Lecture Notes in Computer Science

7253

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Alfred Kobsa

University of California, Irvine, CA, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

TU Dortmund University, Germany

Madhu Sudan

Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

Formal Aspects of Component Software

8th International Symposium, FACS 2011 Oslo, Norway, September 14-16, 2011 Revised Selected Papers

Volume Editors

Farhad Arbab Centre for Mathematics and Computer Science (CWI) Science Park 123 1098 XG Amsterdam, The Netherlands E-mail: farhad@cwi.nl

Peter Csaba Ölveczky University of Oslo Department of Informatics Postboks 1080 Blindern 0316 Oslo, Norway

E-mail: peterol@ifi.uio.no

ISSN 0302-9743 ISBN 978-3-642-35742-8 DOI 10.1007/978-3-642-35743-5 e-ISSN 1611-3349 e-ISBN 978-3-642-35743-5

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954139

CR Subject Classification (1998): D.2.4, D.2, F.4, F.3, H.3.5, D.3, D.1, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the revised versions of accepted regular papers presented at the 8th International Symposium on Formal Aspects of Component Software (FACS 2011), held at the Department of Informatics, University of Oslo, on September 14–16, 2011. It also contains contributions by the three invited speakers at this event: José Meseguer, John Rushby, and Ketil Stølen.

FACS 2011 was the eighth event in a series founded by the International Institute for Software Technology of the United Nations University (UNU-IIST). The objective of FACS is to bring researchers and practitioners of component software and formal methods together in order to foster a deeper understanding of reliable component-based systems development and their applications, using formal methods. The component-based software development approach has emerged as a promising paradigm to cope with the complexity of present-day software systems by bringing sound engineering principles into software engineering. However, many challenging conceptual and technological issues still remain in the theory and practice of component-based software development. Moreover, the advent of service-oriented computing has brought to the fore new dimensions, such as quality of service and robustness to withstand inevitable faults, that require revisiting established component-based concepts in order to meet the new requirements of the service-oriented paradigm.

We received 46 submissions from 26 countries, out of which the Program Committee accepted 16 as regular papers, and, furthermore, conditionally accepted 4 additional papers. The revised versions of 18 of these papers appear in this volume. Each submission to FACS 2011 was reviewed by at least three referees.

Many colleagues and friends contributed to FACS 2011. First, we thank the authors who submitted their work to FACS 2011 and who, by their contributions and participation, made this symposium a high-quality event. We thank the Program Committee members and their sub-reviewers for their timely and insightful reviews as well as for their involvement in the post-reviewing discussions. We are also grateful to the FACS Steering Committee for its guidance, to the invited speakers, and to Lucian Bentea for all his assistance in organizing this event. Finally, we thank Andrei Voronkov for the excellent EasyChair conference system, and the Research Council of Norway and the Department of Informatics at the University of Oslo for financially supporting the symposium.

April 2012

Farhad Arbab Peter Ölveczky

Organization

Program Chairs

Farhad Arbab CWI and Leiden University, The Netherlands

Peter Csaba Ölveczky University of Oslo, Norway

Steering Committee

Zhiming Liu (Coordinator) IIST UNU, Macau

Farhad Arbab CWI and Leiden University, The Netherlands

Luís Barbosa University of Minho, Portugal Carlos Canal University of Málaga, Spain

Markus Lumpe Swinburne University of Technology, Australia

Eric Madelaine INRIA, Centre Sophia Antipolis, France

Peter Csaba Ölveczky University of Oslo, Norway

Corina Păsăreanu NASA Ames, USA Bernhard Schätz fortiss GmbH, Germany

Program Committee

Erika Ábrahám RWTH Aachen University, Germany

Farhad Arbab CWI and Leiden University, The Netherlands Christel Baier Technical University of Dresden, Germany

Luís Barbosa Universidade do Minho, Portugal

Mihaela Bobaru NASA/JPL, USA

Christiano Braga Universidade Federal Fluminense, Brazil

Roberto Bruni University of Pisa, Italy
Carlos Canal University of Málaga, Spain
Frank De Boer CWI, The Netherlands
Francisco Duran University of Málaga, Spain

Rolf Hennicker Ludwig-Maximilians-Universität München,

Germany

Alexander Knapp Augsburg University, Germany

Zhiming Liu IIST UNU, Macau

Markus Lumpe Swinburne University of Technology, Australia

Eric Madelaine INRIA, Centre Sophia Antipolis, France

Sun Meng Peking University, China Peter Csaba Ölveczky University of Oslo, Norway

Corina Păsăreanu NASA Ames, USA

František Plášil Charles University, Czech Republic

VIII Organization

Gwen Salaün
Bernhard Schätz
Wolfram Schulte
Nishant Sinha
Marjan Sirjani
Volker Stolz
Carolyn Talcott
Emilio Tuosto

Grenoble INP - INRIA, France fortiss GmbH, Germany Microsoft Research, USA NEC Labs, Princeton, USA Reykjavik University, Iceland University of Oslo, Norway SRI International, USA University of Leicester, UK

Additional Reviewers

Adam, Ludwig Ardourel, Gilles Bauer, Sebastian Baumeister, Hubert Bertolini, Cristiano Blech, Jan Olaf Chen, Zhenbang Choppy, Christine Corzilius, Florian

Dan, Li

Faber, Johannes Guanciale, Roberto Helvensteijn, Michiel Henrio, Ludovic Hölzl, Florian Jaghoori, Mohammad Mahdi Jansen, Nils

Jezek, Pavel Jongmans, Sung Kemper, Stephanie Keznikl, Jaroslav Khakpour, Narges Khalil, Maged Khamespanah, Ehsan Khosravi, Ramtin Kofron, Jan Komuravelli, Anvesh Lang, Frédéric

Lepri, Daniela Lluch Lafuente, Alberto

Loup, Ulrich Malohlava, Michal Melgratti, Hernan Morisset, Charles Nellen, Johanna Ouederni, Meriem Pfaller, Christian Poch, Tomas Ramalho, Franklin

Sabouri, Hamideh Schlatte, Rudolf Schäf, Martin Verdejo, Alberto Vogler, Walter

Rodrigues, Genaina

Table of Contents

Taming Distributed System Complexity through Formal Patterns José Meseguer	1
Composing Safe Systems	3
A Denotational Model for Component-Based Risk Analysis	12
Synthesis of Hierarchical Systems	42
A Modal Specification Theory for Components with Data	61
Evaluating the Performance of Model Transformation Styles in Maude	79
Interactive Transformations from Object-Oriented Models to Component-Based Models	97
Runtime Verification of Temporal Patterns for Dynamic Reconfigurations of Components	115
Timed Conformance Testing for Orchestrated Service Discovery Jose Pablo Escobedo, Christophe Gaston, and Pascale Le Gall	133
Realizability of Choreographies for Services Interacting Asynchronously	151
Networks of Real-Time Actors: Schedulability Analysis and Coordination	168
A Formal Model of Object Mobility in Resource-Restricted Deployment Scenarios	187

X Table of Contents

The Logic of XACML	205
A Proof Assistant Based Formalization of MDE Components	223
Controlling an Iteration-Wise Coherence in Dataflow	241
Learning from Failures: A Lightweight Approach to Run-Time Behavioural Adaptation	259
Verifying Safety of Fault-Tolerant Distributed Components	278
Reducing the Model Checking Cost of Product Lines Using Static Analysis Techniques	296
Bigraphical Modelling of Architectural Patterns	313
Coordinated Execution of Heterogeneous Service-Oriented Components by Abstract State Machines	331
Verifying Temporal Properties of Use-Cases in Natural Language Viliam Simko, David Hauzar, Tomas Bures, Petr Hnetynka, and Frantisek Plasil	350
Author Index	369