
ar
X

iv
:1

21
0.

35
48

v1
  [

cs
.G

T
]  

12
 O

ct
 2

01
2

Multiplayer Cost Games with
Simple Nash Equilibria

Thomas Brihaye1, Julie De Pril1, and Sven Schewe2

1 University of Mons - UMONS
Place du Parc 20, 7000 Mons, Belgium

{thomas.brihaye,julie.depril}@umons.ac.be
2 University of Liverpool

sven.schewe@liverpool.ac.uk

Abstract. Multiplayer games with selfish agents naturally occur in thedesign
of distributed and embedded systems. As the goals of selfish agents are usually
neither equivalent nor antagonistic to each other, such games are non zero-sum
games. We study such games and show that a large class of thesegames, includ-
ing games where the individual objectives are mean- or discounted-payoff, or
quantitative reachability, and show that they do not only have a solution, but a
simplesolution. We establish the existence of Nash equilibria that are composed
of k memoryless strategies for each agent in a setting withk agents, one main
andk − 1 minor strategies. The main strategy describes what happenswhen all
agents comply, whereas the minor strategies ensure that allother agents immedi-
ately start to co-operate against the agent who first deviates from the plan. This
simplicity is important, as rational agents are an idealisation. Realistically, agents
have to decide on their moves with very limited resources, and complicated strate-
gies that require exponential—or even non-elementary—implementations cannot
realistically be implemented. The existence of simple strategies that we prove in
this paper therefore holds a promise of implementability.

1 Introduction

The construction of correct and efficient computer systems (both hard- and software)
is recognised to be an extremely difficult task. Formal methods have been exploited
with some success in the design and verification of such systems. Mathematical logic,
automata theory [17], and model-checking [12] have contributed much to the success
of formal methods in this field. However, traditional approaches aim at systems with
qualitative specifications like LTL, and rely on the fact that these specifications are
either satisfied or violated by the system.

Unfortunately, these techniques do not trivially extend tocomplex systems, such as
embedded or distributed systems. A main reason for this is that such systems often con-
sist of multiple independent components with individual objectives. These components
can be viewed as selfish agents that may cooperate and competeat the same time. It is
difficult to model the interplay between these components with traditional finite state
machines, as they cannot reflect the intricate quantitativevaluation of an agent on how
well he has met his goal. In particular, it is not realistic toassume that these components
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are always cooperating to satisfy a common goal, as it is, e.g., assumed in works that
distinguish between an environment and a system. We argue that it is more realistic to
assume that all components act like selfish agents that try toachieve their own objec-
tives and are either unconcerned about the effect this has onthe other components or
consider this effect to be secondary. It is indeed a recent trend to enhance the system
models used in the classical approach of verification by quantitative cost and gain func-
tions, and to exploit the well established game-theoretic framework [21,22] for their
formal analysis.

The first steps towards the extension of computational models with concepts from
classical game theory were taken by advancing from boolean to general two-player
zero-sum games played on graphs [15]. Like their qualitative counter parts, those games
are adequate to model controller-environment interactionproblems [24,25]. As usual
in control theory, one can distinguish between moves of a control player, who plays
actions to control a system to meet a control objective, and an antagonistic environment
player. In the classical setting, the control player has a qualitative objective—he might,
for example, try to enforce a temporal specification—whereas the environment tries
to prevent this. In the extension to quantitative games, thecontroller instead tries to
maximise its gain, while the environment tries to minimise it. This extension lifts the
controller synthesis problem from a constructive extension of a decision problem to a
classical optimisation problem.

However, this extension has not lifted the restriction to purely antagonist interac-
tions between a controller and a hostile environment. In order to study more complex
systems with more than two components, and with objectives that are not necessar-
ily antagonist, we resort to multiplayer non zero-sum games. In this context,Nash
equilibria [21] take the place that winning and optimal strategies takein qualitative
and quantitative two-player games zero-sum games, respectively. Surprisingly, quali-
tative objectives have so far prevailed in the study of Nash equilibria for distributed
systems. However, we argue that Nash equilibria for selfish agents with quantitative
objectives—such as reaching a set of target states quickly or with a minimal consump-
tion of energy—are natural objectives that aught to be studied alongside (or instead of)
traditional qualitative objectives.

Consequently, we studyNash equilibriafor multiplayer non zero-sumgames played
on graphs withquantitativeobjectives.

Our contribution. In this paper, we study turn-based multiplayer non zero-sum
games played on finite graphs with quantitative objectives,expressed through a cost
function for each player (cost games). Each cost function assigns, for every play of the
game, a value that represents the cost that is incurred for a player by this play. Cost func-
tions allow to express classical quantitative objectives such asquantitative reachability
(i.e., the player aims at reaching a subset of states as soon as possible), ormean-payoff
objectives. In this framework, all players are supposed to be rational: they want to min-
imise their own cost or, equivalently, maximise their own gain. This invites the use of
Nash equilibria as the adequate concept for cost games.

Our results are twofold. Firstly, we prove theexistenceof Nash equilibria for a large
class of cost games that includes quantitative reachability and mean-payoff objectives.
Secondly, we study the complexity of these Nash equilibria in terms of thememory



needed in the strategies of the individual players in these Nash equilibria. More pre-
cisely, we ensure existence of Nash equilibria whose strategies only requires a number
of memory states that islinear in the size of the game for a wide class of cost games,
including games with quantitative reachability and mean-payoff objectives.

The general philosophy of our work is as follows: we try to derive existence of
Nash equilibria in multiplayer non zero-sum quantitative games (and characterization
of their complexity) through determinacy results (and characterization of the optimal
strategies) of several well-chosen two-player quantitative games derived from the mul-
tiplayer game. These ideas were already successfully exploited in the qualitative frame-
work [16], and in the case of limit-average objectives [26].

Related work.Several recent papers have consideredtwo-player zero-sumgames
played on finite graphs with regular objectives enriched by somequantitativeaspects.
Let us mention some of them: games with finitary objectives [10], mean-payoff parity
games [11], games with prioritised requirements [1], request-response games where the
waiting times between the requests and the responses are minimized [18,28], games
whose winning conditions are expressed via quantitative languages [2], and recently,
cost-parity and cost-Streett games [13].

Other work concernsqualitative non zero-sumgames. In [16], general criteria ensur-
ing existence of Nash equilibria and subgame perfect equilibria (resp. secure equilibria)
are provided for multiplayer (resp.2-player) games, as well as complexity results. The
complexity of Nash equilibria in multiplayer concurrent games with Büchi objectives
has been discussed in [5]. [4] studies the existence of Nash equilibria for timed games
with qualitative reachability objectives

Finally, there is a series of recent results on the combination of non zero-sumas-
pects withquantitative objectives. In [3], the authors study games played on graphs
with terminal vertices where quantitative payoffs are assigned to the players. In [19],
the authors provide an algorithm to decide the existence of Nash equilibria for concur-
rent priced games with quantitative reachability objectives. In [23], the authors prove
existence of a Nash equilibrium in Muller games on finite graphs where players have a
preference ordering on the sets of the Muller table. Let us also notice that the existence
of a Nash equilibrium in cost games with quantitative reachability objectives we study
in this paper has already been established in [7]. The new proves we provide are simpler
and significantly improve the complexity of the strategies constructed from exponential
to linear in the size of the game.

