Skip to main content

A Denotational Model for Component-Based Risk Analysis

  • Conference paper
Book cover Formal Aspects of Component Software (FACS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7253))

Included in the following conference series:

Abstract

Risk analysis is an important tool for developers to establish the appropriate protection level of a system. Unfortunately, the shifting environment of components and component-based systems is not adequately addressed by traditional risk analysis methods. This paper addresses this problem from a theoretical perspective by proposing a denotational model for component-based risk analysis. In order to model the probabilistic aspect of risk, we represent the behaviour of a component by a probability distribution over communication histories. The overall goal is to provide a theoretical foundation facilitating an improved understanding of risk in relation to components and component-based system development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, F.: Why it’s so hard for Toyota to find out what’s wrong. The Washington Post (March 2010)

    Google Scholar 

  2. Brændeland, G., Refsdal, A., Stølen, K.: A denotational model for component-based risk analysis. Technical Report 363, University of Oslo, Department of Informatics (2011)

    Google Scholar 

  3. Brændeland, G., Stølen, K.: Using model-driven risk analysis in component-based development. In: Dependability and Computer Engineering: Concepts for Software-Intensive Systems. IGI Global (2011)

    Google Scholar 

  4. Broy, M., Stølen, K.: Specification and development of interactive systems – Focus on streams, interfaces and refinement. Monographs in computer science. Springer (2001)

    Google Scholar 

  5. Courant, R., Robbins, H.: What Is Mathematics? An Elementary Approach to Ideas and Methods. Oxford University Press (1996)

    Google Scholar 

  6. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional Methods for Probabilistic Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 351–365. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Derman, C.: Finite state Markovian decision process. Mathematics in science and engineering, vol. 67. Academic Press (1970)

    Google Scholar 

  8. Dudley, R.M.: Real analysis and probability. Cambridge studies in advanced mathematics, Cambridge (2002)

    Google Scholar 

  9. Probability theory. Encyclopædia Britannica Online (2009)

    Google Scholar 

  10. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics, 2nd edn. John Wiley and Sons Ltd., USA (1999)

    Google Scholar 

  11. Halmos, P.R.: Measure Theory. Springer (1950)

    Google Scholar 

  12. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design with sequence diagrams. Software and System Modeling 4(4), 355–357 (2005)

    Article  Google Scholar 

  13. He, J., Josephs, M., Hoare, C.A.R.: A theory of synchrony and asynchrony. In: IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, pp. 459–478. North Holland (1990)

    Google Scholar 

  14. ISO. Risk management – Vocabulary, ISO Guide 73:2009 (2009)

    Google Scholar 

  15. Jürjens, J. (ed.): Secure systems development with UML. Springer (2005)

    Google Scholar 

  16. Khan, K.M., Han, J.: Composing security-aware software. IEEE Software 19(1), 34–41 (2002)

    Article  Google Scholar 

  17. Khan, K.M., Han, J.: Deriving systems level security properties of component based composite systems. In: Australian Software Engineering Conference, pp. 334–343 (2005)

    Google Scholar 

  18. Komjáth, P., Totik, V.: Problems and theorems in classical set theory. Problem books in mathematics. Springer (2006)

    Google Scholar 

  19. Lamport, L.: How to write a proof. American Mathematical Monthly 102(7), 600–608 (1993)

    Article  MathSciNet  Google Scholar 

  20. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

    Google Scholar 

  21. Meyn, S.: Control Techniques for Complex Networks. Cambridge University Press (2007)

    Google Scholar 

  22. OMG. Unified Modeling LanguageTM (OMG UML), Superstructure, Version 2.3 (2010)

    Google Scholar 

  23. Refsdal, A.: Specifying Computer Systems with Probabilistic Sequence Diagrams. PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo (2008)

    Google Scholar 

  24. Refsdal, A., Runde, R.K., Stølen, K.: Underspecification, Inherent Nondeterminism and Probability in Sequence Diagrams. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 138–155. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Runde, R.K., Haugen, Ø., Stølen, K.: The Pragmatics of STAIRS. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 88–114. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology (1995)

    Google Scholar 

  27. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Seidel, K.: Probabilistic communicationg processes. Theoretical Computer Science 152(2), 219–249 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sere, K., Troubitsyna, E.: Probabilities in action system. In: Proceedings of the 8th Nordic Workshop on Programming Theory (1996)

    Google Scholar 

  30. Skorokhod, A.V.: Basic principles and application of probability theory. Springer (2005)

    Google Scholar 

  31. Standards Australia, Standards New Zealand. Australian/New Zealand Standard. Risk Management, AS/NZS 4360:2004 (2004)

    Google Scholar 

  32. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics, 2nd edn. Chapman & Hall/CRC (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brændeland, G., Refsdal, A., Stølen, K. (2012). A Denotational Model for Component-Based Risk Analysis. In: Arbab, F., Ölveczky, P.C. (eds) Formal Aspects of Component Software. FACS 2011. Lecture Notes in Computer Science, vol 7253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35743-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35743-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35742-8

  • Online ISBN: 978-3-642-35743-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics