze temporal
safety properties in a distributed air traffic control system where aircraft
can appear dynamically.

1 Introduction

Ensuring correct functioning of cyber-physical systems is among the most challeng-
ing and most important problems in computer science, mathematics, and engineer-
ing. Hybrid systems are common mathematical models for cyber-physical systems
with interacting discrete and continuous behavior [6,13]. Their behavior combines
continuous evolution (called flow) characterized by differential equations and dis-
crete jumps. However, not all relevant cyber-physical systems can be modeled as
hybrid systems. Hybrid systems cannot represent physical control systems that are
distributed or form a multi-agent system, e.g., distributed car control systems [15]
and distributed air traffic control systems [8]. Such systems form distributed hybrid
systems [7,16,21,22] with discrete, continuous, structural, and dimension-changing
dynamics. Distributed hybrid systems combine the challenges of hybrid systems
and distributed systems. Correctness of safety-critical real-time and distributed
hybrid systems depends on a safe operation throughout all states of all possible
trajectories, and the behavior at intermediate states is highly relevant [1,4,6,11,13].
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Temporal logics (TL) use temporal operators to talk about intermediate states [1,9,10,23].
They have been used successfully in model checking [1,3,13,14,18] of finite-state
system abstractions. State spaces of distributed hybrid systems, however, often do
not admit equivalent finite-state abstractions [13,18]. Instead of model checking,
TL can also be used deductively to prove validity of formulas in calculi [5,6]. Valid
TL formulas, however, only express very generic facts that are true for all systems,
regardless of their actual behavior. Hence, the behavior of a specific system first
needs to be axiomatized declaratively to obtain meaningful results. Then, however,
the correspondence between actual system operations and a declarative temporal
representation may be questioned.

Very recently, a dynamic logic, called quantified differential dynamic logic (QdL)
has been introduced as a successful tool for deductively verifying distributed hybrid
systems [21,22]. QdL can analyze the behavior of actual distributed hybrid system
models, which are specified operationally. Yet, operational distributed hybrid sys-
tem models are internalized within QdL formulas, and QdL is closed under logical
operators. However, QdL only considers the behavior of distributed hybrid systems
at final states, which is insufficient for verifying safety properties that have to hold
all the time.

We close this gap of expressivity by combining QdLwith temporal logic [9,10,23].
In this paper, we introduce a logic, called quantified differential temporal dynamic
logic (QdTL), which provides modalities for quantifying over traces of distributed
hybrid systems based on QdL. We equip QdTL with temporal operators to state
what is true all along a trace or at some point during a trace. In this paper,
we modify the semantics of the dynamic modality [α] to refer to all traces of α
instead of all final states reachable with α (similarly for 〈α〉). For instance, the
formula [α]�φ expresses that φ is true at each state during all traces of the dis-
tributed hybrid system α. With this, QdTL can also be used to verify temporal
statements about the behavior of α at intermediate states during system runs. As
in our non-temporal dynamic logic QdL [21,22], we use quantified hybrid programs
as an operational model for distributed hybrid systems, since they admit a uniform
compositional treatment of interacting discrete transitions, continuous evolutions,
and structural/dimension changes in logic.

As a semantical foundation for combined temporal dynamic formulas, we intro-
duce a hybrid trace semantics for QdTL. We prove that QdTL is a conservative
extension of QdL: for non-temporal specifications, trace semantics is equivalent to
the non-temporal transition semantics of QdL [21,22].

As a means for verification, we introduce a sequent calculus for QdTL that suc-
cessively reduces temporal statements about traces of quantified hybrid programs to
non-temporal QdL formulas. In this way, we make the intuition formally precise that
temporal safety properties can be checked by augmenting proofs with appropriate
assertions about intermediate states. Like in [21,22], our calculus works composi-
tionally. It decomposes correctness statements about quantified hybrid programs
structurally into corresponding statements about its parts by symbolic transforma-
tion.

Our approach combines the advantages of QdL in reasoning about the behaviour
of operational distributed hybrid system models with those of TL to verify tempo-



ral statements about traces. We show that QdTL is sound and relatively complete.
We argue that QdTL can verify practical systems and demonstrate this by studying
temporal safety properties in distributed air traffic control. Our primary contribu-
tions are as follows:

– We introduce a logic for specifying and verifying temporal properties of dis-
tributed hybrid systems.

– We present a proof calculus for this logic, which, to the best of our knowledge,
is the first verification approach that can handle temporal statements about
distributed hybrid systems.

– We prove that this compositional calculus is a sound and complete axiomati-
zation relative to differential equations.

– We verify temporal safety properties in a collision avoidance maneuver in dis-
tributed air traffic control, where aircraft can appear dynamically.

2 Related Work

Multi-party distributed control has been suggested for car control [15] and air traffic
control [8]. Due to limits in verification technology, no formal analysis of tempo-
ral statements about the distributed hybrid dynamics has been possible for these
systems yet. Analysis results include discrete message handling [15] or collision
avoidance for two participants [8].

The importance of understanding dynamic/reconfigurable distributed hybrid
systems was recognized in modeling languages SHIFT [7] and R-Charon [16]. They
focused on simulation/compilation [7] or the development of a semantics [16], so
that no verification is possible yet.

Other process-algebraic approaches, like χ [27], have been developed for mod-
eling and simulation. Verification is still limited to small fragments that can be
translated directly to other verification tools like PHAVer or UPPAAL, which do
not support distributed hybrid systems.

Our approach is completely different. It is based on first-order structures and
dynamic logic. We focus on developing a logic that supports temporal and non-
temporal statements about distributed hybrid dynamics and is amenable to auto-
mated theorem proving in the logic itself.

Our previous work and other verification approaches for static hybrid systems
cannot verify distributed hybrid systems. Distributed hybrid systems may have
an unbounded and changing number of components/participants, which cannot be
represented with any fixed number of dimensions of the state space.

Based on [24], Beckert and Schlager [2] added separate trace modalities to
dynamic logic and presented a relatively complete calculus. Their approach only
handles discrete state spaces. In contrast, QdTL works for hybrid programs with
continuous and structural/dimensional dynamics.

Davoren and Nerode [6] extended the propositional modal µ-calculus with a
semantics in hybrid systems and examine topological aspects. In [5], Davoren et al.
gave a semantics in general flow systems for a generalisation of CTL∗ [10]. In both
cases, the authors of [6] and [5] provided Hilbert-style calculi to prove formulas
that are valid for all systems simultaneously using abstract actions.



The strength of our logic primarily is that it is a first-order dynamic logic: it
handles actual hybrid programs rather than only abstract actions of unknown effect.
Our calculus directly supports verification of quantified hybrid programs with con-
tinuous evolution and structural/dimensional changes. First-order dynamic logic is
more expressive and calculi are deductively stronger than other approaches [2,17].

3 Syntax of Quantified Differential Temporal Dynamic

Logic

As a formal logic for verifying temporal specifications of distributed hybrid systems,
we introduce quantified differential temporal dynamic logic (QdTL). QdTL extends
dynamic logic for reasoning about system runs [12] with many-sorted first-order
logic for reasoning about all (∀i :A φ) or some (∃i :A φ) objects of a sort A, e.g.,
the sort of all aircraft, and three other concepts:

Quantified hybrid programs. The behavior of distributed hybrid systems can be de-
scribed by quantified hybrid programs [21,22], which generalize regular programs
from dynamic logic [12] to distributed hybrid changes. The distinguish feature of
quantified hybrid programs is that they provide uniform discrete transitions, con-
tinuous evolutions, and structural/dimension changes along quantified assignments
and quantified differential equations, which can be combined by regular control op-
erations.

Modal operators. Modalities of dynamic logic express statements about all possible
behavior ([α]π) of a system α, or about the existence of a trace (〈α〉π), satisfying
condition π. Unlike in standard dynamic logic, α is a model of a distributed hybrid
system. We use quantified hybrid programs to describe α as in [21,22]. Yet, unlike in
standard dynamic logic [12] or quantified differential dynamic logic (QdL) [21,22],
π is a trace formula in QdTL, and π can refer to all states that occur during a trace
using temporal operators.

