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Abstract

In automated synthesis, given a specification, we automatically create a system that is guaranteed to satisfy
the specification. In the classical temporal synthesis algorithms, one usually creates a “flat” system “from scratch”.
However, real-life software and hardware systems are usually created using preexisting libraries of reusable components,
and are not “flat” since repeated sub-systems are described only once.

In this work we describe an algorithm for the synthesis of a hierarchical system from a library of hierarchical
components, which follows the “bottom-up” approach to system design. Our algorithm works by synthesizing in many
rounds, when at each round the system designer provides the specification of the currently desired module, which is
then automatically synthesized using the initial library and the previously constructed modules. To ensure that the
synthesized module actually takes advantage of the available high-level modules, we guide the algorithm by enforcing
certain modularity criteria.

We show that the synthesis of a hierarchical system from a library of hierarchical components is EXPTIME-complete
for µ-calculus, and 2EXPTIME-complete for LTL, both in the cases of complete and incomplete information. Thus, in
all cases, it is not harder than the classical synthesis problem (of synthesizing flat systems “from scratch”), even though
the synthesized hierarchical system may be exponentially smaller than a flat one.
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1. Introduction

In formal system verification and design, synthesis is the automated construction of a system from its specification.
The basic idea is simple and appealing: instead of developing a system and then verifying that it is correct w.r.t.
its specification, we use an automated procedure that, given a specification, constructs a system that is correct by
construction.

The first formulation of synthesis goes back to Church [13]. Later work on synthesis considered first closed
systems, where the system is extracted from a constructive proof that the specification is satisfiable [18, 30]. In the
late 1980s, Pnueli and Rosner [36], realized that such a synthesis paradigm is not of much interest when applied to
open systems [21] (also called reactive systems). Differently from closed systems, an open system interacts with an
external environment and its correctness depends on whether it satisfies the specification with respect to all allowable
environments. If we apply the techniques of [18, 30] to open systems, we obtain a system that is correct only with
respect to some specific environments. In [36], Pnueli and Rosner argued that the right way to approach synthesis of
open systems is to consider the framework as a possibly infinite game between the environment and the system. A
correct system can be then viewed as a winning strategy in this game, and synthesizing a system amounts to finding
such a strategy.

The Pnueli and Rosner idea can be summarized as follows. Given sets ΣI and ΣO of inputs and outputs, respectively
(usually, ΣI = 2I and ΣO = 2O, where I is a set of input signals supplied by the environment and O is a set of output
signals), one can view a system as a strategy P : Σ∗I → ΣO that maps a finite sequence of sets of input signals (i.e.,
the history of the actions of the environment so far) into a set of current output signals. When P interacts with an
environment that generates infinite input sequences, it associates with each input sequence an infinite computation over
ΣI ∪ ΣO. Though the system P is deterministic, it induces a computation tree. The branches of the tree correspond to
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external nondeterminism, caused by different possible inputs. Thus, the tree has a fixed branching degree |ΣI |, and it
embodies all the possible inputs (and hence also computations) of P . When we synthesize P from a linear temporal
logic formula ϕ we require ϕ to hold in all the paths of P ’s computation tree. However, in order to impose possibility
requirements on P we have to use a branching-time logic like µ-calculus. Given a branching specification ϕ over
ΣI ∪ ΣO, realizability of ϕ is the problem of determining whether there exists a system P whose computation tree
satisfies ϕ. Correct synthesis of ϕ then amounts to constructing such a P . The above synthesis problem for linear-time
temporal logic (LTL) specifications was addressed in [36], and for µ-calculus specifications in [16]. In both cases,
the traditional algorithm for finding the desired P works by constructing an appropriate computation tree-automaton
that accepts trees that satisfy the specification formula, and then looking for a finitely-representable witness to the
non-emptiness of this automaton. Such a witness can be easily viewed as as a finite-state system P realizing the
specification.

In spite of the rich theory developed for system synthesis in the last two decades, little of this theory has been
reduced to practice. In fact, the main approaches to tackle synthesis in practice are either to use heuristics (e.g., [20]) or
to restrict to simple specifications (e.g., [33]). Some people argue that this is because the synthesis problem is very
expensive compared to model-checking [26]. There is, however, something misleading in this perception: while the
complexity of synthesis is given with respect to the specification only, the complexity of model-checking is given also
with respect to a program, which can be very large. A common thread in almost all of the works concerning synthesis
is the assumption that the system is to be built from “scratch”. Obviously, real-world systems are rarely constructed
this way, but rather by utilizing many preexisting reusable components, i.e., a library. Using standard preexisting
components is sometimes unavoidable (for example, access to hardware resources is usually under the control of the
operating system, which must be “reused”), and many times has other benefits (apart from saving time and effort, which
may seem to be less of a problem in a setting of automatic - as opposed to manual - synthesis), such as maintaining a
common code base, and abstracting away low level details that are already handled by the preexisting components.
Another reason that may account for the limited use of synthesis in practice is that many designers find it extremely
difficult and/or unnatural to write a complex specification in temporal logic. Indeed, a very common practice in the
hardware industry is to consider a model of the desired hardware written in a high level programming language like
ANSI-C to be a specification (a.k.a “golden model”) [34]. Moreover, even if a specification is written in temporal
logic, the synthesized system is usually monolithic and looks very unnatural from the system designer’s point of view.
Indeed, in classical temporal synthesis algorithms one usually creates in one step a “flat” system, i.e., a system in
which sub-systems may be repeated many times. On the contrary, real-life software and hardware systems are built
step by step and are hierarchical (or even recursive) having repeated sub-systems (such as sub-routines) described only
once. While hierarchical systems may be exponentially more succinct than flat ones, it has been shown that the cost of
solving questions about them (like model-checking) are in many cases not exponentially higher [5, 6, 19]. Hierarchical
systems can also be seen as a special case of recursive systems [2, 3], where the nesting of calls to sub-systems is
bounded. However, having no bound on the nesting of calls gives rise to infinite-state systems, and this results in a
higher complexity.

Consider for example the problem of synthesizing a 60-minutes chronograph displaying elapsed time in minutes
and seconds. A naive solution, which is the one created by a traditional synthesis approach, is to create a transducer
that contains at least 3600 explicit states, one for each successive clock signal. However, an alternative is to design an
hierarchical transducer, composed of two different machines: one counts from 0 to 59 minutes (the minutes-machine),
and the other counts from 0 to 59 seconds (the seconds-machine) – see Example 3.1 for a detailed description. In
particular, by means of 60 special states, named boxes or super-sates, the minutes-machine calls 60 times the seconds-
machine. This hierarchical machine is arguably more natural, and it is definitely more succinct since it has an order of
magnitude less states and boxes than the flat one with 3600 states. Once the 60-minutes chronograph design process
has been completed the resulting transducer can be added to a library of components for future use, for example in a
24-hours chronograph. Then, it is enough to build a new machine (hours-machine) that counts from 0 to 24 hours using
boxes to call the 60-minutes transducer found in the library.

In this work, we provide a uniform algorithm, for different temporal logics, for the synthesis of a hierarchical
system from a library of hierarchical systems, which mimics the “bottom-up” approach to system design, where one
builds a system by iteratively constructing new modules based on previously constructed ones1. More specifically, we

1While for systems built from scratch, a top-down approach may be argued to be more suitable, we find the bottom-up approach to be more
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start the synthesis process by providing the algorithm with an initial library L0 of available hierarchical components
(transducers), as well as atomic ones. We then proceed by synthesizing in rounds. At each round i, the system
designer provides a specification formula ϕi of the currently desired hierarchical transducer, which is then automatically
synthesized using the currently available transducers as possible sub-components. Once a new transducer is synthesized,
it is added to the library to be used by subsequent iterations. The hierarchical transducer synthesized in the last round is
the desired system.

Observe that it is easily conceivable that if the initial library L0 contains enough atomic components then the
synthesis algorithm may use them exclusively, essentially producing a flat system. We thus have to direct the single-
round synthesis algorithm in such a way that it produces modular and not flat results. The question of what makes a
design more or less modular is very difficult to answer, and has received many (and often widely different) answers
throughout the years (see [32], for a survey). We claim that some very natural modularity criteria are regular, and show
how any criterion that can be checked by a parity tree automaton can be easily incorporated into our automata based
synthesis algorithm.

It is our belief that this approach caries with it many benefits. First, the resulting system can be quite succinct
due to its hierarchical nature, as demonstrated by the chronograph example above. Second, we are certain that most
designers will find it easier to write a series of relatively simple specifications formulas than to write one monolithic
formula describing, in one shot, the end result. Third, after each round the synthesized component can be tested and
verified in isolation to gain confidence that there were no mistakes in the specification (or a bug in the synthesizer).
Testing and verification of intermediate modules can be much easier due to their smaller size, and design errors can be
discovered at an earlier stage. Also, the efforts spent on such intermediate modules is a on-time investment, as these
modules can be reused in more than one project. Finally, the structure of the resulting system follows much more the
high-level view that the designer had in mind, increasing his confidence in, and understanding of, the resulting system.