Organization of the paper.In Section 2, we present the model of multiplayer cost
games and define the problems we study. The main results are given in Section 3. Fi-
nally, in Section 4, we apply our general result on particular cost games with classical
objectives. Omitted proofs and additional materials can befound in the Appendix.

2 General Background

In this section, we define our model ofmultiplayer cost game, recall the concept of
Nash equilibrium and state the problems we study.

Definition 1. A multiplayer cost gameis a tupleG = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π)
where



• Π is a finite set ofplayers,
• G = (V,E) is afinite directed graphwith verticesV and edgesE ⊆ V × V ,
• (Vi)i∈Π is a partition ofV such thatVi is the set of vertices controlled by playeri,

and
• Costi : Plays → R∪{+∞,−∞} is thecost functionof playeri, wherePlays is the

set ofplaysin G, i.e. the set of infinite paths throughG. For every playρ ∈ Plays,
the valueCosti(ρ) represents the amount that playeri loses for this play.

Cost games aremultiplayer turn-based quantitative non zero-sumgames. We assume
that the players are rational: they play in a way to minimise their own cost.

Note that minimising cost or maximising gain are essentially3 equivalent, as max-
imising the gain for playeri can be modelled by usingCosti to be minus this gain
and then minimising the cost. This is particularly important in cases where two players
have antagonistic goals, as it is the case in all two-player zero-sum games. To cover
these cases without changing the setting, we sometimes refer to maximisation in order
to preserve the connection to such games in the literature.

For the sake of simplicity, we assume that each vertex has at least one outgoing
edge. Moreover, it is sometimes convenient to specify an initial vertexv0 ∈ V of the
game. We then call the pair(G, v0) an initialised multiplayer cost game. This game is
played as follows. First, a token is placed on the initial vertexv0. Whenever a token is
on a vertexv ∈ Vi controlled by playeri, playeri chooses one of the outgoing edges
(v, v′) ∈ E and moves the token along this edge tov′. This way, the players together
determine aninfinitepath through the graphG, which we call aplay. Let us remind that
Plays is the set of all plays inG.

A historyh of G is afinite path through the graphG. We denote byHist the set of
histories of a game, and byǫ the empty history. In the sequel, we writeh = h0 . . . hk,
whereh0, . . . , hk ∈ V (k ∈ N), for a historyh, and similarly,ρ = ρ0ρ1 . . ., where
ρ0, ρ1, . . . ∈ V , for a playρ. A prefixof lengthn+ 1 (for somen ∈ N) of a playρ =
ρ0ρ1 . . . is the finite historyρ0 . . . ρn. We denote this history byρ[0, n].

Given a historyh = h0 . . . hk and a vertexv such that(hk, v) ∈ E, we denote byhv
the historyh0 . . . hkv. Moreover, given a historyh = h0 . . . hk and a playρ = ρ0ρ1 . . .
such that(hk, ρ0) ∈ E, we denote byhρ the playh0 . . . hkρ0ρ1 . . ..

The functionLast (resp.First) returns, for a given historyh = h0 . . . hk, the last
vertexhk (resp. the first vertexh0) of h. The functionFirst naturally extends to plays.

A strategyof playeri in G is a functionσ : Hist → V assigning to each historyh ∈
Hist that ends in a vertexLast(h) ∈ Vi controlled by playeri, a successorv = σ(h)
of Last(h). That is,

(

Last(h), σ(h)
)

∈ E. We say that a playρ = ρ0ρ1 . . . of G is
consistentwith a strategyσ of playeri if ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such that
ρk ∈ Vi. A strategy profileof G is a tuple(σi)i∈Π of strategies, whereσi refers to a
strategy for playeri. Given an initial vertexv, a strategy profile determines the unique
play of (G, v) that is consistent with all strategiesσi. This play is called theoutcome
of (σi)i∈Π and denoted by〈(σi)i∈Π〉v. We say that a playerdeviatesfrom a strategy
(resp. from a play) if he does not carefully follow this strategy (resp. this play).

3 Sometimes the translation implies minor follow-up changes, e.g., the replacement oflim inf
by lim sup and vice versa.



A finite strategy automatonfor player i ∈ Π over a gameG = (Π,V, (Vi)i∈Π ,
E, (Costi)i∈Π) is a Mealy automatonAi = (M,m0, V, δ, ν) where:

– M is a non-empty, finite set of memory states,
– m0 ∈ M is the initial memory state,
– δ : M × V → M is the memory update function,
– ν : M × Vi → V is the transition choice function, such that(v, ν(m, v)) ∈ E for

all m ∈ M andv ∈ Vi.

We can extend the memory update functionδ to a functionδ∗ : M×Hist → M defined
by δ∗(m, ǫ) = m andδ∗(m,hv) = δ(δ∗(m,h), v) for all m ∈ M andhv ∈ Hist.
The strategyσAi

computed by a finite strategy automatonAi is defined byσAi
(hv) =

ν(δ∗(m0, h), v) for all hv ∈ Hist such thatv ∈ Vi. We say thatσ is a finite-memory
strategyif there exists4 a finite strategy automatonA such thatσ = σA. Moreover, we
say thatσ = σA has a memory of size at most|M |, where|M | is the number of states
of A. In particular, if|M | = 1, we say thatσ is apositional strategy(the current vertex
of the play determines the choice of the next vertex). We call(σi)i∈Π a strategy profile
with memorym if for all i ∈ Π , the strategyσi has a memory of size at mostm. A
strategy profile(σi)i∈Π is calledpositionalor finite-memoryif eachσi is a positional
or a finite-memory strategy, respectively.

We now define the notion ofNash equilibriain this quantitative framework.

Definition 2. Given an initialised multiplayer cost game(G, v0), a strategy profile(σi)i∈Π

is a Nash equilibriumin (G, v0) if, for every playerj ∈ Π and for every strategyσ′
j of

playerj, we have:
Costj(ρ) ≤ Costj(ρ

′)

whereρ = 〈(σi)i∈Π〉v0 andρ′ = 〈σ′
j , σi∈Π\{j}〉v0 .

This definition means that, for allj ∈ Π , playerj has no incentive to deviate from
σj since he cannot strictly decrease his cost when usingσ′

j instead ofσj . Keeping
notations of Definition 2 in mind, a strategyσ′

j such thatCostj(ρ) > Costj(ρ
′) is

called aprofitable deviationfor playerj w.r.t. (σi)i∈Π .

Example 3.LetG = (Π,V, V1, V2, E,Cost1,Cost2) be the two-player cost game whose
graphG = (V,E) is depicted in Figure 1. The states of player1 (resp.2) are repre-
sented by circles (resp. squares)5. Thus, according to Figure 1,V1 = {A,C,D} and
V2 = {B}. In order to define the cost functions of both players, we consider a price
function π : E → {1, 2, 3}, which assigns a price to each edge of the graph. The
price function6 π is as follows (see the numbers in Figure 1):π(A,B) = π(B,A) =
π(B,C) = 1, π(A,D) = 2 andπ(C,B) = π(D,B) = 3. The cost functionCost1 of
player1 expresses aquantitative reachability objective: he wants to reach the vertexC

4 Note that there exist several finite strategy automata such thatσ = σA.
5 We will keep this convention through the paper.
6 Note that we could have defined a different price function foreach player. In this case, the

edges of the graph would have been labelled by couples of numbers.



(shaded vertex) while minimising the sum of prices up to thisvertex. That is, for every
playρ = ρ0ρ1 . . . of G:

Cost1(ρ) =

{
∑n

i=1 π(ρi−1, ρi) if n is theleastindex s.t.ρn = C,
+∞ otherwise.

