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Abstract. In this paper we propose a novel approach to bundle adjust-
ment for large-scale camera configurations. The method does not need to
include the 3D points in the optimization as parameters. Additionally,
we model the parameters of a camera only relative to a nearby camera
to achieve a stable estimation of all cameras. This guarantees to yield
a normal equation system with a numerical condition, which practically
is independent of the number of images. Secondly, instead of using the
classical perspective relation between object point, camera and image
point, we use epipolar and trifocal constraints to implicitly establish
the relations between the cameras via the object structure. This avoids
the explicit reference to 3D points thereby handling points far from the
camera in a numerically stable fashion. We demonstrate the resulting
stability and high convergence rates using synthetic and real data.

1 Introduction

Motivation. Bundle adjustment has become the workhorse of structure from
motion estimation, triggered by the review by Triggs et al. [1] and the first public
domain software by Lourakis and Argyros [2] and more recently made fully aware
by the software bundler [3]. The generality of the concept and the optimality of
the achieved solution cause bundle adjustment to serve as a reference and to be
of broad interest.

Despite these advantages, some problems still exist: The stability of large
systems is sensitive to the arrangement of images as in classical photogrammetric
mapping applications, tend to show instabilities. These instabilities are difficult
to identify, and to date, there are still no tools for giving recommendations how
to cure the situation by deliberately taking additional images, a precondition
to make bundle adjustment usable by non-specialists. In real time applications,
identifying and resolving so-called loop closures, where after long image strips
one reaches positions visited in the past, requires careful storage management
for fast access and proper representation of the geometry taken up to that point.

This paper proposes a novel model for bundle adjustment, especially useful
for dealing with weak configurations due either to long motion sequences or
due to the existence of points far from the cameras. First of all, long image se-
quences accumulate drift leading to a random walk, which decreases the accuracy
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and increases the numerical condition number. The condition number increases
super-linear with time. Secondly, points far from the cameras cause problems
when determining approximate values, especially in the case where the camera
positions are not yet determined with enough stability. This can happen for
example, when the parallactic angle between two viewing rays is too small to
reliably identify the depth of a point.

The proposed concept integrates two remedies: (1) camera parameters are
not represented w. r. t. a common world system, but relative to a well chosen
set of cameras distributed over the complete set of all cameras. This leads to
a tree type structure with kinematic chains linking the cameras with the refer-
ence cameras. This increases the numerical stability of the bundle adjustment,
increases the speed of convergence and the robustness with respect to bad initial
values. (2) The object structure is not represented explicitly but using pairs and
triplets of geometric constraints between cameras. This avoids the handling of
3D points far off the cameras, which in turn avoids any problem with determin-
ing approximate values. On the contrary, points far away from the cameras can
be used advantageously to stabilize the rotation information. The cost for using
this advantage is the slightly increased complexity of the Jacobians.

Related work. There is a lot of work on hierarchically representing large sets
of images, in order to partition the bundle estimation into smaller better con-
ditioned subsystems, for example partitioning an image sequence hierarchically
[4], applying a spectral decomposition of the connection graph [5], [6] or building
a tree based on the overlap of pairs of images [7], building a hierachical map dur-
ing simultaneous localisation and mapping [8] and performing an effcient, close
to optimal estimation. These approaches may also be coupled with our setup.
The most closely related work is the setup in [9], where camera parameters are
related to reference views which are related to a world system. However, the
individual parts are connected in a second step, which altogether does not lead
to a statistically optimal solution. Similarily, non-Euclidian object point repre-
sentation like the inverse depth representation proposed by [10] can be applied
to bundle adjustment to model points at infinity. In contrast to our proposed
method, [10] still has to include the points as parameter.

Using trifocal constraints has been proposed to avoid the explicit representa-
tion of 3D points within the estimation of an image triplet [11]. To use trifocal
constraints within bundle adjustment already has been proposed in [4], however,
only for chaining within an image sequence and deriving approximate values.
Trifocal constraints have been used within an extended Kalman filter approach
in [12]. No approach is known to the authors that (1) only uses constraints be-
tween the image observations and the cameras; (2) uses a relative representation
of the camera positions for improving the numerical condition; (3) performs a
statistically optimal estimation equivalent to classical bundle adjustment.