We show that while hierarchical systems may be exponentially smaller than flat ones, the problem of synthesizing a
hierarchical system from a library of existing hierarchical systems is EXPTIME-complete for µ-calculus, and 2EXPTIME-
complete for LTL. Thus, this problem is not harder than the classical synthesis problem of flat systems “from scratch”.
Furthermore, we show that this is true also in the case where the synthesized system has incomplete information about
the environment’s input.

The most technically challenging part of the hierarchical synthesis algorithm presented above is the algorithm
for performing the synthesis step of a single round. As stated before, in the classical automata-theoretic approach
to synthesis [36], synthesizing a system is reduced to the problem of finding a regular tree that is a witness to the
non-emptiness of a suitable tree automaton. Here, we also reduce the synthesis problem to the non-emptiness problem
of a tree automaton. However, unlike the classical approach, we build an automaton whose input is not a computation
tree, but rather a system description in the form of a connectivity tree (inspired by the “control-flow” trees of [28]),
which describes how to connect library components in a way that satisfies the specification formula. Essentially, every
node in a connectivity tree is labeled by some transducer from the library, and the sons of each node correspond to the
different exits this library transducer has. Thus, for example, if a node y labeled by K′ has a son, that corresponds to
exit e of K ′, labeled by K′′, then it means that the exit state e of K′ should be connected to the (single) entrance state
of K′′.

Given a library of hierarchical transducers, and a temporal logic specification ϕ, our single-round algorithm builds
a tree automaton ATϕ such that ATϕ accepts a regular connectivity tree T iff it induces a hierarchical transducer K that
satisfies ϕ. Given ϕ, it is well known how to build an automatonAϕ that accepts all trees that satisfy ϕ [17, 26]. Hence,
all we need to do is to have ATϕ simulate all possible runs of Aϕ on the computation tree of K. However, this is not
easy since ATϕ has as its input not the computation tree of K, but a completely different tree – the connectivity tree T
describing how K is composed from library transducers.

The basic idea is that a copy of ATϕ that reads a node y of T labeled by a library transducer K′ can simulate Aϕ on
the portion of the computation tree of K′ until an exit of K′ is reached. When such an exit is reached T is consulted to
see to which library transducer the computation proceeds from that exit, and the simulation continues. Unfortunately, a
direct implementation of this idea would result in an algorithm whose complexity is too high. Indeed, it is important to
keep the size of ATϕ independent of the size of the transducers in the library and, on-the-fly simulation of the runs of

natural when synthesizing from a library.
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Aϕ on the computation trees of the library transducers would require an embedding of these transducers inside ATϕ .
The key observation at the heart of our solution to this problem is that while simulating Aϕ on the computation tree of
a library transducer K′, no input is consumed by ATϕ until an exit of K′ is encountered. Hence, we can perform these
portions of the simulation off-line (thus circumventing the need to incorporate a copy of K′ into ATϕ ) and incorporate a
suitable summary of these simulations into the transition relation of ATϕ . The difficult problem of summarizing the
possibly infinitely many infinite runs of Aϕ on the computation tree of every library transducer K′, in a way which is
independent of the size of this transducer, is made possible by a suitable adaptation of the summary functions used
in [6] in order to summarize the possible moves in hierarchical sub-arenas of hierarchical parity games.

Related works. The issues of specification and correctness of modularly designed systems have received a fair attention
in the formal verification literature. Examples of important work on this subject are [10, 14, 27, 39]. On the other
hand, the problem of automatic synthesis from reusable components, which we study here, has received much less
attention. The closest to our work is Lustig and Vardi’s work on LTL synthesis from libraries of (flat) transducers [28].
The technically most difficult part of our work is an algorithm for performing the synthesis step of a single round
of the multiple-rounds algorithm. To this end we use an automata-theoretic approach. However, as stated before,
unlike the classical approach of [36], we build an automaton whose input is not a computation tree but rather a system
description in the form of a connectivity tree. Taken by itself, our single-round algorithm extends the “control-flow”
synthesis work from [28] in four directions. (i) We consider not only LTL specifications but also the modal µ-calculus.
Hence, unlike [28], where co-Büchi tree automata were used, we have to use the more expressive parity tree automata.
Unfortunately, this is not simply a matter of changing the acceptance condition. Indeed, in order to obtain an optimal
upper bound, a widely different approach, which makes use of the machinery developed in [6] is needed. (ii) We need
to be able to handle libraries of hierarchical transducers, whereas in [28] only libraries of flat transducers are considered.
(iii) A synthesized transducer has no top-level exits (since it must be able to run on all possible input words), and thus,
its ability to serve as a sub-transducer of another transducer (in future iterations of the multiple-rounds algorithm)
is severely limited – it is like a function that never returns to its caller. We therefore need to address the problem of
synthesizing exits for such transducers. (iv) As discussed above, we incorporate into the algorithm the enforcing of
modularity criteria.

Recently, an extension of [28] appeared in [29], where the problem of Nested-Words Temporal Logic (NWTL)
synthesis from recursive component libraries has been investigated. NWTL extends LTL with special operators that
allow one to handle “call and return” computations [1] and it is used in [29] to describe how the components have to be
connected in the synthesis problem. We recall that in our framework the logic does not drive (at least not explicitly)
the way the components have to be connected. Moreover, the approach used in [29] cannot be applied directly to the
branching framework we consider in this paper, as we recall that already the satisfiability problem for µ-calculus with
“call and return” is undecidable even for very restricted cases [4].

2. Preliminaries

Trees. Let D be a set. A D-tree is a prefix-closed subset T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗ and c ∈ D, then
also x ∈ T . The complete D-tree is the tree D∗. The elements of T are called nodes, and the empty word ε is the root
of T . Given a word x = y · d, with y ∈ D∗ and d ∈ D, we define last(x) to be d. For x ∈ T , the nodes x · d ∈ T ,
where d ∈ D, are the sons of x. A leaf is a node with no sons. A path of T is a set π ⊆ T such that ε ∈ T and, for
every x ∈ π, either x is a leaf or there is a unique d ∈ D such that x · d ∈ π. For an alphabet Σ, a Σ-labeled D-tree is a
pair 〈T, V 〉 where T ⊆ D∗ is a D-tree and V : T→Σ maps each node of T to a letter in Σ.

Asymmetric alternating tree automata. Alternating tree automata are a generalization of nondeterministic tree au-
tomata [31] (see [26], for more details). Intuitively, while a nondeterministic tree automaton that visits a node of the
input tree sends exactly one copy of itself to each of the sons of the node, an alternating automaton can send several
copies of itself to the same son.

An (asymmetric) Alternating Parity Tree Automaton (APT) is a tuple A = 〈Σ,D, Q, q0, δ, F 〉, where Σ, D, and Q
are non-empty finite sets of input letters, directions, and states, respectively, q0 ∈ Q is an initial state, F is a parity
acceptance condition to be defined later, and δ : Q× Σ 7→ B+(D ×Q) is an alternating transition function, which
maps a state and an input letter to a positive boolean combination of elements in D × Q. Given a set S ⊆ D × Q
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and a formula θ ∈ B+(D × Q), we say that S satisfies θ (denoted by S |= θ) if assigning true to elements in S
and false to elements in (D × Q) \ S makes θ true. A run of an APT A on a Σ-labeled D-tree T = 〈T, V 〉 is a
(T ×Q)-labeled IN-tree 〈Tr, r〉, where IN is the set of non-negative integers, such that (i) r(ε) = (ε, q0) and (ii) for
all y ∈ Tr, with r(y) = (x, q), there exists a set S ⊆ D × Q, such that S |= δ(q, V (x)), and there is one son y′ of
y, with r(y′) = (x · d, q′), for every (d, q′) ∈ S. Given a node y of a run 〈Tr, r〉, with r(y) = (z, q) ∈ T × Q, we
define last(r(y)) = (last(z), q). An alternating parity automaton A is nondeterministic (denoted NPT), iff when its
transition relation is rewritten in disjunctive normal form each disjunct contains at most one element of {d} ×Q, for
every d ∈ D. An automaton is universal (denoted UPT) if all the formulas that appear in its transition relation are
conjunctions of atoms in D ×Q.