Temporal operators. For QdTL, the temporal trace formula �φ expresses that the
formula φ holds all along a trace selected by [α] or 〈α〉. For instance, the state
formula 〈α〉�φ says that the state formula φ holds at every state along at least
one trace of α. Dually, the trace formula ♦φ expresses that φ holds at some point
during such a trace. It can occur in a state formula 〈α〉♦φ to express that there is
such a state in some trace of α, or as [α]♦φ to say that, along each trace, there is a
state satisfying φ. In this paper, the primary focus of attention is on homogeneous
combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.

3.1 Quantified Hybrid Programs

QdTL supports a (finite) number of object sorts, e.g., the sort of all aircraft, or the
sort of all cars. For continuous quantities of distributed hybrid systems like positions
or velocities, we add the sort R for real numbers. Terms of QdTL are built from
a set of (sorted) function/variable symbols as in many-sorted first-order logic. For
representing appearance and disappearance of objects while running QHPs, we use
an existence function symbol E(·) that has value E(o) = 1 if object o exists, and



has value E(o) = 0 when object o disappears or has not been created yet. We use
0, 1,+,−, · with the usual notation and fixed semantics for real arithmetic. For
n ≥ 0 we abbreviate f(s1, . . . , sn) by f(s) using vectorial notation and we use
s = t for element-wise equality.

As a system model for distributed hybrid systems, QdTL uses quantified hy-
brid programs (QHP) [21,22]. The quantified hybrid programs occurring in dynamic
modalities of QdTL are regular programs from dynamic logic [12] to which quanti-
fied assignments and quantified differential equation systems for distributed hybrid
dynamics are added. QHPs are defined by the following grammar (α, β are QHPs,
θ a term, i a variable of sort A, f is a function symbol, s is a vector of terms with
sorts compatible to f , and χ is a formula of first-order logic):

α, β ::= ∀i :A f(s) := θ | ∀i :A f(s)′ = θ & χ | ?χ | α ∪ β | α;β | α∗

The effect of quantified assignment ∀i :A f(s) := θ is an instantaneous discrete
jump assigning θ to f(s) simultaneously for all objects i of sort A. The QHP
∀i :C a(i) := a(i)+1, for example, expresses that all cars i of sort C simultaneously
increase their acceleration a(i). The effect of quantified differential equation ∀i :
A f(s)′ = θ & χ is a continuous evolution where, for all objects i of sort A, all
differential equations f(s)′ = θ hold and formula χ holds throughout the evolution
(the state remains in the region described by χ). The dynamics of QHPs changes
the interpretation of terms over time: f(s)′ is intended to denote the derivative
of the interpretation of the term f(s) over time during continuous evolution, not
the derivative of f(s) by its argument s. For f(s)′ to be defined, we assume f is
an R-valued function symbol. For simplicity, we assume that f does not occur in
s. In most quantified assignments/differential equations s is just i. For instance,
the following QHP expresses that all cars i of sort C drive by ∀i :C x(i)′′ = a(i)
such that their position x(i) changes continuously according to their respective
acceleration a(i).

The effect of test ?χ is a skip (i.e., no change) if formula χ is true in the
current state and abort (blocking the system run by a failed assertion), otherwise.
Nondeterministic choice α∪ β is for alternatives in the behavior of the distributed
hybrid system. In the sequential composition α;β, QHP β starts after α finishes (β
never starts if α continues indefinitely). Nondeterministic repetition α∗ repeats α
an arbitrary number of times, possibly zero times.

Structural dynamics of distributed hybrid systems corresponds to quantified
assignments to function terms and we model the appearance of new participants
in the distributed hybrid system, e.g., new aircraft appearing into the local flight
scenario, by a program n := new A (see [21,22] for details).

3.2 State and Trace Formulas

The formulas of QdTL are defined similarly to first-order dynamic logic plus many-
sorted first-order logic. However, the modalities [α] and 〈α〉 accept trace formulas
that refer to the temporal behavior of all states along a trace. Inspired by CTL
and CTL∗ [9,10], we distinguish between state formulas, which are true or false in
states, and trace formulas, which are true or false for system traces.



The state formulas of QdTL are defined by the following grammar (φ, ψ are
state formulas, π is a trace formula, θ1, θ2 are terms of the same sort, i is a variable
of sort A, and α is a QHP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀i :A φ | ∃i :A φ | [α]π | 〈α〉π

We use standard abbreviations to define ≤, >,<,∨,→. Sorts A 6= R have no or-
dering and only θ1 = θ2 is allowed. For sort R, we abbreviate ∀x :R φ by ∀xφ.

The trace formulas of QdTL are defined by the following grammar (π is a trace
formula and φ is a state formula):

π ::= φ | �φ | ♦φ

Formulas without � and ♦ are non-temporal QdL formulas. Unlike in CTL, state
formulas are true on a trace if they hold for the last state of a trace, not for the first.
Thus, [α]φ expresses that φ is true at the end of each trace of α. In contrast, [α]�φ
expresses that φ is true all along all states of every trace of α. This combination
gives a smooth embedding of non-temporal QdL into QdTL and makes it possible to
define a compositional calculus. Like CTL, QdTL allows nesting with a branching
time semantics [9], e.g., [α]�((∀i : C x(i) ≥ 2) → 〈β〉♦(∀i : C x(i) ≤ 0)). In the
following, all formulas and terms have to be well-typed. For short notation, we allow
conditional terms of the form if φ then θ1 else θ2 fi (where θ1 and θ2 have the same
sort). This term evaluates to θ1 if the formula φ is true and to θ2 otherwise. We
consider formulas with conditional terms as abbreviations, e.g., ψ(if φ then θ1 else θ2)
for (φ→ ψ(θ1)) ∧ (¬φ → ψ(θ2)).

Example 1. Let C be the sort of all cars. By x(i), we denote the position of car i,
by v(i) its velocity and by a(i) its acceleration. Then the QdTL formula

(∀i :C x(i) ≥ 0) → [∀i :C x(i)′ = v(i), v(i)′ = a(i) & v(i) ≥ 0]�(∀i :C x(i) ≥ 0)

says that, if all cars start at a point to the right of the origin and we only allow
them to evolve as long as all of them have nonnegative velocity, then they always
stay up to the right of the origin. In this case, the QHP just consists of a quantified
differential equation expressing that the position x(i) of car i evolves over time
according to the velocity v(i), which evolves according to its acceleration a(i). The
constraint v(i) ≥ 0 expresses that the cars never move backwards, which otherwise
would happen eventually in the case of braking a(i) < 0. This formula is indeed
valid, and we would be able to use the techniques developed in this paper to prove
it.

4 Semantics of Quantified Differential Temporal Dynamic

Logic

In standard dynamic logic [12] and the logic QdL [21,22], modalities only refer to
the final states of system runs and the semantics is a reachability relation on states:
State τ is reachable from state σ using α if there is a run of α which terminates in
τ when started in σ. For QdTL, however, formulas can refer to intermediate states
of runs as well. Thus, the semantics of a distributed hybrid system α is the set of
its possible traces, i.e., successions of states that occur during the evolution of α.



4.1 Trace Semantics of Quantified Hybrid Programs

A state σ associates an infinite set σ(A) of objects with each sortA, and it associates
a function σ(f) of appropriate type with each function symbol f , including E(·).
For simplicity, σ also associates a value σ(i) of appropriate type with each variable
i. The domain of R and the interpretation of 0, 1,+,−, · is that of real arithmetic.
We assume constant domain for each sort A: all states σ, τ share the same infinite
domains σ(A) = τ(A). Sorts A 6= C are disjoint: σ(A) ∩ σ(C) = ∅. The set of all
states is denoted by S. The state σei agrees with σ except for the interpretation of
variable i, which is changed to e. In addition, we distinguish a state Λ to denote
the failure of a system run when it is aborted due to a test ?χ that yields false. In
particular, Λ can only occur at the end of an aborted system run and marks that
there is no further extension.