The paper is structured the following way: we first describe the estimation
procedure base on epipolar and trifocal constraints, give an insight into the
modelling of the relative camera poses and then demonstrate the strengths of
the approach with synthetic and real data.
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2 Model for Relative Bundle-Adjustment with Image
Triplet Constraints

This section describes the approach in more detail, first contrasting the classical
bundle adjustment model using direct observations equations with the estimation
procedure with implicit constraints, then deriving the constraints and their use
in the bundle adjustment and finally introducing the representation with relative
camera poses.

2.1 Classical Bundle Adjustment

Classical bundle adjustment simultaneously estimates the 3D structure of the
environment and the camera parameters by minimizing the reprojection error in
a weighted least square manner. The co-linearity constraint relates the parame-
ters q describing the object, usually being a set of 3D points, the parameters z
describing the 2D image observations, usually the image points, and the extrin-
sic, possibly also the intrinsic camera parameters p using an explicit observation
model z = f (p, q), often called a non-linear Gauss-Markov model. Additional
constraints h(p, q) = 0 on the object or camera parameters may be used to fix
the gauge and to enforce certain properties of the object to be recovered. Assum-
ing the image measurements have a covariance that is denoted in matrix form
as C zz, the classical approach [1] minimizes the reprojection errors or residuals
v(p, q) = f(p, q) − z weighted with the inverse covariance matrix under the
given constraints leading to the energy function

E(p, q,μ) = vT(p, q)C−1
zz v(p, q) + μTh(p, q) (1)

to be minimized, where μ are the corresponding Lagrangian parameters for the
constraints. The iterative solution typically exploits the sparsity of the structure
of the normal equation system and is optimized by a marginalization to the usu-
ally much smaller number of camera parameters p using the Schur complement.

A novel model for bundle adjustment to gain efficiency and numeric stability
by first deploying implicit constraints between the observations and the camera
parameters to eliminate the object points as estimated parameters and second,
by instead of referring the camera parameters p to a common world system
representing the camera poses by the relative poses prs between neighbouring
cameras pr and ps is presented.

2.2 Estimation with Implicit Constraints

We replace the classical reprojection model using the epipolar and trifocal con-
straints, well known from the two and three view epipolar geometry [13]. The
epiolar and trifocal constrains are implicit functions of both the camera param-
eters and the observations, and do not allow to express the observations as a
function of the parameters. Thus, instead of using the explicit observation func-
tions z = f(p, q), we use constraints g(p, z) between the camera parameters p
and the observed image observations z. Constraint optimization is known in the
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classical least square estimation technique as the Gauss-Helmert model and can
be solved by minimizing

E(p,v,λ,μ) = vTC−1
zz v + λTg(p, z + v) + μTh(p) (2)

w. r. t. the parameters p, the residuals v and the Lagrangian parameters λ and
μ. The optimal estimates p̂ for the parameters and the fitted observations ẑ
should fulfill the model constraints g(p̂, ẑ) = 0 and h(p̂) = 0. Minimizing the
energy function (2) can be iteratively achieved by determining the corrections
̂Δp from the linear equation system

[

JT
p (J

T
zCzzJz)

−1Jp H
HT 0

] [

Δp
λ

]

=

[

JT
p (J

T
z C zzJz)

−1cg
ch

]

, (3)

with
cg = −g(p̂, ẑ) + JT

z (ẑ − z) and ch = −h(p̂), (4)

starting at approximate values p̂(ν) for the estimated parameters and the fitted
observations ẑ. The matrices Jp and JT

z are the Jacobian of the constraints g with

respect to the parameter vector p and the observations z and HT is the Jacobian
of h with respect to the parameters evaluated at the approximate values. The
residuals can be determined from v(ν) = −C zzJz(JT

z C zzJz)
−1(cg − JpΔp). We

iteratively find new approximate values for the estimated parameters p̂(ν+1) =

p̂(ν) + Δp and the fitted observations ẑ(ν+1) = z + v(ν). This will be very
useful to reconstruct the structure of the environment in our approach simply
by intersecting two estimated projection rays, as the rays derived from the fitted
observations ẑ intersect and no optimization needs to be performed anymore.

Conceptionally, the explicit estimation and the implicit estimation model both
minimize the residuals v. It has been shown in [14,15], that the implicit model
is a generalization of the least square estimation framework. Our proposed im-
plicit model minimizes the backprojection errors (residuals) in a least square
manner, using the constraint that the projection rays intersect in a single point
as the explicit model does. The used epipolar and trifocal constraints can be de-
rived from the explicit reprojection model by eliminating the object point [16].
Therefore, the results of the classical formulation and our proposed formulation
are equal w.r.t the solution and its precision. Additionally, robustification can be
achieved by reweighting the residuals as used in the classical model as a standard
enhancement.