Symmetric alternating tree automata. A symmetric alternating parity tree automaton with ε-moves (SAPT) [22] does
not distinguish between the different sons of a node, and can send copies of itself only in a universal or an existential
manner. Formally, an SAPT is a tuple A = 〈Σ, Q, q0, δ, F 〉, where Σ is a finite input alphabet, Q is a finite set
of states, partitioned into universal (Q∧), existential (Q∨), ε-and (Q(ε,∧)), and ε-or (Q(ε,∨)) states (we also write
Q∨,∧ = Q∨ ∪ Q∧, and Qε = Q(ε,∨) ∪ Q(ε,∧)), q0 ∈ Q is an initial state, δ : Q × Σ → (Q ∪ 2Q) is a transition
function such that for all σ ∈ Σ, we have that δ(q, σ) ∈ Q for q ∈ Q∨,∧, and δ(q, σ) ∈ 2Q for q ∈ Qε, and F is
a parity acceptance condition, to be defined later. We assume that Q contains in addition two special states ff and
tt, called rejecting sink and accepting sink, respectively, such that ∀a ∈ Σ : δ(tt, a) = tt, δ(ff, a) = ff. The
classification of ff and tt as universal or existential states is arbitrary. Transitions from states in Qε launch copies of
A that stay on the same input node as before the transition, while transitions from states in Q∨,∧ launch copies that
advance to sons of the current node. Note that for an SAPT the set D of directions of the input trees plays no role in the
definition of a run. When a symmetric alternating tree automaton A runs on an input tree it starts with a copy in state
q0 whose reading head points to the root of the tree. It then follows δ in order to send further copies. For example, if a
copy of A that is in state q ∈ Q(ε,∨) is reading a node x labeled σ, and δ(q, σ) = {q1, q2}, then this copy proceeds
either to state q1 or to state q2, and its reading head stays in x. As another example, if q ∈ Q∧ and δ(q, σ) = q1, then
A sends a copy in state q1 to every son of x. Note that different copies of A may have their reading head pointing
to the same node of the input tree. Formally, a run of A on a Σ-labeled D-tree 〈T, V 〉 is a (T ×Q)-labeled IN-tree
〈Tr, r〉. A node in Tr labeled by (x, q) describes a copy of A in state q that reads the node x of T . A run has to satisfy
r(ε) = (ε, q0) and, for all y ∈ Tr with r(y) = (x, q), the following hold:

• If q ∈ Q∧ (resp. q ∈ Q∨) and δ(q, V (x)) = p, then for each son (resp. for exactly one son) x · d of x, there is a
node y · i ∈ Tr with r(y · i) = (x · d, p);

• If q ∈ Q(ε,∧) (resp. q ∈ Q(ε,∨)) and δ(q, V (x)) = {p0,..., pk}, then for all i ∈ {0..k} (resp. for one i ∈ {0..k})
the node y · i ∈ Tr, and r(y · i) = (x, pi).

Parity acceptance condition. A parity condition is given by means of a coloring function on the set of states. Formally,
a parity condition is a function F : Q→ C, where C = {Cmin,..., Cmax} ⊂ IN is a set of colors. The size |C| of C
is called the index of the automaton. For an SAPT, we also assume that the special state tt is given an even color,
and ff is given an odd color. For an infinite path π ⊆ Tr of a run 〈Tr, r〉, let maxC (π) be the maximal color that
appears infinitely often along π. Similarly, for a finite path π, we define maxC (π) to be the maximal color that appears
at least once in π. An infinite path π ⊆ Tr satisfies the acceptance condition F iff maxC (π) is even. A run 〈Tr, r〉
is accepting iff all its infinite paths satisfy F . The automaton A accepts an input tree 〈T, V 〉 if there is an accepting
run of A on 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labeled D-trees accepted by A. We say that an
automaton A is nonempty iff L(A) 6= ∅.

A wide range of temporal logics can be translated to alternating tree automata (details can be found in [26] and in
Appendix A). In particular:

Theorem 2.1. [17, 26] Given a temporal-logic formula ϕ, it is possible to construct an SAPT Aϕ such that L(Aϕ) is
exactly the set of trees satisfying ϕ. In particular, we have that

• if ϕ is a µ-calculus formula, then Aϕ is an alternating parity automaton with O(|ϕ|) states and index O(|ϕ|);

• if ϕ is an LTL formula, then Aϕ is a universal parity automaton with 2O(|ϕ|) states, and index 2.
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For technical convenience we sometimes refer to functions (like transitions and labeling functions) as relations, and
in particular, we consider ∅ to be a function with an empty domain.

3. Hierarchical Systems

3.1. Structures
Hierarchical structures [5] are a generalization of Kripke structures in which repeated sub-structures are specified

only once. Technically, some of the states in a hierarchical structure are boxes (alternatively, superstates), in which inner
hierarchical structures are nested. Formally, a hierarchical structure is a tuple S = 〈ΣO, 〈S1,...,Sn〉〉, where ΣO is a non-
empty set of output letters and, for every 1 ≤ i ≤ n, we have that the substructure Si = 〈Wi,Bi, ini,Exit i, τi,Ri,Λi〉
has the following elements.

• Wi is a finite set of states. ini ∈ Wi is an initial state2, and Exit i ⊆ Wi is a set of exit-states. States in
Wi \ Exit i are called internal states.

• A finite set Bi of boxes. We assume that W1,...,Wn and B1,...,Bn are pairwise disjoint.

• An indexing function τi : Bi → {i+ 1,..., n} that maps each box of the i-th sub-structure to a sub-structure with
an index greater than i. If τi(b) = j we say that b refers to Sj .

• A nondeterministic transition relation Ri ⊆ (
⋃
b∈Bi

({b} × Exitτi(b)) ∪Wi) × (Wi ∪ Bi). Thus, when the
transducer is at a state u ∈Wi, or at an exit e of a box b, it moves either to a state s ∈Wi, or to a box b′ ∈ Bi. A
move to a box b′ implicitly leads to the unique initial state of the sub-structure that b′ refers to.

• A labeling function Λi : Wi → ΣO that maps states to output letters.

The sub-structure S1 is called the top-level sub-structure of S. Thus, for example, the top-level boxes of S are
the elements of B1, etc. We also call in1 the initial state of S, and Exit1 the exits of S. Note that the fact that boxes
can refer only to sub-structures of a greater index implies that the nesting depth of structures is finite. In contrast, in
the recursive setting such a restriction does not exist. Also note that moves from an exit e ∈ Exit i of a sub-structure
Si are not specified by the transition relationRi of Si, but rather by the transition relation of the sub-structures that
contain boxes that refer to Si. The exits of S allow us to use it as a sub-structure of another hierarchical structure.
When we say that a hierarchical structure S = 〈ΣO, 〈S1,...,Sn〉〉 is a sub-structure of another hierarchical structure
S ′ = 〈ΣO, 〈S ′1,...,S ′n′〉〉, we mean that {S1,...,Sn} ⊆ {S ′2,...,S ′n′}. The size |Si| of a sub-structure Si is the sum
|Wi|+ |Bi|+ |Ri|. The size |S| of S is the sum of the sizes of its sub-structures. We sometimes abuse notation and
refer to the hierarchical structure Si which is formally the hierarchical structure 〈ΣO, 〈Si,Si+1,...,Sn〉〉 obtained by
taking Si to be the top-level sub-structure. The special case of a hierarchical structure with a single sub-structure with
no boxes and no exits is simply the classical Kripke structure, and we denote it by S = 〈ΣO,W, in,R,Λ〉.

3.2. Transducers
A hierarchical transducer (alternatively, hierarchical Moore machines) can be viewed as a hierarchical structure

with the addition of an input alphabet that determines which transition has to be taken from each state and box exit.
Unlike hierarchical structures which are nondeterministic, a hierarchical transducer has a deterministic transition
function. For ease of exposition, we also forbid internal moves from exit nodes.

Formally, a hierarchical transducer is a tuple K = 〈ΣI ,ΣO, 〈K1,...,Kn〉〉 with Ki = 〈Wi,Bi, ini,Exit i, τi, δi,Λi〉,
where ΣO and the elementsWi,Bi, ini,Exit i, τi,Λi of each sub-transducer Ki are as in a hierarchical structure, ΣI is a
non-empty set of input letters, and for every 1 ≤ i ≤ n the element δi : (

⋃
b∈Bi

({b}×Exitτi(b))∪(Wi\Exit i))×ΣI →
Wi ∪ Bi is a transition function. Thus, when the transducer is at an internal state u ∈ (Wi \ Exit i), or at an exit
e of a box b, and it reads an input letter σ ∈ ΣI , it moves either to a state s ∈ Wi, or to a box b′ ∈ Bi. As for
hierarchical structures, a move to a box b′ implicitly leads to the unique initial state of the sub-transducer that b′ refers
to. The size |Ki| of a sub-transducer Ki is the sum |Wi|+ |Bi|+ |δi|. The special case of a hierarchical transducer

2We assume a single entry for each sub-structure. Multiple entries can be handled by duplicating sub-structures.
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with a single sub-transducer with no boxes and no exits is simply the classical Moore machine, and we denote it by
K = 〈ΣI ,ΣO,W, in, δ,Λ〉.