Distributed hybrid systems evolve along piecewise continuous traces in multi-
dimensional space, structural changes, and appearance or disappearance of agents
as time passes. Continuous phases are governed by differential equations, whereas
discontinuities are caused by discrete jumps. Unlike in discrete cases [2,24], traces
are not just sequences of states, since distributed hybrid systems pass through un-
countably many states even in bounded time. Beyond that, continuous changes are
more involved than in pure real-time [1,14], because all variables can evolve along
different differential equations. Generalizing the real-time traces of [14], the fol-
lowing definition captures hybrid behavior by splitting the uncountable succession
of states into periods νi that are regulated by the same control law. For discrete
jumps, some periods are point flows of duration 0.

The (trace) semantics of quantified hybrid programs is compositional, that is,
the semantics of a complex program is defined as a simple function of the trace
semantics of its parts.

Definition 1 (Hybrid Trace). A trace is a (non-empty) finite or infinite se-
quence ν = (ν0, ν1, ν2, . . .) of functions νk : [0, rk] → S with respective durations
rk ∈ R (for k ∈ N). A position of ν is a pair (k, ζ) with k ∈ N and ζ in the interval
[0, rk]; the state of ν at (k, ζ) is νk(ζ). Positions of ν are ordered lexicographically
by (k, ζ) ≺ (m, ξ) iff either k < m, or k = m and ζ < ξ. Further, for a state
σ ∈ S, σ̂ : 0 7→ σ is the point flow at σ with duration 0. A trace terminates if it is
a finite sequence (ν0, ν1, . . . , νn) and νn(rn) 6= Λ. In that case, the last state νn(rn)
is denoted by last ν. The first state ν0(0) is denoted by first ν.

Unlike in [1,14], the definition of traces also admits finite traces of bounded du-
ration, which is necessary for compositionality of traces in α;β. The semantics of
quantified hybrid programs α as the set µ(α) of its possible traces depends on
valuations σJ·K of formulas and terms at intermediate states σ. The valuation of
formulas will be defined in Definition 3. Especially, we use σei J·K to denote the
valuations of terms and formulas in state σei , i.e., in state σ with i interpreted as e.

Definition 2 (Trace Semantics of Quantified Hybrid Programs). The trace
semantics, µ(α), of a quantified hybrid program α, is the set of all its possible hybrid
traces and is defined inductively as follows:



1. µ(∀i : A f(s) := θ) = {(σ̂, τ̂) : σ ∈ S and state τ is identical to σ except
that at each position o of f : if σei JsK = o for some object e ∈ σ(A), then
τ(f)(σei JsK) = σei JθK.}

2. µ(∀i :A f(s)′ = θ & χ) = {(ϕ) : 0 ≤ r ∈ R and ϕ : [0, r] → S is a function
satisfying the following conditions. At each time t ∈ [0, r], state ϕ(t) is identical
to ϕ(0), except that at each position o of f : if σei JsK = o for some object
e ∈ σ(A), then, at each time ζ ∈ [0, r]:
– The differential equations hold and derivatives exist (trivial for r = 0):

d(ϕ(t)ei Jf(s)K)

dt
(ζ) = (ϕ(ζ)

e
i JθK)

– The evolution domains is respected: ϕ(ζ)
e
i JχK = true.}

3. µ(?χ) = {(σ̂) : σJχK = true} ∪ {(σ̂, Λ̂) : σJχK = false}
4. µ(α ∪ β) = µ(α) ∪ µ(β)
5. µ(α;β) = {ν ◦ ς : ν ∈ µ(α), ς ∈ µ(β) when ν ◦ ς is defined}; the composition of

ν = (ν0, ν1, ν2, . . .) and ς = (ς0, ς1, ς2, . . .) is

ν ◦ ς =







(ν0, . . . , νn, ς0, ς1, . . .) if ν terminates at νn and last ν = first ς
ν if ν does not terminate
not defined otherwise

6. µ(α∗) =
⋃

n∈N
µ(αn), where αn+1 := (αn;α) for n ≥ 1, as well as α1 := α and

α0 := (?true).

4.2 Valuation of State and Trace Formulas

Definition 3 (Valuation of Formulas). The valuation of state and trace for-
mulas is defined respectively. For state formulas, the valuation σJ·K with respect to
state σ is defined as follows:

1. σJθ1 = θ2K = true iff σJθ1K = σJθ2K; accordingly for ≥.
2. σJφ ∧ ψK = true iff σJφK = true and σJψK = true; accordingly for ¬.
3. σJ∀i :A φK = true iff σei JφK = true for all objects e ∈ σ(A).
4. σJ∃i :A φK = true iff σei JφK = true for some object e ∈ σ(A).
5. σJ[α]πK = true iff for each trace ν ∈ µ(α) that starts in first ν = σ, if νJπK is

defined, then νJπK = true.
6. σJ〈α〉πK = true iff there is a trace ν ∈ µ(α) starting in first ν = σ such that

νJπK is defined and νJπK = true.

For trace formulas, the valuation νJ·K with respect to trace ν is defined as follows:

1. If φ is a state formula, then νJφK = last νJφK if ν terminates, whereas νJφK is
not defined if ν does not terminate.

2. νJ�φK = true iff νk(ζ)JφK = true for all positions (k, ζ) of ν with νk(ζ) 6= Λ.
3. νJ♦φK = true iff νk(ζ)JφK = true for some position (k, ζ) of ν with νk(ζ) 6= Λ.

As usual, a (state) formula is valid if it is true in all states. Further for (state)
formula φ and state σ we write σ |= φ iff σJφK = true. We write σ 6|= φ iff σJφK
= false. Likewise, for trace formula π and trace ν we write ν |= π iff νJπK = true
and ν 6|= π iff νJπK = false. In particular, we only write ν |= π or ν 6|= π if νJπK is
defined, which it is not the case if π is a state formula and ν does not terminate.



4.3 Conservative Temporal Extension

The following result shows that the extension of QdTL by temporal operators does
not change the meaning of non-temporal QdL formulas. The trace semantics given
in Definition 3 is equivalent to the final state reachability relation semantics [21,22]
for the sublogic QdL of QdTL.

Proposition 1. The logic QdTL is a conservative extension of non-temporal QdL,
i.e., the set of valid QdL formulas is the same with respect to transition reacha-
bility semantics of QdL [21,22] as with respect to the trace semantics of QdTL
(Definition 3).

5 Safety Properties in Distributed Air Traffic Control

In air traffic control, collision avoidance maneuvers [8,26] are used to resolve con-
flicting flight paths that arise during free flight. We consider the roundabout colli-
sion avoidance maneuver for air traffic control [26]. In the literature, formal verifi-
cation of the hybrid dynamics of air traffic control focused on a fixed number of air-
craft, usually two. In reality, many more aircraft are in the same flight corridor, even
if not all of them participate in the same maneuver. They may be involved in multi-
ple distributed maneuvers at the same time, however. Perfect global trajectory plan-
ning quickly becomes infeasible then. The verification itself also becomes much more
complicated for three aircraft already. Explicit replication of the system dynamics
n times is computationally infeasible for larger n. Yet, collision avoidance maneu-
vers need to work for an (essentially) unbounded number of aircraft. Because global
trajectory planning is infeasible, the appearance of other aircraft into a local colli-
sion avoidance maneuver always has to be expected and managed safely. See Fig. 1
for a general illustration of roundabout-style collision avoidance maneuvers and the
phenomenon of dynamic appearance of some new aircraft z into the horizon of rele-
vance.

Fig. 1: Roundabout collision
avoidance maneuver with new
appearance

The resulting flight control system has several char-
acteristics of hybrid dynamics. But it is not a hybrid
system and does not even have a fixed finite number of
variables in a fixed finite-dimensional state space. The
system forms a distributed hybrid system, in which all
aircraft fly at the same time and new aircraft may ap-
pear from remote areas into the local flight scenario.
Let A be the sort of all aircraft. Each aircraft i has
a position x(i) = (x1(i), x2(i)) and a velocity vector
d(i) = (d1(i), d2(i)). We model the continuous dynamics
of an aircraft i that follows a flight curve with an angu-
lar velocity ω(i) by the (function) differential equation:

x1(i)
′
= d1(i), x2(i)

′
= d2(i), d1(i)

′
= −ω(i)d2(i), d2(i)

′
= ω(i)d1(i) (Fω(i)(i))

This differential equation, which we denote by Fω(i)(i), is the standard equation
for curved flight from the literature [26], but lifted to function symbols that are



parameterized by aircraft i. Now the quantified differential equation ∀i :A Fω(i)(i)
characterizes that all aircraft i fly along their respective (function) differential equa-
tion Fω(i)(i) according to their respective angular velocities ω(i) at the same time.
This quantified differential equation captures what no finite-dimensional differen-
tial equation system could ever do. It characterizes the simultaneous movement of
an unbounded, arbitrary, and even growing or shrinking set of aircraft.