2.3 Epipolar and Trifocal Constraint Bundle

In all cases we rely on the classical partitioning of the projection xt = PtX
of a 3D point with homogeneous coordinates X into the t-th camera and the
partitioning of the projection matrix Pt into its internal part, containing the
intrinsic parameters in K and its external part, containing its motion Mt w. r. t.
to a reference system

Pt = P0tMt with P0t = [Kt | 0] and Mt =

[

Rt T t

0T 1

]

(5)
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This decomposition will be deployed in the next section for introducing the
kinematic chains.

We now propose to replace the classical projection model by using the epipolar
and trifocal constraints in order to achieve two goals: (1) avoid the provision of
approximate values for the 3D object points, which in case of bad approximate
values, may be far off the true values and hinder the estimation process to
converge and (2) to allow for points which are very far from the cameras or even
at infinity. The epipolar constraint for two cameras, r and s, can be written as

0 = gE(p, z) = xT
r K−T

r RrS(Br,s)RT
s K−1

s xs (6)

with S(·) indicating the skew matrix of the base line vector Br,s = T s − T r

between the two projection centres of camera r and s. For calibrated cameras
the observed homogeneous image coordinates x can be normalized by applying K.
Equation (6) constrains the parameters of the two cameras, which themselves will
in general depend on all relative motions which connect the two cameras indexed
with r and s. The trifocal constraint can be interpreted as the intersection of 4
planes in a single point. As for instance outlined in [17], it can be written as

0 = gT (p, z) = det [Ar,ia ,Ar,ib ,As,i,At,i] (7)

with the projection plane

Ai = PTli (8)

for the line li in camera t. The 2d line in each image has to intersect the observed
image point xi. Our method ensures this by choosing an arbitrary direction α
and computing the line by

Fig. 1. Left: Scheme of the trifocal constraint. Four planes have to intersect in a single
object point. The planes are inverse projections of 2D lines intersecting the observed
image points. Right: Chaining the trifocal constraint using consecutive images. An
epipolar constraint is introduced between the first (blue) and second image. Two tri-
focal constraints are introduced for every new image the point is observed
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li =

⎡

⎣

sin(α)
− cos(α)

cos(α)yi − sin(α)xi

⎤

⎦ . (9)

After introducing the basic constraints (6) and (7) used by our method we will
now detail the constraint selection for each observation of an observed image
point xi.

Assume an object point i is observed in a set of cameras t1...tk. A point ob-
served for the first time provides no constraint. A point observed in two cameras
delivers one epipolar constraint (6). The observation of a point in more than
two cameras provides two constraints based on the trifocal tensor. We introduce
two trifocal constraints in the following manner. We randomly select two lines
l1,a and l1,b, one line l2,a and two lines lk,a and lk,b (a and b are the indices of
two lines in the image), which have different directions and hence provide two
constraints through Equation 1, c. f. Figure 1.

The scheme for chaining trifocal constraints for consecutive images is out-
lined in Figure 6. When using the epipolar and trifocal constraints in the bun-
dle adjustment, we do not need 3D object point coordinates, which have to
be optimized. Instead, the object points are encoded implicitly in the trifocal
constraints. Furthermore, the trifocal constraints are accountable for the tran-
sition of the scale through the chain of images ensuring a reconstruction with a
consistent scale.

The choice of the lines for the trifocal constraint in Equation (8) directly in-
fluences the numerical stability of the system. We use this to our advantage by
determining a proper combination of five lines that leads to the smallest con-
dition of JT

z Jz for the camera triplets in concern. This enhances the numerical
stability of our bundle adjustment. The choice has five degrees of freedom, corre-
sponding to the rotations of the planes A around the projection rays. Obtaining
the best configuration is a non-trival optimization problem in itself.

For efficiency we opted for a simple random sampling strategy to obtain an
acceptable set of lines. First, we choose random line directions and then we
evaluate the condition number for our particular choice of lines. In case the con-
dition number is too high to obtain a numerically stable solution, we randomize
again. We empirically found that the space of acceptable configurations in order
to achieve numerical stability is significantly larger than the space of the weak
configurations. We leave a formal proof of this fact to future work.