Observe that in the definitions above of hierarchical structures and transducers we do not allow boxes as initial
states. An alternative definition allows a box b to serve as an initial state of a sub-transducer Ki, in which case the
entry point to that transducer is the initial state of the subtransducer Kj that b refers to. Note that this process may
have to be repeated if Kj itself designates a box as its entry point, but due to the hierarchical nesting of transducers
this process would terminate yielding a (simple) state in at most n steps. Also note that our definition of the transition
function of a hierarchical transducer does not allow an exit e ∈ Exit i to have internal edges inside the transducer
Ki. Indeed, if b is a box of Kj that refers to Ki then the transition function of Kj specifies where the computation
should continue when it reaches the exit e in the context of the box b. An alternative definition is to allow an exit
e ∈ Exit i to have internal transitions inside Ki on some letters in ΣI , and behave as an exit only with respect
to the remaining letters in ΣI . More formally, one can define the transition function δi to be a partial function
δi : (

⋃
b∈Bi

({b} × Exitτi(b)) ∪Wi)× ΣI → Wi ∪ Bi, such that for every exit e ∈ Exit i, there is at least one letter
σ ∈ ΣI for which δi(e, σ) is not defined (i.e., an exit cannot have all its transitions remain inside Ki), and for every
j < i, every box b ∈ Bj that refers to Ki, and every σ ∈ ΣI , we have that δj((b, e), σ) is defined iff δi(e, σ) is not
defined. Obviously, for every state s ∈ Wi \ Exit i and every σ ∈ ΣI we require that δi(s, σ) be defined. When
constructing actual transducers it is easier to use the less restrictive definitions above, and we do so in Example 3.1.
However, except for this example, in the rest of the paper we use the more restrictive definitions given before. The
reason being that we believe that the reader will benefit much more from having the constructions and proofs not
burdened by the extra technicalities that the more permissive definitions entail, as they are easy to add once the core
idea is grasped.

Example 3.1 (Chronograph). We now give an example of a two-level hierarchical transducer modeling a chronograph
with a display of 60 minutes and 60 seconds and the capability to be paused3. The chronograph input signals are
{tic, sts, clk}. The tic signal is given once a second by an external oscillator, and is used to drive the counting; the
sts signal is a “start and stop” signal and it switches the chronograph back and forth from processing to ignoring the
tic signals; and the clk signal is simply the system clock signal (which is obviously orders of magnitude faster than the
tic oscillator). We start by describing the low level component of the chronograph which is a transducer counting from
0 to 59 seconds.

The Seconds-Counter Transducer Ksc given in Figure 1 is simply a Moore machine with 120 states that counts
the number of tic signals received so far. The basic counting is handled by 60 states numbered from s0 (which is
also the initial state of the transducer) to s59, each of which is labeled by an output signal in 0,..., 59 encoding (in a
way suitable for the seconds’ display module) the number of passed seconds. For every i ∈ {0,..., 59}, the sts signal
pauses/un-pauses the counter by forcing a move from a state si to its paused counterpart pi and vice versa. This
transducer makes no special use of the system clock, and thus every state has a clk self loop (which we do not draw
in Figure 1). Formally, the seconds-counter transducer is the Moore machine Ksc = 〈ΣI ,ΣO,W, in, δ,Λ〉, where
ΣI = {tic, sts, clk}, ΣO = {0,..., 59}, W = {si, pi|0 ≤ i < 60}, in = s0, and both the transition function δ and the
labeling function Λ are given in Figure 1.

s0
0

s1
1 · · · s59

59

p0
0

p1
1 · · · p59

59

tic tic tic

tic

tic tic tic

sts sts stssts sts sts

Figure 1: The Seconds-Counter Transducer Ksc.

The Minutes-Counter Transducer Kmc, given in Figure 2 is a hierarchical transducer containing 60 states and 60
boxes b0,..., b59, all referring to the same subtransducer Ksc, which is the seconds-counter from Figure 1 with the state

3A natural way to build a chronograph using flip-flops and combinatorial logic is to have one counter counting from 0 to 59 seconds using a
clock that ticks once a second, and another counter that counts from 0 to 59 minutes using as its clock the carry (or overflow) flag of the first counter.
Thus, the input signals to the minutes counter are derived from the output signals of the seconds counter. Unfortunately, this kind of synthesis (called
data flow synthesis) is known to be undecidable already for the very restricted case of LTL specifications and systems that are merely pipelines [28].
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s59 serving as exit with respect to the tic signal 4. Note that this means that the transition inside Ksc whose source
is state s59 and is labeled by tic is removed. The updating of the minutes’ display is handled by 60 states numbered
from m0 (which is also the initial state of the transducer) to m59, each of which is labeled by a set of output signals
ΣO = 0,..., 59 encoding the number of passed minutes. When the computation is in the state s59 of a box bi and it
receives a tic signal, it exits the box and enters the state mi+1, which increments the minutes display. At the next system
clock signal clk the computation enters box bi+1 which zeroes the seconds display and starts counting the 59 seconds.

m0

0

Ksc

s0 s59b0
m1

1

Ksc

s0 s59b1 · · · m59

59

Ksc

s0 s59b59clk tic clk tic tic clk

tic

Figure 2: The Minutes-Counter Transducer Kmc.

It is not hard to see how one can use the minutes-counter transducer as a sub-transducer of a more elaborate
chronograph capable of counting up to 24 hours, and then use that as a sub-transducer for a chronograph that also
counts days, etc.

3.3. Flat expansions
A sub-transducer without boxes is flat. A hierarchical transducer K = 〈ΣI ,ΣO, 〈W, ∅, in,Exit , ∅, δ,Λ〉〉 with a

single (hence flat) sub-transducer is flat, and we denote it using the shorter notation K = 〈ΣI ,ΣO, 〈W, in,Exit , δ,Λ〉〉.
Each hierarchical transducer K can be transformed into an equivalent flat transducer Kf = 〈ΣI ,ΣO, 〈W f , in1,Exit1,
δf ,Λf〉〉 (called its flat expansion) by recursively substituting each box by a copy of the sub-transducer it refers to.
Since different boxes can refer to the same sub-transducer, states may appear in different contexts. In order to obtain
unique names for states in the flat expansion, we prefix each copy of a sub-transducer’s state by the sequence of
boxes through which it is reached. Thus, a state (b0,..., bk, w) of Kf is a vector whose last component w is a state
in ∪ni=1Wi, and the remaining components (b0,..., bk) are boxes that describe its context. The labeling of a state
(b0,..., bk, w) is determined by its last component w. For simplicity, we refer to vectors of length one as elements (that
is, w, rather than (w)).5 Formally, given a hierarchical transducer K = 〈ΣI ,ΣO, 〈K1,...,Kn〉〉, for each sub-transducer
Ki = 〈Wi,Bi, ini,Exit i, τi, δi,Λi〉 we inductively define its flat expansion Kf

i = 〈W f
i , ini,Exit i, δ

f
i ,Λ

f
i〉 as follows.

• The set of states Wi
f ⊆Wi∪ (Bi× (

⋃n
j=i+1Wj

f)) is defined as follows: (i) if w is a state of Wi then w belongs
to Wi

f ; and (ii) if b is a box of Ki with τi(b)= j, and the tuple (u1,..., uh) is a state in W f
j , then (b, u1,..., uh)

belongs to Wi
f .

• The transition function δf
i is defined as follows: (i) If δi(u, σ) = v, where u ∈ Wi, or u = (b, e) with

b ∈ Bi and e ∈ Exitτi(b), then if v is a state, we have that δf
i(u, σ) = v; and if v is a box, we have that

δf
i(u, σ) = (v, inτi(v)). Note that (v, inτi(v)) is indeed a state of W f

i by the second item in the definition of
states above; and (ii) if b is a box of Ki, and δf

τi(b)
((u1,..., uh), σ) = (v1,..., vh′) is a transition of Kf

τi(b)
, then

δf
i((b, u1,..., uh), σ) = (b, v1,..., vh′) is a transition of Kf

i .

• Finally, if u ∈ Wi then Λf
i(u) = Λi(u); and if u ∈ Wi

f is of the form u = (b, u1,..., uh), where b ∈ Bi, then
Λi(u) = Λf

τi(b)
(u1,..., uh).

4Recall that for this example we use a definition of hierarchical transducers that allows states to maintain their internal transitions on some input
signals, and act as exits only with respect to the remaining signals.

5A helpful way to think about this is using a stack — the boxes b0,..., bk are pushed into the stack whenever a sub-transducer is called, and are
popped in the corresponding exit.
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The transducer 〈ΣI ,ΣO, 〈Kf
1〉〉 is the required flat expansion Kf of K. An atomic transducer is a flat transducer made

up of a single node that serves as both an entry and an exit. For each letter ς ∈ ΣO there is an atomic transducer
Kς = 〈{p}, p, {p}, ∅, {(p, ς)}〉 whose single state p is labeled by ς .