Two aircraft i and j have violated the safe separation property if they falsify
the following formula

P(i, j) ≡ i = j ∨ (x1(i)− x1(j))
2 + (x2(i)− x2(j))

2 ≥ p2

which says that aircraft i and j are either identical or separated by at least the
protected zone p (usually 5mi). For the aircraft control system to be safe, all aircraft
have to be safely separated, i.e., need to satisfy ∀i, j :A P(i, j). It is crucial that
this formula holds at every point in time during the system evolution, not only at
its beginning or at its end. Hence, we need to consider temporal safety properties.
For instance, QdTL can analyze the following temporal safety properties of a part
of the distributed roundabout collision avoidance maneuver for air traffic control:

∀i, j :A P(i, j) ∧ ∀i, j :A T (i, j) → [∀i :A Fω(i)(i)]�∀i, j :A P(i, j) (1)

∀i, j :A P(i, j) ∧ ∀i, j :A T (i, j) →
[∀i :A t := 0; ∀i :A Fω(i)(i), t

′ = 1 & ∀i :A t ≤ T ; ?(∀i :A t = T )]�∀i, j :A P(i, j)
(2)

where T (i, j) ≡ d1(i)−d1(j) = −ω(x2(i)−x2(j))∧d2(i)−d2(j) = ω(x1(i)−x1(j)),
t is a clock variable, and T is some bounded time.

The temporal safety invariant in (1) expresses that the circle phase of round-
about maneuver always stays collision-free indefinitely for an arbitrary number of
aircraft. That is the most crucial part because we have to know the aircraft always
remain safe during the actual roundabout collision avoidance circle. The condition
∀i, j :A T (i, j) characterizes compatible tangential maneuvering choices. Without
a condition like T (i, j), roundabouts can be unsafe [20]. For a systematic derivation
of how to construct T (i, j), we refer to the work [20]. As a variation of (1), the
temporal safety property in (2) states that, for an arbitrary number of aircraft, the
circle procedure of roundabout maneuver cannot produce collisions at any point in
its bounded duration T . This variation restricts the continuous evolution to take
exactly T time units (the evolution domain region restricts the evolution to t ≤ T

and the subsequent test to ?(∀i : A t = T )) and no intermediate state is visible
as a final state anymore. Thus, the temporal modality � in (2) is truly necessary.
We will use the techniques developed in this paper to verify these temporal safety
properties in the distributed roundabout flight collision avoidance maneuver.

6 Proof Calculus for Temporal Properties

In this section, we introduce a sequent calculus for verifying temporal specifica-
tions of distributed hybrid systems in QdTL. With the basic idea being to perform



a symbolic decomposition, the calculus transforms quantified hybrid programs suc-
cessively into simpler logical formulas describing their effects. Statements about
the temporal behavior of a quantified hybrid program are successively reduced to
corresponding non-temporal statements about the intermediate states.

6.1 Proof Rules

In Fig. 2, we present a proof calculus for QdTL that inherits the proof rules of
QdL from [21,22] and adds new proof rules for temporal modalities. We use the
sequent notation informally for a systematic proof structure. A sequent is of the
form Γ → ∆, where the antecedent Γ and succedent ∆ are finite sets of formulas.
The semantics of Γ → ∆ is that of the formula

∧

φ∈Γ φ →
∨

ψ∈∆ ψ and will
be treated as an abbreviation. As usual in sequent calculus, the proof rules are
applied backwards from the conclusion (goal below horizontal bar) to the premises
(subgoals above bar).

Inherited Non-temporal Rules The QdTL calculus inherits the (non-temporal)
QdL proof rules. For propositional logic, standard rules ax–cut are listed in Fig. 2.
Rules [; ]–〈?〉 work similar to those in [12]. Rules [′], 〈′〉 handle continuous evolu-
tions for quantified differential equations with first-order definable solutions. Rules
[:=]–〈:∗〉 handle discrete changes for quantified assignments. Axiom ex expresses
that, for sort A 6= R, there always is a new object n that has not been created
yet (E(n) = 0), because domains are infinite. The quantifier rules ∀r–i∃ combine
quantifier handling of many-sorted logic based on instantiation with theory reason-
ing by quantifier elimination (QE) for the theory of reals. The global rules []gen,
〈〉gen are Gödel generalization rules and ind is an induction schema for loops with
inductive invariant φ [12]. Similarly, con generalizes Harel’s convergence rule [12]
to the hybrid case with decreasing variant ϕ [19]. DI and DC are rules for quanti-
fied differential equations with quantified differential invariants [21,22]. Notice that
[∪], 〈∪〉 can be generalized to apply to formulas of the form [α ∪ β]π where π is an
arbitrary trace formula, and not just a state formula as in QdL. Thus, π may begin
with � and ♦, which is why the rules are repeated in this generalized form as [∪]�
and 〈∪〉⋄ in Fig. 2.

Temporal Rules The new temporal rules in Fig. 2 for the QdTL calculus suc-
cessively transform temporal specifications of quantified hybrid programs into non-
temporal QdL formulas. The idea underlying this transformation is to decompose
quantified hybrid programs and recursively augment intermediate state transitions
with appropriate specifications.

Rule [; ]� decomposes invariants of α;β (i.e., [α;β]�φ holds) into an invariant
of α (i.e., [α]�φ) and an invariant of β that holds when β is started in any final
state of α (i.e., [α]([β]�φ)). Its difference with the QdL rule [; ] thus is that the
QdTL rule [; ]� also checks safety invariant φ at the symbolic states in between
the execution of α and β, and recursively so because of the temporal modality �.
Rule [:=]� expresses that invariants of quantified assignments need to hold before
and after the discrete change (similarly for [?]�, except that tests do not lead to a
state change, so φ holding before the test is all there is to it). Rule [′]� can directly



(ax)
φ → φ

(¬r)
φ→

→ ¬φ
(¬l)

→ φ

¬φ→
(∧r)

→ φ → ψ

→ φ ∧ ψ
(∧l)

φ, ψ →

φ ∧ ψ →
(cut)

→ φ φ →

→

([; ])
[α][β]φ

[α;β]φ
(〈; 〉)

〈α〉〈β〉φ

〈α;β〉φ
([∪])

[α]φ ∧ [β]φ

[α ∪ β]φ
(〈∪〉)

〈α〉φ ∨ 〈β〉φ

〈α ∪ β〉φ
([?])

χ → φ

[?χ]φ
(〈?〉)

χ ∧ φ

〈?χ〉φ

([′])
∀t ≥ 0((∀0 ≤ t̃ ≤ t[∀i :A S(t̃)]χ) → [∀i :A S(t)]φ)

[∀i :A f(s)′ = θ & χ]φ
1 (〈′〉)

∃t ≥ 0((∀0 ≤ t̃ ≤ t〈∀i :A S(t̃)〉χ) ∧ 〈∀i :A S(t)〉φ)

〈∀i :A f(s)′ = θ & χ〉φ
1

([:=])
if ∃i :A s = [A]u then ∀i :A (s = [A]u → φ(θ)) else φ(f([A]u)) fi

φ([∀i : A f(s) := θ]f(u))
2

(〈:=〉)
if ∃i :A s = 〈A〉u then ∃i :A (s = 〈A〉u ∧ φ(θ)) else φ(f(〈A〉u)) fi

φ(〈∀i :A f(s) := θ〉f(u))
2

(skip)
Υ ([∀i :A f(s) := θ]u)

[∀i :A f(s) := θ]Υ (u)
3 ([:∗])

∀j :A φ(θ)

[∀j :A n := θ]φ(n)
(〈:∗〉)

∃j :A φ(θ)

〈∀j :A n := θ〉φ(n)
(ex)

true

∃n :A E(n) = 0

(∀r)
Γ → φ(f(X1, . . . , Xn)), ∆

Γ → ∀xφ(x),∆
4 (∃r)