As for the cost functionCost2 of player2, it expresses amean-payoff objective: the cost
of a play is the long-run average of the prices that appear along this play. Formally, for
any playρ = ρ0ρ1 . . . of G:

Cost2(ρ) = lim sup
n→+∞

1

n
·

n
∑

i=1

π(ρi−1, ρi).

Each player aims at minimising the cost incurred by the play.Let us insist on the fact
that the players of a cost game may have different kinds of cost functions (as in this
example).

A B C

D

1

1

1

3

2 3

Fig. 1. A two-player cost gameG.

An example of a play inG can be given byρ = (AB)ω , leading to the costs
Cost1(ρ) = +∞ andCost2(ρ) = 1. In the same way, the playρ′ = A(BC)ω induces
the following costs:Cost1(ρ) = 2 andCost2(ρ) = 2.

Let us fix the initial vertexv0 at the vertexA. The playρ = (AB)ω is the outcome of
the positional strategy7 profile (σ1, σ2) whereσ1(A) = B andσ2(B) = A. Moreover,
this strategy profile is in fact aNash equilibrium: player2 gets the least cost he can
expect in this game, and player1 has no incentive to choose the edge(A,D) (it does
not allow the play to pass through vertexC).

We now consider the positional strategy profile(σ′
1, σ

′
2) with σ′

1(A) = B and
σ′
2(B) = C. Its outcome is the playρ′ = A(BC)ω . However, this strategy profile is

nota Nash equilibrium, because player2 can strictly lower his cost by always choosing
the edge(B,A) instead of(B,C), thus lowering his cost from 2 to 1. In other words,
the strategyσ2 (defined before) is aprofitable deviationfor player2 w.r.t. (σ′

1, σ
′
2).

The questions studied in this paper are the following ones:

Problem 1 Given a multiplayer cost gameG, does there exist a Nash equilibrium inG?

Problem 2 Given a multiplayer cost gameG, does there exist a finite-memory Nash
equilibrium inG?

7 Note that player 1 has no choice in verticesC andD, that is,σ1(hv) is necessarily equal toB
for v ∈ {C,D} andh ∈ Hist.



Obviously enough, if we make no restrictions on our cost games, the answer to
Problem 1 (and thus to Problem 2) is negative (see Example 4).Our first goal in this
paper is to identify a large class of cost games for which the answer to Problem 1 is
positive. Then we also positively reply to Problem 2 for subclasses of the previously
identified class of cost games. Both results can be found in Section 3.

Example 4.Let (G, A) be the initialised one-player cost game depicted below, whose
cost functionCost1 is defined byCost1(AnBω) = 1

n
for n ∈ N0 andCost1(Aω) =

+∞. One can be convinced that there is no Nash equilibrium in this initialised game.

A B

In order to our class of cost games, we need the notions ofMin-Max cost games,
determinacyandoptimal strategies. The following two definitions are inspired by [27].

Definition 5. A Min-Max cost gameis a tupleG = (V, VMin, VMax, E,CostMin,GainMax),
where

• G = (V,E) is afinite directed graphwith verticesV and edgesE ⊆ V × V ,
• (VMin, VMax) is a partition ofV such thatVMin (resp.VMax) is the set of vertices

controlled by player Min (resp. Max), and
• CostMin : Plays → R ∪ {+∞,−∞} is thecost functionof player Min, that repre-

sents the amount that he loses for a play, andGainMax : Plays → R ∪ {+∞,−∞}
is thegain functionof player Max, that represents the amount that he wins for a
play.

In such a game, player Min wants tominimisehis cost, while player Max wants to
maximisehis gain. So, a Min-Max cost game is a particular case of a two-player cost
game. Let us stress that, according to this definition, a Min-Max cost game iszero-sum
if CostMin = GainMax, but this might not always be the case8. We also point out that
Definition 5 allows to take completely unrelated functionsCostMin andGainMax, but
usually they are similar (see Definition 15). In the sequel, we denote byΣMin (resp.
ΣMax) the set of strategies of player Min (resp. Max) in a Min-Max cost game.

Definition 6. Given a Min-Max cost gameG, we define for every vertexv ∈ V the
upper valueVal∗(v) as:

Val∗(v) = inf
σ1∈ΣMin

sup
σ2∈ΣMax

CostMin(〈σ1, σ2〉v) ,

and thelower valueVal∗(v) as:

Val∗(v) = sup
σ2∈ΣMax

inf
σ1∈ΣMin

GainMax(〈σ1, σ2〉v) .

The gameG is determinedif, for everyv ∈ V , we haveVal∗(v) = Val∗(v). In this
case, we say that the gameG has avalue, and for everyv ∈ V , Val(v) = Val∗(v) =

8 For an example, see the average-price game in Definition 15.



Val∗(v). We also say that the strategiesσ⋆
1 ∈ ΣMin andσ⋆

2 ∈ ΣMax areoptimal strategies
for the respective players if, for everyv ∈ V , we have that

inf
σ1∈ΣMin

GainMax(〈σ1, σ
⋆
2〉v) = Val(v) = sup

σ2∈ΣMax

CostMin(〈σ
⋆
1 , σ2〉v) .

If σ⋆
1 is an optimal strategy for player Min, then he loses at mostVal(v) when playing

according to it. On the other hand, player Max wins at leastVal(v) if he plays according
to an optimal strategyσ⋆

2 for him.
Examples of classical determined Min-Max cost games can be found in Section 4.

3 Results

In this section, we first define a large class of cost games for which Problem 1 can be
answered positively (Theorem 10). Then, we study existenceof simple Nash equilib-
ria (Theorems 13 and 14). To define this interesting class of cost games, we need the
concepts ofcost-prefix-linearandcoalition-determinedcost games.

Definition 7. A multiplayer cost gameG = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π) is cost-
prefix-linearif, for every playeri ∈ Π , every vertexv ∈ V and historyhv ∈ Hist, there
existsa ∈ R and b ∈ R

+ such that, for every playρ ∈ Plays with First(ρ) = v, we
have:

Costi(hρ) = a+ b · Costi(ρ) .

Let us now define the concept ofcoalition-determinedcost games.

Definition 8. A multiplayer cost gameG = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π) is (positio-
nally/finite-memory) coalition-determinedif, for every playeri ∈ Π , there exists a gain
functionGainiMax : Plays → R ∪ {+∞,−∞} such that

– Costi ≥ Gain
i
Max, and

– the Min-Max cost gameGi = (V, Vi, V \ Vi, E,Costi,Gain
i
Max), where playeri

(player Min) plays against the coalitionΠ \ {i} (player Max), is determined and
has (positional/finite-memory) optimal strategies for both players. That is:∃σ⋆

i ∈
ΣMin, ∃σ

⋆
−i ∈ ΣMax (both positional/finite-memory) such that∀v ∈ V

inf
σi∈ΣMin

GainiMax(〈σi, σ
⋆
−i〉v) = Vali(v) = sup

σ−i∈ΣMax

Costi(〈σ
⋆
i , σ−i〉v) .

Giveni ∈ Π , note thatGi does not depend on the cost functionsCostj , with j 6= i.

Example 9.Let us consider the two-player cost gameG of Example 3, where player 1
has a quantitative reachability objective (Cost1) and player2 has a mean-payoff objec-
tive (Cost2). We show thatG is positionally coalition-determined.