The definition of a flat expansion S f = 〈ΣO,W f , in,Rf ,Λf〉 of a hierarchical structure S , can be obtained by the
natural modifications to the definition of the flat expansion of a transducer (see also [6]). Observe that the flat expansion
S f of a hierarchical structure S is a Kripke structure, which can be unwound into a tree TS = 〈TS , VS〉. We call TS the
unwinding of S . Formally, TS is a ΣO-labeled W f -tree, where a node y in the tree has a son y ·d′ for every d′ for which
there is a transition ((last(y), d′) ∈ Rf . The label of a node y 6= ε is VS(y) = Λf(last(y)), and VS(ε) = Λf(in).

3.4. Run of a transducer

Consider a hierarchical transducer K with Exit1 = ∅ that interacts with its environment. At point j in time, the
environment provides K with an input σj ∈ ΣI , and in response K moves to a new state, according to its transition
relation, and outputs the label of that state. The result of this infinite interaction is a computation of K, called the
trace of the run of K on the word σ1 · σ2 · · · . In the case that Exit1 6= ∅, the interaction comes to a halt whenever
K reaches an exit e ∈ Exit1, since top-level exits have no outgoing transitions. Formally, a run of a hierarchical
transducer K is defined by means of its flat expansion Kf . Given a finite input word v = σ1 · · ·σm ∈ Σ∗I , a run
(computation) of K on v is a sequence of states r = r0 · · · rm ∈ (W f)∗ such that r0 = in1, and rj = δf(rj−1, σj),
for all 0 < j ≤ m. Note that since K is deterministic it has at most one run on every word, and that if Exit1 6= ∅
then K may not have a run on some words. The trace of the run of K on v is the word of inputs and outputs
trc(K, v) = (Λf(r1), σ1) · · · (Λf(rm), σm) ∈ (ΣO × ΣI)

∗. The notions of traces and runs are extended to infinite
words in the natural way.

The computations of K can be described by a computation tree whose branches correspond to the runs of K on
all possible inputs, and whose labeling gives the traces of these runs. Note that the root of the tree corresponds to the
empty word ε, and its labeling is not part of any trace. However, if we look at the computation tree of K as a sub-tree of
a computation tree of a transducer K′ of which K is a sub-transducer, then the labeling of the root of the computation
tree of K is meaningful, and it corresponds to the last element in the trace of the run of K′ leading to the initial state
of K. Formally, given σ ∈ ΣI , the computation tree TK,σ = 〈TK,σ, VK,σ〉, is a (ΣO × ΣI)-labeled (W f × ΣI)-tree,
where: (i) the root ε is labeled by (Λf(in1), σ); (ii) a node y = (r1, σ1) · · · (rm, σm) ∈ (W f × ΣI)

+ is in TK,σ iff
in1 · r1 · · · rm is the run of K on v = σ1 · · ·σm, and its label is VK,σ(y) = (Λf(rm), σm). Thus, for a node y, the
labels of the nodes on the path from the root (excluding the root) to y are exactly trc(K, v). Observe that the leaves of
TK,σ correspond to pairs (e, σ′), where e ∈ Exit1 and σ′ ∈ ΣI . However, if Exit1 = ∅, then the tree has no leaves,
and it represents the runs of K over all words in Σ∗I . We sometimes consider a leaner computation tree TK = 〈TK, VK〉
that is a ΣO-labeled ΣI -tree, where a node y ∈ Σ+

I is in TK iff there is a run r of K on y. The label of such a node is
VK(y) = Λf(last(r))) and the label of the root is Λf(in1). Observe that for every σ ∈ ΣI , the tree TK can be obtained
from TK,σ by simply deleting the first component of the directions of TK,σ , and the second component of the labels of
TK,σ .

Recall that the labeling of the root of a computation tree of K is not part of any trace (when it is not a sub-tree of
another tree). Hence, in the definition below, we arbitrarily fix some letter % ∈ ΣI . Given a temporal logic formula ϕ,
over the atomic propositions AP where 2AP = ΣO × ΣI , we have the following:

Definition 3.1. A hierarchical transducer K = 〈ΣI ,ΣO, 〈K1,...,Kn〉〉, with Exit1 = ∅, satisfies a formula ϕ (written
K |= ϕ) iff the tree TK,% satisfies ϕ.

Observe that given ϕ, finding a flat transducer K such that K |= ϕ is the classic synthesis problem studied (for LTL
formulas) in [36].

4. Hierarchical Synthesis

In this section we describe our algorithm for bottom-up synthesis of a hierarchical transducer from a library
of hierarchical transducers. For our purpose, a library L is simply a finite set of hierarchical transducers with the
same input and output alphabets. Formally, L = {K1,...,Kλ}, and for every 1 ≤ i ≤ λ, we have that Ki =
〈ΣI ,ΣO, 〈Ki1,...,Kini

〉〉. Note that a transducer in the library can be a sub-transducer of another one, or share common
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sub-transducers with it. The set of transducers in L that have no top-level exits is denoted by L=∅ = {Ki ∈ L :
Exit i1 = ∅}, and its complement is L6=∅ = L \ L=∅.

The synthesis algorithm is provided with an initial library L0 of hierarchical transducers. A good starting point is
to include in L0 all the atomic transducers, as well as any other relevant hierarchical transducers, for example from a
standard library. Obviously, the choice of the initial library is entirely in the hands of the designer. We then proceed by
synthesizing in rounds. At each round i ≥ 0, the system designer provides a specification formula ϕi of the currently
desired hierarchical transducer Ki, which is then automatically synthesized using the transducers in Li−1 as possible
sub-transducers. Once a new transducer is synthesized it is added to the library, to be used in subsequent rounds.
Technically, the hierarchical transducer synthesized in the last round is the output of the algorithm.

Input: An initial library L0, and a list of specification formulas ϕ1,..., ϕm
Output: A hierarchical transducer satisfying ϕm
for i = 1 to m do

synthesize Ki satisfying ϕi using the transducers in Li−1 as sub-transducers
Li ← Li−1 ∪ {Ki}

end
return Km

Algorithm 1: Hierarchical Synthesis Algorithm

The main challenge in implementing the above bottom-up hierarchical synthesis algorithm is of course coming up
with an algorithm for performing the synthesis step of a single round. As noted in Section 1, a transducer that was
synthesized in a previous round has no top-level exits, which severely limits its ability to serve as a sub-transducer
of another transducer. Our single-round algorithm must therefore address the problem of synthesizing exits for such
transducers. In Section 4.1 we give our algorithm for single-round synthesis of a hierarchical transducer from a library
of hierarchical transducers, and present the core proof of its correctness; the remaining details of this proof, which
are based on a game-theoretic approach, are given in Section 5. In Section 4.2 we address the problem of enforcing
modularity, and add some more information regarding the synthesis of exits. Finally, in Section 6, we address the
problem of hierarchical synthesis with imperfect information.

4.1. Single-round synthesis algorithm
We now formally present the problem of hierarchical synthesis from a library (that may have transducers without

top-level exits) of a single temporal logic formula. Given a transducer K = 〈ΣI ,ΣO, 〈K1,...,Kn〉〉 ∈ L=∅, where
K1 = 〈W1,B1, in1, ∅, τ1, δ1,Λ1〉, and a set E ⊆ W1, the transducer KE is obtained from K by setting E to
be the set of top-level exits, and removing all the outgoing edges from states in E. Formally, KE = 〈ΣI ,ΣO,
〈〈W1,B1, in1, E, τ1, δ

′
1,Λ1〉,K2,...,Kn〉〉, where the transition relation δ′1 is the restriction of δ1 to sources in W1 \E.

For convenience, given a transducer K ∈ L 6=∅ we sometimes refer to it as KExit1 . For every K ∈ L, we assume some
fixed ordering on the top-level states of K, and given a set E ⊆ W1, and a state e ∈ E, we denote by idx(e, E) the
relative position of e in E, according to this ordering. Given a library L, and an upper bound el ∈ IN on the number
of allowed top-level exits, we let Lel = L 6=∅ ∪ {KE : K ∈ L=∅ ∧ |E| ≤ el}. The higher the number el, the more
exits the synthesis algorithm is allowed to synthesize, and the longer it may take to run. As we show later, el should
be at most polynomial6 in the size of ϕ. In general, we assume that el is never smaller than the number of exits in
any sub-transducer of any hierarchical transducer in L. Hence, for every KE ∈ Lel and every e ∈ E, we have that
1 ≤ idx(e, E) ≤ el.