2.4 Relative Camera Representation with Kinematic Chains

Modeling camera poses. One of the main problems of traditional bundle adjust-
ment is that the condition of the information matrix (normal equation matrix)
for large scale environments becomes huge leading to numerical instabilities of
the linear solvers used. This is one of the reasons why hierarchical representations
of large sets of images and the relative representation of camera positions are
used. The camera orientations are represented locally, depending on an arbitrary
local coordinate system.
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The idea of [9] we are following here is to choose some reference cameras, say
with pose Mt and model the pose of its k-th neighbour Mt+k using the relative
pose Mt,k = Mt+kM−1

t+k−1 and estimate the rotation and translation parameters
of this relative motion Mt,k. This leads to the recursive relation

Mt+k = Mt,kMt+k−1 (10)

or when modeling the complete kinematic chain from t to t+ k

Mt+k = Mt,kMt,k−1·...·Mt,1Mt. (11)

The projection matrix Pt+k thus refers to the reference camera using

Pt+k = P0,t+kMt+k = P0,t+kMt,kMt,k−1·...·Mt,1Mt (12)

In case one has a constraint between two or three cameras, one needs to identify
the path between these two via the reference cameras. Obviously, the sparse-
ness of the Jacobian Jp now depends on the length of these chains of cameras
observing the same individual object point.

Sparsity of the normal equation system. We now analyze, how our represen-
tation influences the structure of the linear solver and propose a strategy to
increase the sparseness given an image sequence containing large loops. We are
aware of the fact that this method may not always achieve optimal sparsity for
example for image collections. Here we demonstrate that the sparsification is
an important property to solve the unknown parameters more efficiently. While
there are structural differences between the classical formulation of bundle ad-
justment and our method we will demonstrate how to take advantage of the
same set of methods to improve the computational performance. We start with
an example of a simulated environment illustrated on the left hand of Figure 2
and consisting of two loops. The simulated sequence contains of 71 images and
approximately 170 object points on the planar surface. The structures of the
normal equation matrices are shown in Fig. 3. The classical structure leads to
the sparsest structure. A naive choice of the relative motions between cameras
would follow the numbering of the cameras. Here, it leads to a nearly full normal
equation matrix, as the first loop is the one from image 1 to image 41, and the
second one is the large loop, containing all images except 1 to 16, resulting in
the overlay of two square blocks. Therefore, one needs to analyze the effect of a
certain numbering onto the structure of the normal equation matrix for the new
type of representation

The matrix JT
zCzzJz is a block-diagonal matrix. Every block represents the

set of constraints involving an observed object point. The determination of
(JT

zCzzJz)
−1Jp in (3) then can be done block-wise by solving a linear equation

system, exploiting the sparsity of JT
zCzzJz. For structure from motion scenes,

where an object point is only visible in a small subset of all cameras used, this
is usually not computationally expensive. The resulting information matrix has
the size of the number of the camera parameters plus the number of constraints
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Fig. 2. Simulated example of a kinematic chain and spanning tree. The simulated
sequence contains 71 images and 170 object points on a planar surface. Left: A camera
trajectory at a birds eye view. Right: Simplified graph shown as a tree. The computed
six subtrees are colored in a different manner.

Fig. 3. Structure of the normal equation system. Left: Classical absolute representa-
tion. Middle: relative representation, naively taking all images in the order of appear-
ance. Right: relative representation using our algorithm.

for the gauge only. As we can see in our example in Figure 3 the resulting in-
formation matrix is sparse too and therefore the equation system can be solved
efficiently. The sparseness of the information matrix varies with the choice of
the reference cameras, and thus the choice of the relative representations. We
therefore need to select a representation which is optimal in some sense. This
leads to a trade off between the condition of the information matrix and the
sparseness and therefore the computational cost of the solution of the linear
solver, taking the fill-in into account. In addition an optimal solver has to resort
the information matrix to reduce the computational costs.

We have developed a scheme which aims at finding a good compromise.We can
represent the whole set of relative cameras using a connection graph. As a camera
has a unique reference system, we have to choose one of the possible spanning
trees of the graph. For example, this can be easily achieved by enumerating all
cameras in an arbitrary order. For image sequences an ordering by acquisition
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time is reasonable. We first sort the cameras in an ascending order. Then we
obtain the connection graph for all connected cameras observing a common
object point represented by an adjacency matrix. Next we search the subgraph
that connects any camera to the camera with the smallest identifier. In a final
step we merge the branches of the resulting tree to achieve a number of connected
cameras larger than a threshold (GN = 5) in each branch.