Let us setGain1Max = Cost1 and study the Min-Max cost gameG1 = (V, V1, V2,
E,Cost1,Gain

1
Max), where player Min (resp. Max) is player 1 (resp. 2) and wants to

minimiseCost1 (resp. maximiseGain1Max). This game is positionally determined [27,14].
We define positional strategiesσ⋆

1 andσ⋆
−1 for player 1 and player 2, respectively,



in the following way:σ⋆
1(A) = B and σ⋆

−1(B) = A. From A, their outcome is
〈(σ⋆

1 , σ
⋆
−1)〉A = (AB)ω , andCost1((AB)ω) = Gain1Max((AB)ω) = +∞. One can

check that the strategiesσ⋆
1 andσ⋆

−1 are optimal inG1. Note that the positional strat-
egyσ̃⋆

1 defined bỹσ⋆
1(A) = D is also optimal (for player 1) inG1. With this strategy, we

have that〈(σ̃⋆
1 , σ

⋆
−1)〉A = (ADB)ω , andCost1((ADB)ω) = Gain

1
Max((ADB)ω)= +∞.

We now examine the Min-Max cost gameG2 = (V, V2, V1, E,Cost2,Gain
2
Max),

whereGain2Max is defined asCost2 but with lim inf instead oflim sup. In this game,
player Min (resp. Max) is player 2 (resp. 1) and wants to minimiseCost2 (resp. max-
imise Gain2Max). This game is also positionally determined [27,14]. Letσ⋆

2 andσ⋆
−2

be the positional strategies for player 2 and player 1, respectively, defined as follows:
σ⋆
2(B) = C andσ⋆

−2(A) = D. FromA, their outcome is〈(σ⋆
2 , σ

⋆
−2)〉A = AD(BC)ω ,

andCost2(AD(BC)ω) = Gain
2
Max(AD(BC)ω) = 2. We claim thatσ⋆

2 andσ⋆
−2 are the

only positional optimal strategies inG2.

Theorem 10 positively answers Problem 1 for cost-prefix-linear, coalition-determined
cost games.

Theorem 10. In every initialised multiplayer cost game that is cost-prefix-linear and
coalition-determined, there exists a Nash equilibrium.

Proof. Let (G = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π), v0) be an initialised multiplayer cost
game that is cost-prefix-linear and coalition-determined.Thanks to the latter property,
we know that, for everyi ∈ Π , there exists a gain functionGainiMax such that the Min-
Max cost gameGi = (V, Vi, V \ Vi, E,Costi,Gain

i
Max) is determined and there exist

optimal strategiesσ⋆
i andσ⋆

−i for player i and the coalitionΠ \ {i} respectively. In
particular, forj 6= i, we denote byσ⋆

j,i the strategy of playerj derived from the strategy
σ⋆
−i of the coalitionΠ \ {i}.

The idea is to define the required Nash equilibrium as follows: each playeri plays
according to his strategyσ⋆

i and punishes the first playerj 6= i who deviates from his
strategyσ⋆

j , by playing according toσ⋆
i,j (the strategy of playeri derived fromσ⋆

−j in
the gameGj ).

Formally, we consider the outcome of the optimal strategies(σ⋆
i )i∈Π from v0, and

setρ := 〈(σ⋆
i )i∈Π〉v0 . We need to specify a punishment functionP : Hist → Π ∪ {⊥}

that detects who is the first player to deviate from the playρ, i.e. who has to be punished.
For the initial vertexv0, we defineP (v0) = ⊥ (meaning that nobody has deviated from
ρ) and for every historyhv ∈ Hist, we let:

P (hv) :=







⊥ if P (h) = ⊥ andhv is a prefix ofρ,
i if P (h) = ⊥, hv is not a prefix ofρ, andLast(h) ∈ Vi,
P (h) otherwise (P (h) 6= ⊥).

Then the definition of the Nash equilibrium(τi)i∈Π in G is as follows. For alli ∈ Π
andh ∈ Hist such thatLast(h) ∈ Vi,

τi(h) :=

{

σ⋆
i (h) if P (h) = ⊥ or i,

σ⋆
i,P (h)(h) otherwise.

Clearly the outcome of(τi)i∈Π is the playρ (= 〈(σ⋆
i )i∈Π〉v0 ).



Now we show that the strategy profile(τi)i∈Π is a Nash equilibrium inG. As a con-
tradiction, let us assume that there exists a profitable deviationτ ′j for some playerj ∈
Π . We denote byρ′ := 〈τ ′j , (τi)i∈Π\{j}〉v0 the outcome where playerj plays according
to his profitable deviationτ ′j and the players of the coalitionΠ \ {j} keep their strate-
gies(τi)i∈Π\{j} . Sinceτ ′j is a profitable deviation for playerj w.r.t. (τi)i∈Π , we have
that:

Costj(ρ
′) < Costj(ρ). (1)

As both playsρ andρ′ start from vertexv0, there exists a historyhv ∈ Hist such
that ρ = h〈(τi)i∈Π〉v andρ′ = h〈τ ′j , (τi)i∈Π\{j}〉v (remark thath could be empty).
Among the common prefixes ofρ andρ′, we choose the historyhv of maximal length.
By definition of the strategy profile(τi)i∈Π , we can write in the case of the outcomeρ
thatρ = h〈(σ⋆

i )i∈Π〉v. Whereas in the case of the outcomeρ′, playerj does not follow
his strategyσ⋆

j any more from vertexv, and so, the coalitionΠ \ {j} punishes him by
playing according to the strategyσ⋆

−j after historyhv, and soρ′ = h〈τ ′j , σ
⋆
−j〉v (see

Figure 2).

v0

h

v

ρ= h〈(σ⋆
i )i∈Π 〉vρ′ =h〈τ ′

j ,σ
⋆
−j〉v

Fig. 2.Sketch of the tree representing the unravelling of the gameG from v0.

Sinceσ⋆
−j is an optimal strategy for the coalitionΠ \ {j} in the determined Min-

Max cost gameGj , we have:

Val
j(v) = inf

σj∈ΣMin

Gain
j
Max(〈σj , σ

⋆
−j〉v)

≤ Gain
j
Max(〈τ

′
j , σ

⋆
−j〉v)

≤ Costj(〈τ
′
j , σ

⋆
−j〉v) . (2)

The last inequality comes from the hypothesisCostj ≥ Gain
j
Max in the gameGj .

Moreover, the gameG is cost-prefix-linear, and then, when considering the history
hv, there exista ∈ R andb ∈ R

+ such that

Costj(ρ
′) = Costj(h〈τ

′
j , σ

⋆
−j〉v) = a+ b · Costj(〈τ

′
j , σ

⋆
−j〉v) . (3)

As b ≥ 0, Equations (2) and (3) imply:

Costj(ρ
′) ≥ a+ b · Valj(v) . (4)



Sinceh is also a prefix ofρ, we have:

Costj(ρ) = Costj(h〈(σ
⋆
i )i∈Π〉v) = a+ b · Costj(〈(σ

⋆
i )i∈Π〉v) . (5)

Furthermore, asσ⋆
j is an optimal strategy for playerj in the Min-Max cost gameGj , it

follows that:

Valj(v) = sup
σ−j∈ΣMax

Costj(〈σ
⋆
j , σ−j〉v)

≥ Costj(〈(σ
⋆
i )i∈Π〉v) . (6)

Then, Equations (5) and (6) imply:

Costj(ρ) ≤ a+ b · Valj(v) . (7)

Finally, Equations (4) and (7) lead to the following inequality:

Costj(ρ) ≤ a+ b · Valj(v) ≤ Costj(ρ
′) ,

which contradicts Equation (1). The strategy profile(τi)i∈Π is then a Nash equilibrium
in the gameG. ⊓⊔

Remark 11.The proof of Theorem 10 remains valid for cost functionsCosti : Plays →
K, where〈K,+, ·, 0, 1,≤〉 is an ordered field. This allows for instance to consider non-
standard real costs and enjoy infinitesimals to model the costs of a player.