Definition 4.1. Given a library L and a bound el ∈ IN, we say that:

• A hierarchical transducer K = 〈ΣI ,ΣO, 〈K1,...Kn〉〉 is 〈L, el〉-composed if (i) for every 2 ≤ i ≤ n, we have
that Ki ∈ Lel; (ii) if w ∈W1 is a top-level state, then the atomic transducer KΛ1(w) is in L.

6In practical terms, the exits of a sub-module represent its set of possible return values. Since finite state modules are usually not expected to have
return values over large domains (such as the set of integers), we believe that our polynomial bound for el is not too restrictive.
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• A formula ϕ is 〈L, el〉-realizable iff there is an 〈L, el〉-composed hierarchical transducer K that satisfies ϕ. The
〈L, el〉-synthesis problem is to find such a K.

Intuitively, an 〈L, el〉-composed hierarchical transducer K is built by synthesizing its top-level sub-transducer
K1, which specifies how to connect boxes that refer to transducers from Lel. To eliminate an unnecessary level of
indirection, boxes that refer to atomic transducers are replaced by regular states7.

Note that for each transducer K′ ∈ L=∅ we can have as many as Ω(|K′|)el copies of K′ in Lel, each with a different
set of exit states. In Section 4.2 we show how, when we synthesize K, we can limit the number of such copies that K
uses to any desired value (usually one per K′).

4.1.1. Connectivity trees
In the classical automata-theoretic approach to synthesis [36], synthesizing a system is reduced to the problem of

finding a regular tree that is a witness to the non-emptiness of a suitable tree automaton. Here, we also reduce synthesis
to the non-emptiness problem of a tree automaton. However, unlike the classical approach, we build an automaton
whose input is not a computation tree, but rather a system description in the form of a connectivity tree (inspired
by the “control-flow” trees of [28]), which describes how to connect library components in a way that satisfies the
specification formula. Specifically, given a library L = {K1,...,Kλ} and a bound el ∈ IN, connectivity trees represent
hierarchical transducers that are 〈L, el〉-composed, in the sense that every 〈L, el〉-composed hierarchical transducer
induces a regular connectivity tree, and vice versa.

Formally, a connectivity tree T = 〈T, V 〉 for L and el, is an Lel-labeled complete ({1,..., el} × ΣI)-tree, where
the root is labeled by an atomic transducer. Intuitively, a node x with V (x) = KE represents a top-level state q
if KE is an atomic transducer, and otherwise it represents a top-level box b that refers to KE . The label of a son
x · (idx(e, E), σ) specifies the destination of the transition from the exit e of b (or from a state q, if KE is atomic
— in which case it has a single exit) when reading σ. Sons x · (i, σ), for which i > |E|, are ignored. Thus, a path
π = (i0, σ0) · (i1, σ1) · · · in a connectivity tree T is called meaningful, iff for every j > 0, we have that ij is not
larger than the number of top-level exits of V (ij−1, σj−1). A connectivity tree T = 〈T, V 〉 is regular if there is a flat
transducerM = 〈{1,..., el} × ΣI ,Lel, 〈M,m0, ∅, δT,ΛT 〉〉, such that T is equal to the (lean) computation tree TM.

Lemma 4.1. Every 〈L, el〉-composed hierarchical transducer induces a regular connectivity tree, and every regular
connectivity tree for L and el induces an 〈L, el〉-composed hierarchical transducer.

Proof. For the first direction, let K = 〈ΣI ,ΣO, 〈K1,...,Kn〉〉, where K1 = 〈W1,B1, in1, τ1, δ1,Λ1〉, be an 〈L, el〉-
composed hierarchical transducer. We construct a flat transducer M whose computation tree TM is the required
connectivity tree. The elements ofM are as follows:

• M = W1 ∪ B1, and m0 = in1.

• If w ∈ W1, then for every σ ∈ ΣI , we have that δT (w, (1, σ)) = δ1(w, σ), and for every 1 < i ≤ el we
(arbitrarily) let δT (w, (i, σ)) = m0.

• For b ∈ B1, let KE ∈ Lel be the sub-transducer that b refers to. For every σ ∈ ΣI , if 1 ≤ i ≤ |E| then
δT (b, (i, σ)) = δ1((b, e), σ), where e ∈ E is such that idx(e, E) = i; and if |E| < i ≤ el then we (arbitrarily)
let δT (b, (i, σ)) = m0.

• For w ∈W1 we have that ΛT (w) = Kς , where Λ1(w) = ς .

• For b ∈ B1 we have that ΛT (b) = Kτ1(b).

Recall that a son y · (i, σ), of a node y in a connectivity tree T = 〈T, V 〉, is meaningless if i is larger than the number
of exits of the transducer V (y). Hence, our choice to direct the corresponding transitions of M to the node m0 is
arbitrary and was done only for technical completeness.

7When using our strict definition of a hierarchical transducer where the initial state is indeed a state and not a box, one has to assume that
the library has at least one atomic transducer for use by the initial state. Obviously, if one chooses to allow boxes as initial states (as done in the
chronograph example), this requirement becomes superfluous.
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For the other direction, given a regular connectivity tree T = 〈T, V 〉 generated by the transducerM = 〈{1,..., el}
× ΣI ,Lel, 〈M,m0, ∅, δT,ΛT 〉〉, it is not hard to see that it induces an 〈L, el〉-composed hierarchical transducer K,
whose top-level sub-transducer K1 is basically a replica ofM. Every node m ∈M becomes a state of K1 if ΛT (m) is
an atomic-transducer and, otherwise, it becomes a box of K1 which refers to the top-level sub-transducer of ΛT (m).
The destination of a transition from an exit e of a box m, with ΛT (m) = KE , when reading a letter σ ∈ ΣI , is
given by δT (m, (idx(e, E), σ)). If m is a state, then ΛT (m) is an atomic transducer with a single exit and thus,
the destination of a transition from m when reading a letter σ ∈ ΣI , is given by δT (m, (1, σ)). For a box b of K1,
let ΛT (b) = 〈ΣI ,ΣO, 〈K(b,1),...K(b,nb)〉〉, and denote by sub(b) = {K(b,1),...K(b,nb)} the set of sub-transducers of
ΛT (b), and by E(b) the set of top-level exits of ΛT (b).

Formally, K = 〈ΣI ,ΣO, 〈K1,...,Kn〉〉, where K1 = 〈W1,B1,m0, τ1, δ1,Λ1〉, and:

• W1 = {w ∈ M : ∃ς ∈ ΣO s.t. ΛT (w) = Kς}. Note that since the root of a connectivity tree is labeled by an
atomic transducer then m0 ∈W1.

• B1 = M \W1.

• The sub-transducers {K2,...,Kn} =
⋃
{b∈B1} sub(b).

• For b ∈ B1, we have that τ1(b) = i, where i is such that Ki = K(b,1).

• For w ∈W1, and σ ∈ ΣI , we have that δ1(w, σ) = δT (w, (1, σ)).

• For b ∈ B1, we have that δ1((b, e), σ) = δT (b, (idx(e, E(b)), σ)), for every e ∈ E(b) and σ ∈ ΣI .

• Finally, for w ∈W1 we have that Λ1(w) = ς , where ς is such that ΛT (w) = Kς .

4.1.2. From synthesis to automata emptiness
Given a library L = {K1,...,Kλ}, a bound el ∈ IN, and a temporal logic formula ϕ, our aim is to build an APT

ATϕ such that it accepts a regular connectivity tree T = 〈T, V 〉 iff it induces a hierarchical transducer K such that
K |= ϕ. Recall that by Definition 3.1 and Theorem 2.1, K |= ϕ iff TK,% is accepted by the SAPT Aϕ. The basic idea is
thus to have ATϕ simulate all possible runs of Aϕ on TK,%. Unfortunately, since ATϕ has as its input not TK,%, but the
connectivity tree T , this is not a trivial task. In order to see how we can solve this problem, we first have to make the
following observation.

Let T = 〈T, V 〉 be a regular connectivity tree, and let K be the hierarchical transducer that it induces. Consider
a node u in the computation tree TK,% which corresponds to a point along a computation where K just enters a top
level box b (or state8). That is, last(u) = ((b, inτ1(b)), σ). Observe that the root of TK,% is such a node. Let KE
be the library sub-transducer that b refers to, and note that the sub-tree T u, rooted at u, represents the traces of
computations of K that start from the initial state of KE , in the context of the box b. The sub-tree prune(T u), obtained
by pruning every path in T u at the first node û, with last(û) = ((b, e), σ̂) for some e ∈ E and σ̂ ∈ ΣI (i.e., at the first
point the computation reaches an exit of KE), represents the portions of these traces that stay inside KE . Note that
prune(T u) is essentially independent of the context b in which KE appears, and is isomorphic to the computation
tree TKE ,σ of KE (the isomorphism being to simply drop the component b from every letter in the name of every
node in prune(T u)). Moreover, every son v (in TK,%), of such a leaf û of prune(T u), is of the same form as u. I.e.,
last(v) = ((b′, inτ1(b′)), σ

′), where b′ = δ1((b, e), σ′) is a top-level box (or state) of K. Indeed, once an exit of a
transducer referred to by a top level box of K is reached, a computation of K must proceed, according to the transition
relation δ1 of it’s top level sub-transducer K1, either to a top level state or to the entrance of another top level box. It
follows that TK,% is isomorphic to a concatenation of sub-trees of the form TKE ,σ, where the transition from a leaf of
one such sub-tree to the root of another is specified by the transition relation δ1, and is thus given explicitly by the
connectivity tree T .