Γ → φ(θ), ∃xφ(x),∆

Γ → ∃xφ(x),∆
5 (∀l)

Γ, φ(θ),∀xφ(x) → ∆

Γ, ∀xφ(x) → ∆

5 (∃l)
Γ, φ(f(X1, . . . , Xn)) → ∆

Γ, ∃xφ(x) → ∆

4

(i∀)
QE(∀X,Y (if s = t thenΦ(X) → Ψ(X) elseΦ(X) → Ψ(Y ) fi))

Φ(f(s)) → Ψ(f(t))
6 (i∃)

QE(∃X
∧

i
(Φi → Ψi))

Φ1 → Ψ1 . . . Φn → Ψn

7

([]gen)
φ → ψ

Γ, [α]φ → [α]ψ,∆
(〈〉gen)

φ→ ψ

Γ, 〈α〉φ → 〈α〉ψ,∆
(ind)

φ → [α]φ

Γ, φ → [α∗]φ,∆
(con)

v > 0 ∧ ϕ(v) → 〈α〉ϕ(v − 1)

Γ, ∃v ϕ(v) → 〈α∗〉∃v ≤ 0ϕ(v), ∆
8

(DI)
χ → [∀i :A f(s)′ := θ]D(φ)

φ → [∀i :A f(s)′ = θ & χ]φ
9 (DC)

φ → [∀i :A f(s)′ = θ & χ]ψ φ → [∀i :A f(s)′ = θ & χ ∧ ψ]φ

φ → [∀i :A f(s)′ = θ & χ]φ

([∪]�)
[α]π ∧ [β]π

[α ∪ β]π
10 (〈∪〉⋄)

〈α〉π ∨ 〈β〉π

〈α ∪ β〉π
10 ([; ]�)

[α]�φ ∧ [α][β]�φ

[α;β]�φ
(〈; 〉⋄)

〈α〉♦φ ∨ 〈α〉〈β〉♦φ

〈α;β〉♦φ

([?]�)
φ

[?χ]�φ
(〈?〉⋄)

φ

〈?χ〉♦φ

([:=]�)
φ ∧ [∀i :A f(s) := θ]φ

[∀i :A f(s) := θ]�φ
(〈:=〉⋄)

φ ∨ 〈∀i :A f(s) := θ〉φ

〈∀i :A f(s) := θ〉♦φ

([′]�)
[∀i :A f(s)′ = θ & χ]φ

[∀i :A f(s)′ = θ & χ]�φ
(〈′〉⋄)

〈∀i :A f(s)′ = θ & χ〉φ

〈∀i :A f(s)′ = θ & χ〉♦φ

([∗n]�)
[α;α∗]�φ

[α∗]�φ
(〈∗n〉⋄)

〈α;α∗〉♦φ

〈α∗〉♦φ
([∗]�)

[α∗][α]�φ

[α∗]�φ
(〈∗〉⋄)

〈α∗〉〈α〉♦φ

〈α∗〉♦φ

1
t, t̃ are new variables, ∀i : A S(t) is the quantified assignment ∀i : A f(s) := ys(t) with solutions
ys(t) of the (injective) differential equations and f(s) as initial values. See [21,22] for the definition
of a injective quantified assignment or quantified differential equation.

2
Occurrence f(u) in φ(f(u)) is not in scope of a modality (admissible substitution) and we abbreviate
assignment ∀i :A f(s) := θ by A, which is assumed to be injective.

3
f 6= Υ and the quantified assignment ∀i : A f(s) := θ is injective. The same rule applies for
〈∀i :A f(s) := θ〉 instead of [∀i :A f(s) := θ].

4
f is a new (Skolem) function and X1, . . . , Xn are all free logical variables of ∀xφ(x).

5
θ is an abbreviate term, often a new logical variable.

6
X,Y are new variables of sort R. QE needs to be applicable in the premises.

7
Among all open branches, the free (existential) logical variable X of sort R only occurs in the branch
Φi → Ψi. QE needs to be defined for the formula in the premises, especially, no Skolem dependencies
on X occur.

8
logical variable v does not occur in α.

9
The operator D, as defined in [21,22], is used to computer syntactic total derivations of formulas
algebraically.

10
π is a trace formula, whereas φ and ψ are (state) formulas. Unlike φ and ψ, the trace formula π
may thus begin with a temporal modality � or ♦.

Fig. 2: Rule schemata of the proof calculus for quantified differential temporal dynamic logic

reduce invariants of continuous evolutions to non-temporal formulas as restrictions
of solutions of quantified differential equations are themselves solutions of different
duration and thus already included in the continuous evolutions of ∀i :A f(s)′ = θ.
The (optional) iteration rule [∗n]� can partially unwind loops. It relies on rule [; ]�.



The dual rules 〈∪〉⋄,〈; 〉⋄,〈:=〉⋄,〈?〉⋄,〈′〉⋄,〈∗n〉⋄ work similarly. Rules for handling
[α]♦φ and 〈α〉�φ are discussed in Section 8.

The inductive definition rules [∗]� and 〈∗〉⋄ completely reduce temporal prop-
erties of loops to QdTL properties of standard non-temporal QdL modalities such
that standard induction (ind) or convergence (con) rules, as listed in Fig. 2, can
be used for the outer non-temporal modality of the loop. Hence, after applying the
inductive loop definition rules [∗]� and 〈∗〉⋄, the standard QdL loop invariant and
variant rules can be used for verifying temporal properties of loops without change,
except that the postcondition contains temporal modalities.

6.2 Soundness and Completeness

The following result shows that verification with the QdTL calculus always pro-
duces correct results about the safety of distributed hybrid systems, i.e., the QdTL
calculus is sound.

Theorem 1 (Soundness of QdTL). The QdTL calculus is sound, i.e., every
QdTL (state) formula that can be proven is valid.

The verification for temporal safety ([α]�φ or 〈α〉♦φ), temporal liveness ([α]♦φ
or 〈α〉�φ), and non-temporal ([α]φ or 〈α〉φ) fragments of distributed hybrid sys-
tems has three independent sources of undecidability. Thus, no verification tech-
nique can be effective. Hence, QdTL cannot be effectively axiomatizable. Both its
discrete and its continuous fragments alone are subject to Gödel’s incompleteness
theorem [19]. The fragment with only structural and dimension-changing dynamics
is not effective either, because it can encode two-counter machines.

QdL has been proved to be complete relative to quantified differential equa-
tions [21,22]. Due to the modular construction of the QdTL calculus, we can lift
the relative completeness result from QdL to QdTL. We essentially show that QdTL
is complete relative to QdL, which directly implies that QdTL calculus is even com-
plete relative to an oracle for the fragment of QdTL that has only quantified dif-
ferential equations in modalities. Again, we restrict our attention to homogeneous
combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.

Theorem 2 (Relative Completeness of QdTL). The calculus in Fig. 2 is a
complete axiomatization of QdTL relative to quantified differential equations.

This result shows that both temporal and non-temporal properties of distributed
hybrid systems can be proven to exactly the same extent to which properties of
quantified differential equations can be proven. It also gives a formal justification
that the QdTL calculus reduces temporal properties to non-temporal QdL proper-
ties.

7 Verification of Distributed Air Traffic Control Safety

Properties

Continuing the distributed air traffic control study from Section 5, the QdTL proofs
of the temporal safety invariant in (1) and the temporal safety property in (2) are



presented in Fig. 3 and Fig. 4, respectively (for the purpose of simplifying the
presentation, we ignore typing information A for aircraft in the proof, because
it is clear from the context). Note that temporal and non-temporal properties of
the maneuver cannot be proven using any hybrid systems verification technique,
because the dimension is parametric and unbounded and may even change dynam-
ically during the remainder of the maneuver. The single proof in Fig. 3 or Fig. 4
corresponds to infinitely many proofs for systems with n aircraft for all n.

Our proofs show that the distributed roundabout maneuver always safely avoids
collisions for arbitrarily many aircraft (even with dynamic appearance of new air-
craft). The above maneuver still requires all aircraft in the horizon of relevance
to participate in the collision avoidance maneuver. In fact, we can show that this
is unnecessary for aircraft that are far enough away and that may be engaged in
other roundabouts. Yet, this is beyond the scope of this paper.

true
R

∀i, j T (i, j) → ∀i, j(2(x1(i) − x1(j))(−ω(x2(i) − x2(j))) + 2(x2(i) − x2(j))ω(x1(i) − x1(j)) ≥ 0)
R

∀i, j T (i, j) → ∀i, j(0 = 0 ∧ 2(x1(i) − x1(j))(d1(i) − d1(j)) + 2(x2(i) − x2(j))(d2(i) − d2(j)) ≥ 0)
[:=]

∀i, j T (i, j) → [∀iL(i)]∀i, j(i′ = j′ ∧ 2(x1(i) − x1(j))(x1(i)
′ − x1(j)

′) + 2(x2(i) − x2(j))(x2(i)
′ − x2(j)

′) ≥ 0)

true
R

∀i, j(−ωd2(i) − (−ωd2(j)) = −ω(d2(i) − d2(j)) ∧ ωd1(i) − ωd1(j) = ω(d1(i) − d1(j)))
[:=]

[∀iL(i)]∀i, j(d1(i)
′ − d1(j)

′ = −ω(x2(i)
′ − x2(j)

′) ∧ d2(i)
′ − d2(j)

′ = ω(x1(i)
′ − x1(j)

′))

❈
❈❈❖

✁
✁
✁
✁
✁✁✕

· · ·
[:=]

[∀iL(i)](∀i, j T (i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i)]∀i, j T (i, j)

· · ·
[:=]

∀i, j T (i, j) → [∀iL(i)](∀i, jP(i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i) & ∀i, j T (i, j)]∀i, jP(i, j)

DC
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i)]∀i, jP(i, j)

[′]�
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i)]�∀i, jP(i, j)

Abbreviation: L(i) ≡ x1(i)
′ := d1(i), x2(i)

′ := d2(i), d1(i)
′ := −ωd2(i), d2(i)

′ := ωd1(i)

Fig. 3: Proof for temporal collision freedom of roundabout collision avoidance maneuver circle

8 Liveness by Quantifier Alternation

Liveness specifications of the form [α]♦φ or 〈α〉�φ are sophisticated (Σ1
1 -hard

because they can express infinite occurrence in Turing machines). Beckert and
Schlager [2], for instance, note that they failed to find sound rules for a discrete
case that corresponds to [α;β]♦φ.

For finitary liveness semantics, we can still find proof rules. In this section,
we modify the meaning of [α]♦φ to refer to all terminating traces of α. Then, the
straightforward generalization [; ]⋄ in Fig. 5 is sound, even in the hybrid case. But
[; ]⋄ still leads to an incomplete axiomatization as it does not cover the case where,
in some traces, φ becomes true at some point during α, and in other traces, φ
only becomes true during β. To overcome this limitation, we use a program trans-
formation approach. We instrument the quantified hybrid program to monitor the



true
R

χ ∧ ∀i, j T (i, j) → ∀i, j(2(x1(i) − x1(j))(−ω(x2(i) − x2(j))) + 2(x2(i) − x2(j))ω(x1(i) − x1(j)) ≥ 0)
R

χ ∧ ∀i, j T (i, j) → ∀i, j(0 = 0 ∧ 2(x1(i) − x1(j))(d1(i) − d1(j)) + 2(x2(i) − x2(j))(d2(i) − d2(j)) ≥ 0)
[:=]

χ ∧ ∀i, j T (i, j) → [∀iK(i)]∀i, j(i′ = j′ ∧ 2(x1(i) − x1(j))(x1(i)
′ − x1(j)

′) + 2(x2(i) − x2(j))(x2(i)
′ − x2(j)

′) ≥ 0)

true
R

χ → ∀i, j(−ωd2(i) − (−ωd2(j)) = −ω(d2(i) − d2(j)) ∧ ωd1(i) − ωd1(j) = ω(d1(i) − d1(j)))
[:=]

χ → [∀iK(i)]∀i, j(d1(i)
′ − d1(j)

′ = −ω(x2(i)
′ − x2(j)

′) ∧ d2(i)
′ − d2(j)

′ = ω(x1(i)
′ − x1(j)

′))

❈❈❖ ✁
✁
✁
✁
✁✁✕

· · ·
[:=]

χ → [∀iK(i)](∀i, j T (i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, j T (i, j)

· · ·
[:=]

χ ∧ ∀i, j T (i, j) → [∀iK(i)](∀i, jP(i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ ∧ ∀i, j T (i, j)]∀i, jP(i, j)

DC
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, jP(i, j)

✁
✁✁✕

❆
❆❆❑

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, jP(i, j)
[′]�,[:=]

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ]�∀i, jP(i, j)

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, jP(i, j)
[?]�,[:=]

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ][?η]�∀i, jP(i, j)
[; ]�

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ; ?η]�∀i, jP(i, j)

true
ax

∀i, jP(i, j), ∀i, j T (i, j) → ∀i, jP(i, j)
∧l

∀i, jP(i, j) ∧ ∀i, j T (i, j) → ∀i, jP(i, j)

true
ax

∀i, jP(i, j), ∀i, j T (i, j) → ∀i, jP(i, j)
[:=],∧l

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0]∀i, jP(i, j)
[:=]�

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0]�∀i, jP(i, j)

✁✁✕ ✁
✁
✁
✁
✁
✁
✁✕

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0]�∀i, jP(i, j)

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ; ?η]�∀i, jP(i, j)
[; ]�

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0; ∀iM(i) & χ; ?η]�∀i, jP(i, j)

Abbreviations: M(i) ≡ Fω(i)(i), t
′ = 1

χ ≡ ∀i t ≤ T
η ≡ ∀i t = T

K(i) ≡ x1(i)
′ := d1(i), x2(i)

′ := d2(i), d1(i)
′ := −ωd2(i), d2(i)

′ := ωd1(i), t
′ := 1

Fig. 4: Proof for temporal collision freedom of roundabout collision avoidance maneuver circle in
bounded time

occurrence of φ during all changes: In [α]⋄, α̌ results from replacing all occurrences
of ∀i :A f(s) := θ with ∀i :A f(s) := θ; ?(φ→ t = 1) and ∀i :A f(s)′ = θ&χ with
∀i :A f(s)′ = θ & χ ∧ (φ → t = 1). The latter is a continuous evolution restricted
to the region that satisfies χ and φ → t = 1. The effect is that t detects whether
φ has occurred during any change in α. In particular, t is guaranteed to be 1 after
all runs if φ occurs at least once along all traces of α.

9 Conclusions and Future Work

For reasoning about distributed hybrid systems, we have introduced a temporal
dynamic logic, QdTL, with modal path quantifiers over traces and temporal quan-
tifiers along the traces. It combines the capabilities of quantified differential dy-
namic logic to reason about possible distributed hybrid system behavior with the



([; ]⋄)
→ [α]♦φ, [α][β]♦φ

→ [α;β]♦φ
([α]⋄)

φ ∨ ∀t :R [α̌]t = 1

[α]♦φ

Fig. 5: Transformation rules for alternating temporal path and trace quantifiers

power of temporal logic in reasoning about the behavior along traces. Furthermore,
we have presented a proof calculus for verifying temporal safety specifications of
quantified hybrid programs in QdTL.

Our sequent calculus for QdTL is a completely modular combination of tem-
poral and non-temporal reasoning. Temporal formulas are handled using rules
that augment intermediate state transitions with corresponding sub-specifications.
Purely non-temporal rules handle the effects of discrete transitions, continuous
evolutions, and structural/dimension changes. The modular nature of the QdTL
calculus further enables us to lift the relative completeness result from QdL to
QdTL. This theoretical result shows that the QdTL calculus is a sound and com-
plete axiomatization of the temporal behavior of distributed hybrid systems relative
to differential equations. As an example, we demonstrate that our logic is suitable
for reasoning about temporal safety properties in a distributed air traffic control
system.

We are currently extending our verification tool for distributed hybrid systems,
which is an automated theorem prover called KeYmaeraD [25], to cover the full
QdTL calculus. Future work includes extending QdTL with CTL∗-like [10] formulas
of the form [α](ψ ∧ �φ) to avoid splitting of the proof into two very similar sub-
proofs for temporal parts [α]�φ and non-temporal parts [α]ψ arising in [; ]�. Our
combination of temporal logic with dynamic logic is more suitable for this purpose
than the approach in [2], since QdTL has uniform modalities and uniform semantics
for temporal and non-temporal specifications. This extension will also simplify the
treatment of alternating liveness quantifiers conceptually.
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A Proof of Conservative Temporal Extension

A.1 Reachability Semantics of QdL

In this subsection, we review the reachability semantics of QdL given in [21,22]
before proving Proposition 1 in the next subsection.

Definition 4 (Reachability Semantics of QHP). The reachability semantics,
ρ(α), of QHP α, is a transition relation on states. It specifies which state τ ∈ S is
reachable from a state σ ∈ S by running QHP α and is defined as:

1. (σ, τ) ∈ ρ(∀i :A f(s) := θ) iff τ is identical to σ except that at each position
o of f : if σei JsK = o for some object e ∈ σ(A), then τ(f)(σei JsK) = σei JθK. If
there are multiple objects e giving the same position σei JsK = o, then all of the
resulting states τ are reachable.

2. (σ, τ) ∈ ρ(∀i : A f(s)′ = θ & χ) iff there is a function ϕ : [0, r] → S for
some r ≥ 0 with ϕ(0) = σ and ϕ(r) = τ satisfying the following conditions.
At each time t ∈ [0, r], state ϕ(t) is identical to σ, except that at each position
o of f : if σei JsK = o for some object e ∈ σ(A), then, at each time ζ ∈ [0, r]:
– The differential equations hold and derivatives exist (trivial for r = 0):

d(ϕ(t)ei Jf(s)K)

dt
(ζ) = (ϕ(ζ)

e
i JθK)

– The evolution domains is respected: ϕ(ζ)
e
i JχK = true.

If there are multiple objects e giving the same position σei JsK = o, then all of
the resulting states τ are reachable.

3. ρ(?χ) = {(σ, σ) : σJχK = true}
4. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
5. ρ(α;β) = {(σ, τ) : (σ, z) ∈ ρ(α) and (z, τ) ∈ ρ(β) for a state z.}
6. (σ, τ) ∈ ρ(α∗) iff there is an n ∈ N with n ≥ 0 and there are states σ =

σ0, . . . , σn = τ such that (σi, σi+1) ∈ ρ(α) for all 0 ≤ i < n.

Definition 5 (Valuation of QdL Formulas). The valuation of QdL formula φ
with respect to state σ is defined as follows:

1. σJθ1 = θ2K = true iff σJθ1K = σJθ2K; accordingly for ≥.
2. σJφ ∧ ψK = true iff σJφK = true and σJψK = true; accordingly for ¬.
3. σJ∀i :A φK = true iff σei JφK = true for all objects e ∈ σ(A).
4. σJ∃i :A φK = true iff σei JφK = true for some object e ∈ σ(A).
5. σJ[α]φK = true iff τJφK = true for all states τ with (σ, τ) ∈ ρ(α).
6. σJ〈α〉φK = true iff τJφK = true for some τ with (σ, τ) ∈ ρ(α).

A.2 Extension Proof

The proof of Proposition 1 uses the following lemma about the relationship of
reachability and trace semantics of QdTL programs, which agree on initial and
final states.



Lemma 1. For QHP α, we have

ρ(α) = {(first ν, last ν) : ν ∈ µ(α) terminates.}

Proof. The proof follows an induction on the structure of α.

– The cases ∀i : A f(s) := θ, ∀i : A f(s)′ = θ & χ, and α ∪ β are simple by
comparing the Definition 2 and Definition 4.

– For ?χ, the reasoning splits into two directions. For the direction “⊇”, assume
ν ∈ µ(?χ). We distinguish between two cases. If first νJχK = true, then ν = (σ̂)
has length one, last ν = first ν, and (first ν, last ν) ∈ ρ(α). If, however, first νJχK
= false, then ν = (σ̂, Λ̂) does not terminate, hence, there is nothing to show.
Conversely, for “⊆”, assume (σ, σ) ∈ ρ(?χ), then σJχK = true and (σ̂) ∈ µ(?χ)
satisfies the conditions on ν.

– For α;β and the direction “⊇”, assume that ν ◦ ς ∈ µ(α;β) terminates with
ν ∈ µ(α), ς ∈ µ(β), and last ν = first ς . Then, by induction hypothesis, we
can assume that (first ν, last ν) ∈ ρ(α), and (first ς , last ς) ∈ ρ(β). By the
semantics of sequential composition, we conclude (first ν◦ς , last ν◦ς) ∈ ρ(α;β).
Conversely, for “⊆”, assume that (σ, τ) ∈ ρ(α;β), i.e., let (σ, z) ∈ ρ(α) and
(z, τ) ∈ ρ(β). By induction hypothesis, there is a terminating trace ν ∈ µ(α)
with first ν = σ and last ν = z. Further, by induction hypothesis, there is a
terminating trace ς ∈ µ(β) with first ς = z and last ς = τ . Hence, ν◦ς ∈ µ(α;β)
terminates, first ν ◦ ς = σ and last ν ◦ ς = τ .

– The case α∗ is an inductive consequence of the sequential composition case.

Proof (of Proposition 1). The formulas of QdL are a subset of the QdTL formulas.
In the course of this proof, we use the notation σQdLJ·K to indicate that the QdL
valuation from Definition 5 is used. For QdL formulas ψ, we show that the valua-
tions with respect to Definition 3 and with respect to Definition 5 are the same for
all states σ:

σJψK = σQdLJψK for all σ.

We prove this by induction on the structure of ψ. The cases θ1 = θ2, θ1 ≥ θ2,¬φ, φ∧
ψ, ∀i :A φ, ∃i :A φ of state formulas are obvious. The other cases are proven as
follows.

– If ψ has the form [α]φ, assume that σJ[α]φK = false. Then there is some termi-
nating trace ν ∈ µ(α) with first ν = σ such that last νJφK = false. By induction
hypothesis, this implies that last νQdLJφK = false. According to Lemma 1, (σ,
last ν) ∈ ρ(α) holds, which implies σQdLJ[α]φK = false. For the converse direc-
tion, assume that σQdLJ[α]φK = false. Then there is a (σ, τ) ∈ ρ(α) with τQdLJφK
= false. By Lemma 1, there is a terminating trace ν ∈ µ(α) with first ν = σ and
last ν = τ . By induction hypothesis, last νJφK = false. Thus, we can conclude
that both νJφK = false and νJ[α]φK = false.

– The case ψ = 〈α〉φ is proven accordingly.



B Proof of Soundness and Completeness

B.1 Proof of Soundness

Proof (Proof of Theorem 1). We show that all rules of the QdTL calculus are
locally sound, i.e., for all states σ, the conclusion of a rule is true in state σ when
all premisses are true in σ. Let σ be any state. For each rule we have to show that
the conclusion is true in σ assuming the premisses are true in σ. Inductively, the
soundness of the non-temporal rules follows from Proposition 1 and local soundness
of the corresponding rules in QdL [21,22]. The proof for the generalization in [∪]
and 〈∪〉 to path formulas π is a straightforward extension.

– [; ]� Assume σ |= [α]�φ and σ |= [α][β]�φ. Let ν ∈ µ(α;β), i.e., ν = ̺ ◦ ς with
first ν = σ, ̺ ∈ µ(α), and ς ∈ µ(β). If ̺ does not terminate, then ν = ̺ ∈ µ(α)
and ν |= �φ by premise. If ̺ terminates with last ̺ = first ς , then ̺ |= �φ by
premise. Further, we know σ |= [α][β]�φ. In particular for trace ̺ ∈ µ(α), we
have last ̺ |= [β]�φ. Thus, ς |= �φ because ς ∈ µ(β) starts at first ς = last ̺.
By composition, ̺ ◦ ς |= �φ . As ν = ̺ ◦ ς was arbitrary, we can conclude
σ |= [α;β]�φ. The converse direction holds, as all traces of α are prefixes of
traces of α;β. Hence, the assumption σ |= [α;β]�φ directly implies σ |= [α]�φ.
Further, all traces of β that begin at a state reachable from σ by α are suffixes
of traces of α;β that start in σ. Hence, σ |= [α][β]�φ is implied as well.

– [?]� Soundness of [?]� is obvious, since, by premise, we can assume σ |= φ, and
there is nothing to show for Λ states according to Definition 3. Conversely, σ̂
is a prefix of all traces in µ(?χ) that start in σ.

– [:=]� Assuming σ |= φ and σ |= [∀i : A f(s) := θ]φ, we have to show that
σ |= [∀i :A f(s) := θ]�φ. Let ν ∈ µ(∀i :A f(s) := θ) be any trace with first ν
= σ, i.e., ν = (σ̂, τ̂ ) by Definition 2. Hence, the only two states we need to
consider are ν0(0) = σ and ν1(0) = τ . By premise, ν0(0) = σ yields ν0(0) |= φ.
Similarly, for the state ν1(0) = last ν = τ , the premise gives ν1(0) |= φ. The
converse direction is similar.

– [′]� We prove that [′]� is locally sound by contraposition. For this, assume
that σ 6|= [∀i : A f(s)′ = θ & χ]�φ; then there is a trace ν = (ϕ) ∈ µ(∀i :
A f(s)′ = θ&χ) starting in first ν = σ and σ 6|= �φ. Hence, there is a position
(0, ζ) of ν with ν0(ζ) 6|= φ. Now ϕ restricted to [0, ζ] also solves the quantified
differential equation ∀i :A f(s)′ = θ&χ. Thus, (ϕ|[0,ζ]) 6|= φ as ϕ(ζ) 6|= φ, since
the last state is ϕ(ζ). By consequence, this gives σ 6|= [∀i :A f(s)′ = θ & χ]φ.
The converse direction is obvious as last ν always is a state occurring during
ν. Hence, σ 6|= [∀i :A f(s)′ = θ & χ]φ immediately implies σ 6|= [∀i :A f(s)′ =
θ & χ]�φ.

– [∗n]� By contraposition, assume that σ 6|= [α∗]�φ. Then there is an n ∈ N and
a trace ν ∈ µ(αn) with first ν = σ such that ν 6|= �φ. There are two cases. If
n > 0 then ν ∈ µ(α;α∗), and thus σ 6|= [α;α∗]�φ. If, however, n = 0, then
ν = (σ̂) and σ 6|= φ. Hence, all traces ς ∈ µ(α;α∗) with first ς = σ satisfy
ς 6|= �φ. Finally, it is easy to see that all programs have at least one such trace
ς that witnesses σ 6|= [α;α∗]�φ. The converse direction is easy as all behaviour
of α;α∗ is subsumed by α∗, i.e., µ(α;α∗) ⊆ µ(α∗).



– [∗]� Clearly, using the fact that µ(α∗) ⊇ µ(α∗;α), the set of states along the
traces of α∗ at which φ needs to be true for the premise is a subset of the
corresponding set for the conclusion. Hence, the conclusion entails the premise.
Conversely, all states during traces of α∗ are also reachable by iterating α

sufficiently often to completion and then following a single trace of α. In detail:
If σ 6|= [α∗]�φ. then there is a trace ν ∈ µ(α∗) on which ¬φ holds true at some
state, say, at νk(ζ) 6= Λ. Let n ≥ 0 be the (maximum) number of complete
repetitions of α along ν before discrete step index k. That is, there is some
discrete step index kn < k such that the prefix ̺ = (ν0, . . . , νkn) ∈ µ(αn) of ν
consists of n complete repetitions of α and the suffix ς = (νkn+1 , νkn+2 , . . .) ∈
µ(α∗) starts with a trace of α during which ¬φ occurs at point νk(ζ), namely at
relative position (k−(kn+1), ζ). Let ς́ ∈ ν(α) be this prefix of ς . Consequently,
ς́ |= 〈α〉♦¬φ and the trace ̺ ◦ ς́ is a witness for σ |= 〈α∗〉〈α〉♦¬φ.

The proofs for 〈; 〉⋄–〈∗〉⋄ are dual, since 〈α〉♦φ is equivalent to ¬[α]�¬φ by duality.

B.2 Proof of Relative Completeness

Proof (Outline of Proof of Theorem 2). The proof is a simple extension of the proof
of Theorem 1 in [22], which is the relative completeness theorem for QdL, because
the QdTL calculus successively reduces temporal properties to non-temporal prop-
erties and, in particular, handles loops by inductive definition rules in terms of
QdL modalities. The temporal rules in Fig. 2 transform temporal formulas to sim-
pler formulas, i.e., to where the temporal modalities occur after simpler programs
([∪]�, [∗]�, 〈∪〉⋄, 〈∗〉⋄) or disappear completely ([?]�, [:=]�, [′]� and 〈?〉⋄, 〈:=〉⋄,
〈′〉⋄). Hence, the inductive relative completeness proof for QdL in [22] directly gen-
eralizes to QdTL with the following addition: After applying [∗]� or 〈∗〉⋄, loops
are ultimately handled by the standard QdL rules ind and con. To show that suffi-
ciently strong invariants and variants exist for the temporal postconditions [α]�φ
and 〈α〉♦φ, we only have to show that such temporal formulas are expressible in
the first-order logic of quantified differential equations, FOQD [22].



C Proofs for Liveness Verification by Quantifier Alternation

In this section, we prove that the rules in Section 8 are sound.

Proposition 2 (Local soundness). The rules in Section 8 are locally sound for
finitary liveness semantics.

Proof. Let σ be any state.

– [; ]⋄ Assuming that the premiss is true, we need to consider two cases corre-
sponding to the two formulas of its succedent. If σ |= [α]♦φ, then obviously
σ |= [α;β]♦φ, as every trace of α;β has a trace of α as prefix, during which
φ holds at least once. If, however, σ |= [α][β]♦φ, then φ occurs at least once
during all traces that start in a state reachable from σ by α. Let ̺◦ ς ∈ µ(α;β)
with first ̺ = σ, ̺ ∈ µ(α) and ς ∈ µ(β). In finitary liveness semantics, ̺ ◦ ς can
be assumed to terminate (otherwise there is nothing to show). Then, last ̺ is
a state reachable from σ by α, hence ς |= ♦φ. Thus, ̺ ◦ ς |= ♦φ.

– [α]⋄ For the soundness of [α]⋄, first observe that the truth of σJφK of φ depends
on the state σ, hence it can only be affected during state changes. Further, the
only actual changes of valuations happen during discrete jumps ∀i :A f(s) := θ

or continuous evolutions ∀i :A f(s)′ = θ&χ. All other system actions only cause
control flow effects but no elementary state changes. Assume the premise is true
in a state σ. If σ |= φ, the conjecture is obvious. Hence, assume σ |= ∀t :R [α̌]t =
1. Suppose σ 6|= [α]φ; then there is a trace ν ∈ µ(α) with ν 6|= ♦φ. Then, this
trace directly corresponds to a trace ν̌ of α̌ in which all φ → t = 1 conditions
are trivially satisfied as φ never holds. As there are no changes of the fresh
variable t during α̌, the value of t remains constant during ν̌. But then we can
conclude that there is a trace, which is essentially the same as ν̌ except for the
constant valuation of the fresh variable t on which no conditions are imposed,
hence t = 0 is possible. As these traces terminate in finitary liveness semantics,
we can conclude σ 6|= ∀t :R [α̌]t = 1, which is a contradiction. Conversely for
equivalence of premiss and conclusion, assume σ 6|= φ ∨ ∀t :R [α̌]t = 1. Then,
the initial state σ does not satisfy φ and it is possible for α̌ to execute along
a terminating trace ν that permits t to be 6= 1. Suppose there was a position
(k, ζ) of ν at which νk(ζ) |= φ. Without loss of generality, we can assume (k, ζ)
to be the first such position. Then, the hybrid action which regulates νk is
accompanied by an immediate condition that ϕ→ t = 1, hence t = 1 holds if ν
terminates. Since the fresh variable t is rigid (is never changed during α̌) and
ν terminates in finitary liveness semantics, we conclude last νJtK = 1, which is
a contradiction.


	Quantified Differential Temporal Dynamic Logic for Verifying Properties of Distributed Hybrid Systems