Figure 2 illustrates the simulated environment with two loops and the corre-
sponding connection graph computed by our proposed method. The computed
six sub-branches are colored differently in Figure 2. Images 1 and 6 are connected
as they observing at least one common object point. Therefore our approach con-
nects image 6 to the root node. In case a loop closing is detected, in our example
in image 35, a new branch is generated that connects it to the root node in the
graph. This can be done for all used cameras incrementally.

3 Experimental Results

After the detailed description of the algorithm and the structure of the solution,
we will verify its feasibility on synthetic and real datasets. The implementation
has been done in Matlab

TM

.

3.1 Simulation Results

We use two synthetic datasets to demonstrate the usefulness and practicality of
our novel approach. The first dataset is a long linear camera motion, for instance
acquired by an aerial vehicle or a mobile camera for urban scenes of facades.
Using this dataset we will analyze the behaviour of the condition number of the
linear solver and the demonstrate the benefit of including points at infinity. The
second dataset has already been shown in Figure 2. This dataset is used to show
the convergence behaviour and the applicability of our approach for datasets
with loop closure.

Both datasets are generated using a synthetic camera setup with an image
resolution of 800×600 pixel, a principal point in the middle of the image and
a focal length of 400 pixel. In both datasets the distance between consecutive
frames is b = 10 m and the distance of the camera centers to the plane of the
observed object points is hg = 30 m. The average number of observed object
points per image is approximately N ≈ 20.

In the first experiment we compare the the condition number of the infor-
mation matrix between the classical and the novel approach. This issue will be
noteworthy to solve the task of structure from motion in the presence of large-
scale loops. On the left hand side of Figure 4 the simulated trajectory is outlined.
We varied the length of the linear path in the experiment from 100 m to a maxi-
mal length of 1000 m. We assumed Gaussian noise of 1 pixel for the observations.
The right hand side of Figure 4 shows the computed logarithmic condition num-
bers of the information matrix for the classical bundle adjustment and the newly
proposed approach. We can observe that the condition number for the classical
approach steadily increases. This increase is proportional to the increase of the
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uncertainty of the camera parameters toward the end of the strip. Due to the
relative representation, the condition number is practically independent of the
length of the trajectory in our approach. The peak at a strip length of 200 m
is caused by a badly chosen direction to generate the trifocal constraint (see
Section 2.3). Another important evaluation is the usefulness of incorporating
points at infinity. In this experiment we added just three additional points at
infinity. In Figure 5 the expected standard deviations of the camera parameter in
the global coordinate system with and without the points at infinity are shown.
The uncertainty is computed throughout all cameras by variance propagation.
We can observe that the points at infinity have a significant influence on the
determination of the rotation as well as the translation due to the correlation
to the rotation parameters. As our approach can deal with points at infinity,

Fig. 4. Left: Long strip of consecutive cameras. The gauge is fixed to the first camera.
The scale is introduced by the known true base length to the second camera. Right:
Condition number of the linear equation system (Information-Matrix) for a long strip.
Classical bundle adjustment (red), new method (blue). Observe, that the condition
number of the experiment with a strip length of 1000 m differ by a factor of ≈ 105.

Fig. 5. Expected accuracy of the camera position (left) and rotation (right) without
(dotted) and with (solid line) 3 additional points at infinity. The shown absolute uncer-
tainty is computed by error propagation through the chain of relative representations.
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the solution of a bundle will be significantly improved if points at infinity are
available using the novel method.

Fig. 6. Left: Simulated example with two loops. The approximated values are computed
using a random walk with 3m Gaussian noise for the translation components and 0.5
degree for the rotation parameter, Right: Mean of the absolute sum of the residuals
for 11 iterations. The dashed lines are the mean residuals for the classical bundle
adjustment, the solid line for our approach.