Example 12.Let us consider the initialised two-player cost game(G, A) of Example 3,
where player 1 has a quantitative reachability objective (Cost1) and player2 has a mean-
payoff objective (Cost2). One can show thatG is cost-prefix-linear. Since we saw in Ex-
ample 9 that this game is also positionally coalition-determined, we can apply the con-
struction in the proof of Theorem 10 to get a Nash equilibriumin G. The construction
from this proof may result in two different Nash equilibria,depending on the selection
of the strategiesσ⋆

1 /σ̃⋆
1 , σ⋆

−1, σ⋆
2 andσ⋆

−2 as defined in Example 9.
The first Nash equilibrium(τ1, τ2) with outcomeρ = 〈σ⋆

1 , σ
⋆
2〉A = A(BC)ω is

given, for any historyh, by:

τ1(hA) :=

{

B if P (hA) = {⊥, 1}
D otherwise

; τ2(hB) :=

{

C if P (hB) = {⊥, 2}
A otherwise

where the punishment functionP is defined as in the proof of Theorem 10 and depends
on the playρ. The cost for this finite-memory Nash equilibrium isCost1(ρ) = 2 =
Cost2(ρ).

The strategỹτ1 of the second Nash equilibrium(τ̃1, τ2) with outcomẽρ = 〈σ̃⋆
1 , σ

⋆
2〉A =

AD(BC)ω is given byτ̃1(hA) := D for all historyh. The cost for this finite-memory
Nash equilibrium isCost1(ρ̃) = 6 andCost2(ρ̃) = 2, respectively.

Note that there is no positional Nash equilibrium with outcomeρ (resp.ρ̃).

The two following theorems provide results about the complexity of the Nash equi-
librium defined in the latter proof. Applications of these theorems to specific classes of
cost games are provided in Section 4.



Theorem 13. In every initialised multiplayer cost game that is cost-prefix-linear and
positionally coalition-determined, there exists a Nash equilibrium with memory (at
most)|V |+ |Π |.

Theorem 14. In every initialised multiplayer cost game that is cost-prefix-linear and
finite-memorycoalition-determined, there exists a Nash equilibrium with finite memory.

The proofs of these two theorems rely on the construction of the Nash equilibrium
provided in the proof of Theorem 10.

4 Applications

In this section, we exhibit several classes ofclassical objectivesthat can be encoded in
our general setting. The list we propose is far from being exhaustive.

4.1 Qualitative Objectives

Multiplayer games with qualitative (win/lose) objectivescan naturally be encoded via
multiplayer cost games; for instance via cost functionsCosti : Plays → {1,+∞},
where1 (resp.+∞) means that the play is won (resp. lost) by playeri. Let us now
consider the subclass of qualitative games with prefix-independent9 Borel objectives.
Given such a gameG, we have thatG is coalition-determined, as a consequence of the
Borel determinacy theorem [20]. Moreover the prefix-independence hypothesis obvi-
ously guarantees thatG is also cost-prefix-linear (by takinga = 0 and b = 1). By
applying Theorem 10, we obtain the existence of a Nash equilibrium for qualitative
games with prefix-independent Borel objectives. Let us notice that this result is already
present in [16].

When considering more specific subclasses of qualitative games enjoying a posi-
tional determinacy result, such as parity games [15], we canapply Theorem 13 and
ensure existence of a Nash equilibrium whose memory is (at most) linear.

4.2 Classical Quantitative Objectives

We here give four well-known kinds of Min-Max cost games and see later that they are
determined. For each sort of game, the cost and gain functions are defined from a price
function (and a reward function in the last case), which labels the edges of the game
graph with prices (and rewards).

Definition 15 ([27]). Given a game graphG = (V, VMin, VMax, E), a price functionπ :
E → R that assigns a price to each edge, a diverging10 reward functionϑ : E → R that
assigns a reward to each edge, and a playρ = ρ0ρ1 . . . in G, we define the following
Min-Max cost games:

9 An objectiveΩ ⊆ V ω is prefix-independent if only if for every playρ = ρ0ρ1 . . . ∈ V ω, we
have thatρ ∈ Ω iff for every n ∈ N, ρnρn+1 . . . ∈ Ω.

10 For all playsρ = ρ0ρ1 . . . in G, it holds thatlimn→∞ |
∑n

i=1 ϑ(ρi−1, ρi)| = +∞. This is
equivalent to requiring that every cycle has a positive sum of rewards.



(i) a reachability-price gameis a Min-Max cost gameG = (G,RPMin,RPMax) together
with a given goal setGoal ⊆ V , where

RPMin(ρ) = RPMax(ρ) =

{

π(ρ[0, n]) if n is theleastindex s.t.ρn ∈ Goal,
+∞ otherwise,

with π(ρ[0, n]) =
∑n

i=1 π(ρi−1, ρi);

(ii) a discounted-price gameis a Min-Max cost gameG = (G,DPMin(λ),DPMax(λ))
together with a given discount factorλ ∈ ]0, 1[, where

DPMin(λ)(ρ) = DPMax(λ)(ρ) = (1− λ) ·

+∞
∑

i=1

λi−1π(ρi−1, ρi) ;

(iii) an average-price game11 is a Min-Max cost gameG = (G,APMin,APMax), where

APMin(ρ) = lim sup
n→+∞

π(ρ[0, n])

n
and APMax(ρ) = lim inf

n→+∞

π(ρ[0, n])

n
;

(iv) a price-per-reward-average gameis a Min-Max cost gameG = (G,PRAvgMin,
PRAvgMax), where

PRAvgMin(ρ) = lim sup
n→+∞

π(ρ[0, n])

ϑ(ρ[0, n])
and PRAvgMax(ρ) = lim inf

n→+∞

π(ρ[0, n])

ϑ(ρ[0, n])
,

with ϑ(ρ[0, n]) =
∑n

i=1 ϑ(ρi−1, ρi).

An average-price game is then a particular case of a price-per-reward-average game.
Let us remark that, in Example 3, the cost functionCost1 (resp.Cost2) corresponds
to RPMin with Goal = {C} (resp. APMin). The gameG1 (resp.G2) of Example 9 is a
reachability-price (resp. average-price) game.

The following theorem is a well-known result about the particular cost games de-
scribed in Definition 15.

Theorem 16 ([27,14]).Reachability-price games, discounted-price games, average-
price games, and price-per-reward games are determined andhave positional optimal
strategies.

This result implies that a multiplayer cost game where each cost function is RPMin ,
DPMin , APMin or PRAvgMin is positionally coalition-determined. Moreover, one can
show that such a game is cost-prefix-linear. Theorem 17 then follows from Theorem 13.

Theorem 17. In every initialised multiplayer cost gameG = (Π,V, (Vi)i∈Π , E,
(Costi)i∈Π) where the cost functionCosti belongs to {RPMin,DPMin,APMin,
PRAvgMin} for every playeri ∈ Π , there exists a Nash equilibrium with memory (at
most)|V |+ |Π |.

11 When the cost function of a player is APMin , we say that he has a mean-payoff objective.



Note that the existence of finite-memory Nash equilibria in cost games with quantita-
tive reachability objectives has already been establishedin [7,8]. Even if not explicitly
stated in the previous papers, one can deduce from the proof of [8, Lemma 16] that
the provided Nash equilibrium has a memory (at least) exponential in the size of the
cost game. Thus, Theorem 17 significantly improves the complexity of the strategies
constructed in the case of cost games with quantitative reachability objectives.

4.3 Combining Qualitative and Quantitative Objectives

Multiplayer cost games allow to encode games combining bothqualitative and quanti-
tative objectives, such asmean-payoff parity games[11]. In our framework, where each
player aims at minimising his cost, the mean-payoff parity objective could be encoded
as follows:Costi(ρ) = APMin(ρ) if the parity condition is satisfied,+∞ otherwise.

The determinacy of mean-payoff parity games, together withthe existence of opti-
mal strategies (that could require infinite memory) have been proved in [11]. This result
implies that multiplayer cost games with mean-payoff parity objectives are coalition-
determined. Moreover, one can prove that such a game is also cost-prefix-linear (by
takinga = 0 andb = 1). By applying Theorem 10, we obtain the existence of a Nash
equilibrium for multiplayer cost games with mean-payoff parity objectives. As far as
we know, this is the first result about the existence of a Nash equilibrium in cost games
with mean-payoff parity games.

Remark 18.Let us emphasise that Theorem 10 applies to cost games where the players
have different kinds of cost functions (as in Example 3). In particular, one player could
have a qualitative Büchi objective, a second player a discounted-price objective, a third
player a mean-payoff parity objective,. . .
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Technical Appendix

A Example of a cost game which is not cost-prefix-linear

Example 19.Multiplayer cost games allow to encode energy games. LetG be a cost
game defined by means of a price functionπ : E → R, that assigns a price to each
edge. In our framework, where each player aims at minimisinghis cost, an energy
objective [6] (with thresholdT ∈ R) could be encoded as follows:

Costi(ρ) =

{

supn≥0 π(ρ[0, n]) if supn≥0 π(ρ[0, n]) ≤ T

+∞ otherwise,

with π(ρ[0, n]) =
∑n

i=1 π(ρi−1, ρi).

A B

+1 -1+1

-1

Fig. 3. A cost game which is not cost-prefix-linear

Let us consider the one-player cost game with an energy objective (with threshold
T = 2) depicted in Figure 3. We show that this game is not cost-prefix-linear. For
this, we exhibit a historyhv ∈ Hist such that for alla, b ∈ R there exists a play
ρ ∈ Plays with First(ρ) = v, such thatCost1(hρ) 6= a + b · Cost1(ρ). We in fact
give a playρ independent ofa andb. Lethv be the historyAAABA andρ be the play
(AB)ω . We have thatCost1(ρ) = 1 andCost1(hρ) = Cost1(AA(AB)ω) = +∞, since
supn≥0 π((hρ)[0, n]) = 3, which is above the thresholdT = 2. It is thus impossible to
find a, b ∈ R such that:

+∞ = Cost1(hρ) = a+ b · Cost1(ρ) = a+ b.

B Remark about secure and subgame perfect equilibria

Remark 20.It would be tempting to try to prove the existence ofsubgame perfect equi-
libria or secure equilibria12 in multiplayer cost games with techniques similar to the
proof of Theorem 10. However, our definition of the Nash equilibrium in the proof of
Theorem 10 is (in general) neither a subgame perfect equilibrium, nor a secure equilib-
rium. To see this, let us consider the following two cost gamesG andH, whose graphs
are depicted on Figure 4 and 5 respectively. Both games are initialised in vertexA.

The gameG is a two-player cost game where the vertices of player 1 (resp. 2) are
represented by circles (resp. squares), that is,V1 = {B,C,D,E, F} andV2 = {A}.

12 The definitions of subgame perfect and secure equilibria in this context can be found in [9].



A

B C

D E F

Fig. 4. GameG.

A

B

C D

Fig. 5.GameH.

The cost functions of both players are RPMin , with13 Goal1 = Goal2 = {D,E} and the
price functionπ : E → R defined byπ(e) = 1 for any edgee ∈ E (same price function
for the two players). It means that both players have reachability objectives and want to
reach vertexD orE within the least number of edges.

Let us study the two Min-Max cost gamesG1 andG2. In the gameG1, let σ⋆
1 be

defined asσ⋆
1(C) = E andσ⋆

−1 be defined asσ⋆
−1(A) = C. Then,σ⋆

1 andσ⋆
−1 are

positional optimal strategies for player Min (player 1) andplayer Max (player 2) re-
spectively. In the gameG2, we defineσ⋆

2 andσ⋆
−2 asσ⋆

2(A) = B andσ⋆
−2(C) = F .

These two strategies ofG2 are positional optimal strategies for player Min (player 2)
and player Max (player 1) respectively.

If we define a Nash equilibrium(τ1, τ2) in G exactly as in the proof of Theorem 10,
depending on these strategiesσ⋆

1 , σ⋆
−1, σ⋆

2 andσ⋆
−2, then(τ1, τ2) is not a subgame per-

fect equilibrium inG. Indeed,(τ1|A, τ2|A) is not a Nash equilibrium in the subgameG|A
with historyAC: player 1 punishes player 2 by choosing the edge(C,F ) (according to
σ⋆
−2) whereas player 1 could pay a smaller cost by choosing the edge (C,E).

Furthermore, this Nash equilibrium also gives a counter-example of subgame per-
fect equilibrium for other classical punishments (see [22], e.g., punish the last player
who has deviated and only for a finite number of steps).

Let us now consider the two-player cost gameH whereV1 = {A,B} andV2 =
{C,D} (see Figure 5). The price function and the cost functions of the two players are
the same as in the gameG, except that hereGoal1 = {A,C} andGoal2 = {C}. Note
that player2 does not really play inH, only player1 has a choice to make: he can
choose the edge(B,C) or the edge(B,D).

As before, we study the two Min-Max cost gamesH1 andH2. Letσ⋆
1 be a positional

strategy of player 1 inH1 such thatσ⋆
1(B) = C, andσ⋆

−2 be a positional strategy of
player 1 inH2 such thatσ⋆

−2(B) = D. These strategies are optimal in the two respective
games. Then, we define a Nash equilibrium inH in the same way as in the proof of
Theorem 10, depending onσ⋆

1 andσ⋆
−2. Actually, this is not a secure equilibrium in

H because player 1 can strictly increase player 2’s cost whilekeeping his own cost,
by choosing the edge(B,D) instead of followingσ⋆

1 (σ⋆
1 suggests to choose the edge

(B,C)).

13 In both figures, shaded (resp. doubly circled) vertices represent the goal setGoal1 (resp.
Goal2).



C Proof of Theorem 13

Theorem 13 states that in every initialised multiplayer cost game that is cost-prefix-
linear andpositionallycoalition-determined, there exists a Nash equilibrium with mem-
ory (at most)|V |+ |Π |.