8Here we think of top-level states of K as boxes that refer to atomic transducers.

12



The last observation is the key to how ATϕ can simulate, while reading T , all the possible runs of Aϕ on TK,%.
The general idea is as follows. Consider a node u of TK,% such that prune(T u) is isomorphic to TKE ,σ. A copy of
ATϕ that reads a node y of T labeled by KE can easily simulate, without consuming any input, all the portions of
the runs of any copy of Aϕ that start by reading u and remain inside prune(T u). This simulation can be done by
simply constructing TKE ,σ on the fly and running Aϕ on it. For every simulated copy of Aϕ that reaches a leaf û of
prune(T u), the automaton ATϕ sends copies of itself to the sons of y in the connectivity tree in order to continue the
simulation of Aϕ on the different sub-trees of TK,% rooted at sons of û. Recall that last(û) is of the form ((b, e), σ̂),
that is, û represents a point in a computation of K where an exit e of a top level box b is reached. Observe that for every
input letter σ′ ∈ ΣI , the node z = y · (idx(e, E), σ′) in the connectivity tree represents the box b′ to which K should
proceed from exit e of box b when reading σ′, and the label of z is the library sub-transducer to which b′ refers. Thus,
the simulation of a copy of Aϕ that proceeds to a son v = û · ((b′, inτ1(b′)), σ

′) is handled by a copy of ATϕ that is sent
to the son z = y · (idx(e, E), σ′).

Our construction of ATϕ implements the above idea, with one important modification. In order to obtain optimal
complexity in successive rounds of Algorithm 1, it is important to keep the size of ATϕ independent of the size of the
transducers in the library. Unfortunately, simulating the runs of Aϕ on TKE ,σ on the fly would require an embedding of
KE inside ATϕ . Recall, however, that no input is consumed by ATϕ while running such a simulation. Hence, we can
perform these simulations off-line instead, in the process of building the transition relation of ATϕ . Obviously, this
requires a way of summarizing the possibly infinite number of runs of Aϕ on TKE ,σ, which we do by employing the
concept of summary functions from [7]. Let Aϕ = 〈ΣO × ΣI , Qϕ, q

0
ϕ, δϕ, Fϕ〉, let Aqϕ be the automaton Aϕ using

q ∈ Q as an initial state, and let C be the set of colors used in the acceptance condition Fϕ. Following the above
observations, we next turn our attention to the problem of how to effectively summarize the run 〈Tr, r〉 of Aqϕ on
TKE ,σ .

First, we define a total ordering � on the set of colors C by letting c � c′ when c is better, from the point of view
of the parity acceptance condition of Aϕ, than c′. Thus, any even color is better than all the odd colors, the larger the
even color the better, and if one has to choose between two odd colors it is best to “minimize the damage” by taking the
smaller odd number. Formally, c � c′ if the following holds: if c′ is even then c is even and c ≥ c′; and if c′ is odd then
either c is even, or c is also odd and c ≤ c′. For example: 4 � 2 � 0 � 1 � 3. We denote by min� the operation of
taking the minimal color, according to �, of a finite set of colors.

Consider now the run tree 〈Tr, r〉 ofAqϕ on TKE ,σ . Note that if z ∈ Tr is a leaf, then r(z) is of the form (a·(e, σ′), p)
for some string a, with p ∈ Q∨,∧ϕ (i.e., p is not an ε-state), and e ∈ E. Indeed, if p is an ε-state then Aqϕ can proceed
without consuming any input, and hence the run can be extended beyond z; similarly, if e is not an exit of KE then
it has successors inside KE , and again the the run can be extended beyond z. Every such leaf z represents a copy of
Aϕ that is in state p and is reading a node of the computation tree of KE whose last component is (e, σ′). It turns out
(and is proved in [7]) that it is not important to remember all the colors this copy of Aϕ encountered along the way
to this node, but only the the maximal color according to � (this ultimately hinges upon the fact that parity games
are memoryless – see [7]). It is also not important to differentiate between two copies of Aϕ that have reached two
different nodes y, y′ of the computation tree of KE if last(y) = last(y′) = (e, σ′) (thus both copies are going to read
the same future input sub-tree) and both copies are in the same state p and have encountered the same maximal color.
Moreover, if there are two copies of Aϕ that have reached, with the same state p, two (possibly the same) nodes y, y′

with last(y) = last(y′) = (e, σ′), but have encountered different maximal colors c, c′ where c � c′, it is enough to
remember the information of the copy that is “more behind” in its attempt to satisfy the acceptance condition. I.e., the
copy that encountered c′. The intuitive reason is that since both copies are going to read the same input sub-tree from
the same state, if the copy that has encountered a less favorable maximal color in the past is going to accept then the
copy that encountered a more favorable color is bound to accept too.

To capture the above intuition, we define a function gr : E ×ΣI ×Q∨,∧ϕ → C ∪ {a}, called the summary function
of 〈Tr, r〉, which summarizes this run. Given h = (e, σ′, p) ∈ E × ΣI ×Q∨,∧ϕ , if there is no leaf z ∈ Tr, such that
r(z) is of the form (a · (e, σ′), p), then gr(h) =a; otherwise, gr(h) = c, where c is the maximal color encountered
by the copy of Aϕ which made the least progress towards satisfying the acceptance condition, among all copies that
reach a leaf z ∈ Tr of the form (a · (e, σ′), p). Formally, given h = (e, σ′, p) ∈ E × ΣI ×Q∨,∧ϕ , let paths(r, h) be
the set of all the paths in 〈Tr, r〉 that end in a leaf z ∈ Tr with r(z) = (a · (e, σ′), p), for some a. Then, gr(h) =a if
paths(r, h) = ∅ and otherwise, gr(h) = min�{maxC(π) : π ∈ paths(r, h)}.
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Let Sf (KE , σ, q) be the set of summary functions of the runs of Aqϕ on TKE ,σ. If TKE ,σ has no leaves, then
Sf (KE , σ, q) contains only the empty summary function ∅. For g ∈ Sf (KE , σ, q), let g 6=a = {h ∈ E × ΣI ×Q∨,∧ϕ :

g(h) 6=a}. Based on the ordering � we defined for colors, we can define a partial order � on Sf (KE , σ, q), by letting
g � g′ if for every h ∈ (E × ΣI × Q∨,∧ϕ ) the following holds: g(h) =a, or g(h) 6=a6= g′(h) and g(h) � g′(h).
Observe that if r and r′ are two non-rejecting runs, and gr � gr′ , then extending r to an accepting run on a tree that
extends TKE ,σ is always not harder than extending r′ - either because Aϕ has less copies at the leaves of r, or because
these copies encountered better maximal colors. Given a summary function g, we say that a run 〈Tr, r〉 achieves g
if gr � g; we say that g is feasible if there is a run 〈Tr, r〉 that achieves it; and we say that g is relevant if it can be
achieved by a memoryless9 run that is not rejecting (i.e., by a run that has no infinite path that does not satisfy the
acceptance condition of Aϕ). We denote by Rel(KE , σ, q) ⊆ Sf (KE , σ, q) the set of relevant summary functions.

We are now ready to give a formal definition of the automaton ATϕ . Given a library L = {K1,...,Kλ}, a bound
el ∈ IN, and a temporal-logic formula ϕ, letAϕ = 〈ΣO×ΣI , Qϕ, q

0
ϕ, δϕ, Fϕ〉, let C = {Cmin,..., Cmax} be the colors

in the acceptance condition of Aϕ, and for KE ∈ Lel, let ΛE be the labeling function of the top-level sub-transducer of
KE . The automaton ATϕ = 〈Lel, ({1,..., el} × ΣI), (ΣI ×Q∨,∧ϕ × C) ∪ {q0}, q0, δ, α〉 has the following elements.

• For every KE ∈ Lel we have that δ(q0,KE) = δ((%, q0
ϕ, Cmin),KE) if KE is an atomic transducer and,

otherwise, δ(q0,KE) = false.