In the last experiment using synthetic data our method is able to perform loop
closures and it is robust to corrupted approximate values and large uncertainty
of the observations. Approximate values for the exterior camera parameters are
obtained in general computing a robust estimation of the essential matrix [13].
The rotation parameter can be usually determined very accurately, however
the baseline vector can not be. Therefore, for image sequences the approximate
values are chained, which leads to a random walk. In our example presented in
Figure 6 (left), we generated approximate values chaining relative orientations
with a randomized accuracy of 3 m for the translation parameters and 0.5 degree
for the rotation parameters. On the right side of Figure 6 the mean of the
absolute sum of the residuals for 11 iterations are presented. The dashed lines
are the results using the classical model, the solid lines are the results of our
approach. For the classical model the object points were initialized at the first
projection ray with the known distance. Both simulations are run with the same
observations and initial values. We can observe that in presence of small noise
the residuals become significantly smaller in the first iterations in our method
compared to the classical approach, since the object points act in the classical
approach as anchor. Our proposed method does not show this disadvantageous
behavior. The convergence behavior has to be examined in more detail in the
future, when integration robustification methods is completed.

3.2 Real Data

We also tested our method on a real datasets. The first dataset consists of an
image sequence of 624 images of the left camera of a stereo system. A feature
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Fig. 7. Left: Birds-eye view of the corridor and estimated as well as reference camera
position and orientation. Middle: Single frame extracted from an image sequence with
tracked features. Right: Differences between reference camera and estimated camera
parameter, X,Y, Z.

detection and flow computation system does tracking using a graphics processing
unit implementation. Additionally SIFT features are extracted and descriptor
matching is performed [18]. A keyframe dataset of the whole sequence using
20 images and 55 randomly selected feature tracks has been taken. A reference
trajectory was computed using the stereo tracking system of [19] including a
huge number of observations. In Figure 7 sample keyframe with detected im-
age features is shown. To the left a schematic birds-eye view of the estimated
camera trajectory derived by error propagation is presented. To the right the
differences of the estimated camera position to the high accuracy reference tra-
jectory is shown. We remark, that the present implementation is not robustified
and optimized for speed yet.

The second dataset consists of an image collection of the Brandenburger Tor
containing 100 images with 1600 3d-points and roughly 24000 trifocal constraints
taken from a photo-sharing website like Flickr.com. The focal length initally
is taken from the image header and the principal point is fixed to the image

Fig. 8. Left: 3d-view of estimated camera parameters and reconstructed object points
using the novel method. Middle: Example images of an image collection. Right: Abso-
lute sum of the residuals for 20 iterations.
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center. An existing robust classical bundle adjustment incorporating intrinsic pa-
rameters as unknowns determined intrisic parameter as references. Again SIFT
features are extracted and descriptor matching is performed, then pairwise rela-
tive orientations are computed using a RANSAC based scheme and outliers are
rejected. To the left of Figure 8 the estimated camera orientations, as well as
the reconstructed 3d object points determined by intersection 2 estimated pro-
jection rays are shown. To the right the absolute sum of the residuals thought
20 iterations are presented. The novel method decrease the residuals constantly
and seems to have converged for this real dataset.

4 Conclusions

This paper introduced a new approach to circumvent the limitations of classical
bundle adjustment by changing the observation model and the camera repre-
sentation of the least square solution. The results of the classical bundle and
the novel approach are equal as proved in [14,15]. We focus in the paper on the
structural differences of the normal equation system and proved the usefulness
of the proposed concept on simulated data and real data. The main advantages
can be summarized as follows:

– No approximate values for the object points are necessary any more. The new
algorithm is therefore able to handle points at infinity. This can improve the
solution of a structure from motion task significantly. In addition the pre-
filtering of the observations can be neglected and there is no need of the
reduction of the normal equation system using the Schur-Complement.

– Due to the relative representation the condition number of the information
matrix seems to be independent of the length of a camera trajectory. This
is very useful for structure from motion tasks on mobile platforms.

– We observed a faster convergence and robustness in present of corrupted
approximate values in our experiments compared to a classical bundle ad-
justment. We are aware that this fact should be investigated in more detail
in future experiments.

Although our algorithm shows significant positive properties, the computation of
the Jacobians using kinematic chains is computationally more complex compared
to the classical formulation. We have yet to examine how this interacts with the
speed up due to faster convergence.

We leave it to future work to demonstrate the performance of the new
method using large image sets along with applying robustification techniques
to the parameter estimation. While not demonstarted the approach can be ex-
tended to a more general approach to accomodate uncalibrated cameras. We
also plan to implement an online version, where images can be incrementally
added.
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