Proof. Let (G = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π), v0) be an initialised multiplayer cost
game that is cost-prefix-linear andpositionallycoalition-determined. For this proof, we
keep the notations introduced in the proof of Theorem 10. In particular, we consider
the Nash equilibrium(τi)i∈Π as defined in the latter proof, whose outcome isρ :=
〈(σ⋆

i )i∈Π〉v0 . We recall that for alli ∈ Π , the strategyτi depends on the strategiesσ⋆
i

(optimal strategy inGi) andσ⋆
i,j (derived from the optimal strategyσ⋆

−j in Gj ) for j ∈
Π \ {i}. As the gameG is now positionally coalition-determined by hypothesis, these
strategies are assumed to be positional. This proof consists in showing that(τi)i∈Π is a
strategy profile with memory (at most)|V |+ |Π |.

For this purpose, we define a finite strategy automaton for each player that remem-
bers the playρ and who has to be punished. As the playρ is the outcome of the po-
sitional strategy profile(σ⋆

i )i∈Π , we can writeρ := v0 . . . vk−1(vk . . . vn)
ω where

0 ≤ k ≤ n ≤ |V |, vl ∈ V for all 0 ≤ l ≤ n and these vertices are all different.
For anyi ∈ Π , letAi = (M,m0, V, δ, ν) be the strategy automaton of playeri, where:

– M = {v0v0, v0v1, . . . , vn−1vn, vnvk} ∪Π \ {i}.
As we want to be sure that the playρ is followed by all players, we need to mem-
orise which movement (edge) has to be chosen at each step ofρ. This is the role
of {v0v0, v0v1, . . . , vn−1vn, vnvk}. But in case a player deviates fromρ, we only
have to remember this player during the rest of the play (no matter if another player
later deviates fromρ). This is the role ofΠ \ {i}.

– m0 = v0v0 (this memory state means that the play has not begun yet).
– δ : M × V → M is defined in this way: givenm ∈ M andv ∈ V ,

δ(m, v) :=























j if m = j ∈ Π or
(m = u1u2, with u1, u2 ∈ V , v 6= u2 andu1 ∈ Vj ),

vlvl+1 if m = uvl for a certainl ∈ {0, . . . , n− 1}, u ∈ V ,
andv = vl,

vnvk otherwise (m = uvn andv = vn).

Intuitively, m represents either a player to punish, or the edge that should, if fol-
lowing ρ, have been chosen at the last step of the current stage of the play, andv is
the real last vertex of the current stage of the play.
Notice that in this definition ofδ, j is different fromi because if playeri follows the
strategy computed by this strategy automaton, one can be convinced that he does
not deviate from the playρ.

– ν : M × Vi → V is defined in this way: givenm ∈ M andv ∈ Vi,

ν(m, v) :=







σ⋆
i (v) if m = u1u2 with u1, u2 ∈ V andv = u2,

σ⋆
i,j(v) if m = j ∈ Π or

(m = u1u2, with u1, u2 ∈ V , v 6= u2 andu1 ∈ Vj).



The idea is to play according toσ⋆
i if everybody follows the playρ, and switch to

σ⋆
i,j if playerj is the first player who has deviated fromρ.

Obviously, the strategyσAi
computed by the strategy automatonAi exactly corre-

sponds to the strategyτi of the Nash equilibrium. And so, we can conclude that each
strategyτi requires a memory of size at most|M | ≤ |Π |+ |V |. ⊓⊔

D Example 3 continued

Example 21.Thanks to the proof of Theorem 13, we can construct a finite strategy
automatonA1 that computes the strategyτ1 of player 1 given in Example 12. The set
M of memory states isM = {AA,AB,BC,CB} ∪ {2} sinceρ = A(BC)ω , and
the initial state ism0 = AA. The memory update functionδ : M × V → M and the
transition choice functionν : M ×V1 → V are depicted in Figure 6: a labelv/v′ on an
edge(m1,m2) means thatδ(m1, v) = m2, andν(m1, v) = v′ if v ∈ V1. If v /∈ V1, we
indicate thatν does not return any advice by a ‘−’, and label the edge withv/−.

AA AB BC

CB

2

A/B B/−

C/B

B/−

A/D A/D

Fig. 6. The finite strategy automatonA1.

E Sketch of proof of Theorem 14

Theorem 14 states that in every initialised multiplayer cost game that is cost-prefix-
linear andfinite-memorycoalition-determined, there exists a Nash equilibrium with fi-
nite memory.

Proof (Sketch).The proof follows the same philosophy than the proof of Theorem 13
and keeps the same notations. Again we consider the Nash equilibrium (τi)i∈Π defined
in the proof of Theorem 10, whose outcome isρ := 〈(σ⋆

i )i∈Π〉v0 . We recall that for
all i ∈ Π , the strategyτi depends on the strategiesσ⋆

i andσ⋆
i,j for j ∈ Π \ {i}. As

the gameG is finite-memory coalition-determined by hypothesis, these strategies are
assumed to be finite-memory. Giveni ∈ Π andj ∈ Π \ {i}, we denote byAσ⋆

i (resp.
Aσ⋆

i,j ) a finite strategy automaton for the strategyσ⋆
i (resp.σ⋆

i,j ).
As in the proof of Theorem 13, each player needs to remember both the playρ and

who has to be punished. But here the playρ is not anymore the outcome of a positional
strategy profile: eachσ⋆

i is a finite-memory strategy. Nevertheless, in some sense, we
can see theσ⋆

i ’s as positional strategies played on the product graphG×Aσ⋆
1 × · · · ×



Aσ⋆
|Π| . This allows us to writeρ := v0 . . . vk−1(vk . . . vn)

ω where14 0 ≤ k ≤ n ≤
|V | ·

∏

j∈Π |Aσ⋆
j |, vl ∈ V for all 0 ≤ l ≤ n. Like in the proof of Theorem 13, we

can now define, for anyi ∈ Π , Aτi , a finite strategy automaton forτi. In order to build
explicitly Aτi , we need to take into account, on one hand, the pathρ, and on the other
hand, the memory of the punishing strategiesσ⋆

i,j . This enables to bound the size ofAτi

by |V | ·
∏

j∈Π |Aσ⋆
j |+

∑

j∈Π\{i} |A
σ⋆
i,j |. ⊓⊔

F Remark on the particular Min-Max cost games of Definition 15

Remark 22.Note that reachability-price and discounted-price games are zero-sum15

games, whereas the two other ones are not. For example, let usconsider the average-
price gameG depicted on Figure 7. The vertices of this game areA andB, and the
number0 or 1 associated to an edge corresponds with the price of this edge(π(A,B) =
π(B,B) = 1 and the price of the other edges is zero).

A B

1

0

0 1

Fig. 7. Average-price gameG.

Letρ be the playABAB2A2B4A4 . . . B2nA2n . . ., whereAi means the concatena-
tion of i A. Then the sequence of prices appearing alongρ is 1012021404 . . . 12

n

02
n

. . .,
and so we get: APMin(ρ) = 2

3 and APMax(ρ) = 1
2 . As these costs are not equal, the

average-price gameG depicted on Figure 7 is not a zero-sum game. Since an average-
price game is a special case of price-per-reward-average game, we can conclude that
these two kinds of games are non zero-sum games.

G Part of the proof of Theorem 17

Proposition 23. Let G = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π) be a multiplayer cost game
where the cost functionCosti belongs to{RPMin,DPMin,APMin,PRAvgMin} for each
i ∈ Π . Then the gameG is cost-prefix-linear and positionally coalition-determined.

Proof. Let G be a a multiplayer cost game where each cost function is RPMin , DPMin ,
APMin or PRAvgMin . Let us first prove that the gameG is cost-prefix-linear. Givenj ∈
Π , v ∈ V andhv ∈ Hist, we consider the four possible cases forCostj . Letπ : E → R

be a price function andϑ : E → R be a diverging reward function. For the sake of
simplicity, we writehv := h0 . . . hk with k ∈ N, hk = v andhl ∈ V for l = 0, . . . , k.

14 |A| denotes the number of states of the automatonA.
15 Let us recall that a Min-Max cost game is zero-sum if and only if CostMin = GainMax.



Moreover, to avoid heavy notation, we do not explicitly showthe dependency between
Goal andj in the first case or betweenλ andj in the second case.

(i) CaseCostj = RPMin for a given goal setGoal ⊆ V :
Let us distinguish two situations. If there existsl ∈ {0, . . . , k} such thathl ∈ Goal,
then we seta :=

∑n
i=1 π(hi−1, hi) ∈ R andb := 0 ∈ R

+, wheren is the least
index such thathn ∈ Goal. Let ρ be a play withFirst(ρ) = v, then it implies
that RPMin(hρ) =

∑n
i=1 π(hi−1, hi) = a+ b · RPMin(ρ) (with the convention that

0 ·+∞ = 0).
If there does not existl ∈ {0, . . . , k} such thathl ∈ Goal, then we seta :=
∑k

i=1 π(hi−1, hi) ∈ R andb := 1 ∈ R
+. Let ρ = ρ0ρ1 . . . be a play such that

First(ρ) = v. If RPMin(ρ) is infinite, then RPMin(hρ) = +∞ = a + b · RPMin(ρ).
Otherwise, ifn is the least index inN such thatρn ∈ Goal, then we have that:

RPMin(hρ) =
k
∑

i=1

π(hi−1, hi) +
n
∑

i=1

π(ρi−1, ρi)

= a+ b · RPMin(ρ).

(ii) CaseCostj = DPMin(λ) for a given discount factorλ ∈ ]0, 1[:
We seta := (1 − λ)

∑k
i=1 λ

i−1π(hi−1, hi) ∈ R andb := λk ∈ R
+. Given a play

ρ = ρ0ρ1 . . . such thatFirst(ρ) = v andη := hρ ∈ Plays (with η = η0η1 . . .), we
have that:

DPMin(λ)(hρ) = DPMin(λ)(η)

= (1− λ)
+∞
∑

i=1

λi−1π(ηi−1, ηi)

= (1− λ)

k
∑

i=1

λi−1π(ηi−1, ηi) + (1− λ)

+∞
∑

i=k+1

λi−1π(ηi−1, ηi)

= (1− λ)

k
∑

i=1

λi−1π(hi−1, hi) + λk(1− λ)

+∞
∑

i=1

λi−1π(ρi−1, ρi)

= a+ b · DPMin(λ)(ρ) .

(iii) CaseCostj = APMin :
We seta := 0 ∈ R andb := 1 ∈ R

+. Givenρ ∈ Plays such thatFirst(ρ) = v and
η := hρ ∈ Plays (with η = η0η1 . . .), we show that:

APMin(hρ) = APMin(η) = APMin(ρ) .

If APMin(η) = APMin(ρ) = +∞ or −∞, the desired result obviously holds. Oth-
erwise, let us setxn := 1

n

∑n
i=1 π(ηi−1, ηi) andyn := 1

n

∑n
i=1 π(ρi−1, ρi), for all

n ∈ N0. By properties of the limit superior and definition of the APMin function, it
holds that:

lim sup
n→+∞

(xn − yn) ≥ APMin(η)− APMin(ρ) ≥ lim inf
n→+∞

(xn − yn) .



It remains to prove that the sequence(xn − yn)n∈N converges to0. For alln > k,
we have that:

|xn − yn| =
∣

∣

∣

1
n
·
(

∑n
i=1 π(ηi−1, ηi)−

∑k+n
i=k+1 π(ηi−1, ηi)

)∣

∣

∣

= 1
n
·
∣

∣

∣

∑k
i=1 π(ηi−1, ηi)−

∑n+k
i=n+1 π(ηi−1, ηi)

∣

∣

∣
.

As the absolute value is bounded independently ofn (let us remind thatE is finite),
we can conclude that(xn − yn)n∈N converges to0, and so APMin(η) = APMin(ρ).

(iv) CaseCostj = PRAvgMin :
We seta := 0 ∈ R andb := 1 ∈ R

+. Givenρ ∈ Plays such thatFirst(ρ) = v and
η := hρ ∈ Plays (with η = η0η1 . . .), we show that:

PRAvgMin(hρ) = PRAvgMin(η) = PRAvgMin(ρ) .

Thanks to several properties oflim sup, we have that:

PRAvgMin(ρ) = lim sup
n→+∞

∑n
i=1 π(ρi−1, ρi)

∑n
i=1 ϑ(ρi−1, ρi)

= lim sup
n→+∞

∑n
i=1 π(ηk+i−1 , ηk+i)

∑n
i=1 ϑ(ηk+i−1, ηk+i)

= lim sup
n→+∞

∑n+k
i=1 π(ηi−1, ηi)−

∑k
i=1 π(ηi−1, ηi)

∑n+k
i=1 ϑ(ηi−1, ηi)−

∑k
i=1 ϑ(ηi−1, ηi)

= lim sup
n→+∞

∑n+k
i=1 π(ηi−1, ηi)

∑n+k
i=1 ϑ(ηi−1, ηi)−

∑k
i=1 ϑ(ηi−1, ηi)

(8)

= lim sup
n→+∞

∑n+k
i=1 π(ηi−1, ηi)

∑n+k
i=1 ϑ(ηi−1, ηi)

·
1

1−
∑

k
i=1

ϑ(ηi−1,ηi)
∑n+k

i=1
ϑ(ηi−1,ηi)

= lim sup
n→+∞

∑n+k
i=1 π(ηi−1, ηi)

∑n+k
i=1 ϑ(ηi−1, ηi)

(9)

= lim sup
n→+∞

∑n
i=1 π(ηi−1, ηi)

∑n
i=1 ϑ(ηi−1, ηi)

= PRAvgMin(η) = PRAvgMin(hρ) .

Line (8) comes from the fact that the reward functionϑ is diverging, and from the
following property: if limn→+∞ bn = b ∈ R, then lim supn→+∞(an + bn) =
(lim supn→+∞ an) + b. Line (9) is implied by this property: iflimn→+∞ bn =
b > 0, thenlim supn→+∞(an · bn) = (lim supn→+∞ an) · b.

Note that, if the historyh is empty, thenk = 0 and, in all cases,a is equal to0 andb to
1. This actually implies thatCosti(hρ) = Costi(ρ) holds.

Let us now prove that the gameG is positionally coalition-determined. Given a
playeri ∈ Π , if Costi = RPMin , then we takeGainiMax = RPMax. We do the same for
the other cases by defining the gain functionGainiMax for the coalition as the counterpart



of Costi in Definition 15. Clearly, it holds thatCosti ≥ GainiMax. Moreover, the Min-
Max cost gameGi = (V, Vi, V \Vi, E,Costi,GainMax) is determined and has positional
optimal strategies by Theorem 16. ⊓⊔
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