• For every (σ, q, c) ∈ ΣI × Q∨,∧ϕ × C, and every KE ∈ Lel, we have δ((σ, q, c),KE) =
∨
g∈Rel(KE,σ,q)∧

(e,σ̂,q̂)∈g 6=a
⊕
σ′∈ΣI

((idx(e, E), σ′), (σ′, δϕ(q̂, (ΛE(e), σ̂)), g(e, σ̂, q̂))), where
⊕

=
∧

if q̂ ∈ Q∧ϕ, and
⊕

=∨
if q̂ ∈ Q∨ϕ.

• α(q0) = Cmin; and α((σ, q, c)) = c, for every (σ, q, c) ∈ ΣI ×Q∨,∧ϕ × C.

Intuitively, ATϕ first checks that the root of its input tree T is labeled by an atomic proposition and then proceeds
to simulate all the runs of Aϕ on TK,%. A copy of ATϕ at a state (σ, q, c), that reads a node y of T labeled by KE ,
considers all the non-rejecting runs of Aqϕ on TKE ,σ, by looking at the set Rel(KE , σ, q) of summary functions for
these runs. It then sends copies of ATϕ to the sons of y to continue the simulation of copies of Aϕ that reach the leaves
of TKE ,σ .

The logic behind the definition of δ((σ, q, c),KE) is as follows. Since every summary function g ∈ Rel(KE , σ, q)
summarizes at least one non-rejecting run, and it is enough that one such run can be extended to an accepting run of
Aϕ on the remainder of TK,%, we have a disjunction on all g ∈ Rel(KE , σ, q). Every (e, σ̂, q̂) ∈ g 6=a represents one or
more copies of Aϕ at state q̂ that are reading a leaf û of TKE ,σ with last(û) = (e, σ̂), and all these copies must accept
their remainders of TK,%. Hence, we have a conjunction over all (e, σ̂, q̂) ∈ g 6=a.

A copy of Aϕ that starts at the root of TKE ,σ may give rise to many copies that reach a leaf û of TKE ,σ with
last(û) = (e, σ̂), but we only need to consider the copy which made the least progress towards satisfying the acceptance
condition, as captured by g(e, σ̂, q̂). To continue the simulation of such a copy on its remainder of TK,%, we send a copy
ofATϕ to a son y · (idx(e, E), σ′) of y in the connectivity tree, whose label specifies where K should go to from the exit
e when reading σ′, as follows. Recall that the leaf û corresponds to a node u of TK,% such that last(u) = ((b, e), σ̂)
and b is a top-level box of K that refers to KE . Also recall that every node in TK,% has one son for every letter σ′ ∈ ΣI .
Hence, a copy of Aϕ that is at state q̂ and is reading u, sends one copy in state q′ = δϕ(q̂, (ΛE(e), σ̂)) to each son of u,
if q̂ ∈ Q∧ϕ; and only one such copy, to one of the sons of u, if q̂ ∈ Q∨ϕ. This explains why

⊕
is a conjunction in the

first case, and is a disjunction in the second. Finally, a copy of ATϕ that is sent to direction (idx(e, E), σ′) carries with
it the color g(e, σ̂, q̂). The color assigned to q0 is of course arbitrary.

The construction above implies the following lemma:

Lemma 4.2. ATϕ accepts a regular connectivity tree T = 〈T, V 〉 iff T induces a hierarchical transducer K, such that
TK,% is accepted by Aϕ.

9A run of an automatonA is memoryless if two copies ofA that are in the same state, and read the same input node, behave in the same way on
the rest of the input.
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Proof. The core of the proof is game-theoretic. Recall that the game-based approach to model checking a flat system S
with respect to a branching-time temporal logic specification ϕ, reduces the model-checking problem to solving a game
(called the membership game of S and Aϕ) obtained by taking the product of S with the alternating tree automaton
Aϕ [26]. In [7], this approach was extended to hierarchical structures, and it was shown there that given a hierarchical
structure S and an SAPT A, one can construct a hierarchical membership game GS,A such that Player 0 wins GS,A
iff the tree obtained by unwinding S is accepted by A. In particular, when A accepts exactly all the tree models of
a branching-time formula ϕ, the above holds iff S satisfies ϕ. Furthermore, it is shown in [7] that one can simplify
the hierarchical membership game GS,A, by replacing boxes of the top-level arena with gadgets that are built using
Player 0 summary functions, and obtain an equivalent flat game Gs

S,A.
Given a regular connectivity tree T = 〈T, V 〉 that induces a hierarchical transducer K, we prove Lemma 4.2 by

showing that the flat membership game Gs
S,Aϕ

, where S is a hierarchical structure whose unwinding is the computation
tree TK,%, is equivalent to the flat membership game GKT,AT

ϕ
, of ATϕ and a Kripke structure KT whose unwinding is

T . Thus, Aϕ accepts TK,% iff ATϕ accepts T . The equivalence of these two games follows from the fact that they have
isomorphic arenas and winning conditions. Consequently, our proof of Lemma 4.2 is mainly syntactic in nature, and
basically amounts to constructing the structures S and KT , constructing the game GS,Aϕ

, simplifying it to get Gs
S,Aϕ

,
and constructing the membership game GKT,AT

ϕ
. The remaining details can be found in Section 5.

We now state our main theorem.

Theorem 4.1. The 〈L, el〉-synthesis problem is EXPTIME-complete for a µ-calculus formula ϕ, and is 2EXPTIME-
complete for an LTL formula (for el that is at most polynomial in |ϕ| for µ-calculus, or at most exponential in |ϕ| for
LTL).

Proof. The lower bounds follow from the same bounds for the classical synthesis problem of flat systems [24, 38],
and the fact that it is immediately reducible to our problem if L contains all the atomic transducers. For the upper
bounds, since an APT accepts some tree iff it accepts some regular tree (andATϕ obviously only accepts trees which are
connectivity trees), by Lemma 4.2 and Theorem 2.1, we get that an LTL or a µ-calculus formula ϕ is 〈L, el〉-realizable
iff L(ATϕ ) 6= ∅. Checking the emptiness of ATϕ can be done either directly, or by first translating it to an equivalent
NPT A′Tϕ . For reasons that will become apparent in Section 4.2 we choose the latter. Note that the known algorithms
for checking the emptiness of an NPT are such that if L(ATϕ ) 6= ∅, then one can extract a regular tree in L(ATϕ ) from
the emptiness checking algorithm [37]. The upper bounds follow from the analysis given below of the time required to
construct ATϕ and check for its non-emptiness.

By Theorem 2.1, the number of states |Qϕ| and the index k of Aϕ is |Qϕ| = 2O(|ϕ|), k = 2 for LTL, and
|Qϕ| = O(|ϕ|), k = O(|ϕ|) for µ-calculus. The most time consuming part in the construction of ATϕ is calculating for
every (KE , σ, q) ∈ (Lel × ΣI ×Qϕ), the set Rel(KE , σ, q). Calculating Rel(KE , σ, q) can be done by checking for
every summary function g ∈ Sf (KE , σ, q) if it is relevant. Our proof of Lemma 4.2 also yields that, by [7], the latter
can be done in time O((|K| · |Qϕ|)k · (k + 1)|E|·|Qϕ|·k). Observe that the set Sf (KE , σ, q) is of size (k + 1)|E|, and
that the number of transducers in Lel is O(λ ·mel), where m is the maximal size of any K ∈ L. It follows that for an
LTL (resp. µ-calculus) formula ϕ, the automaton ATϕ can be built in time at most polynomial in the size of the library,
exponential in el, and double exponential (resp. exponential) in |ϕ|.

We now analyze the time it takes to check for the non-emptiness ofATϕ . Recall that for every η ∈ (Lel×ΣI ×Qϕ),
the set Rel(η) is of size at most (k + 1)el, and thus, the size of the transition relation of ATϕ is polynomial in |L| and
|ϕ|, and exponential in el. Checking the emptiness of ATϕ is done by first translating it to an equivalent NPT A′Tϕ . By
[31], given an APT with |Q| states and index k, running on Σ-labeledD∗-trees, one can build (in time polynomial in the
descriptions of its input and output automata) an equivalent NPT with (|Q| · k)O(|Q|·k) states, an index O(|Q| · k), and
a transition relation of size |Σ| · (|Q| · k)O(|D|·|Q|·k). It is worth noting that this blow-up in the size of the automaton is
independent from the size of the transition relation of ATϕ . By [26, 41], the emptiness of A′Tϕ can be checked in time
|Σ| · (|Q| · k)O(|D|·|Q|2·k2) (and if it is not empty, a witness is returned). Recall that |Σ| = |Lel| = O(λ ·mel), and that
|D| = el · |ΣI |. By substituting the values calculated above for |Q| and k, the theorem follows.

Note that when using the single-round 〈L, el〉-synthesis algorithm as a sub-routine of the multiple-rounds Algo-
rithm 1, it is conceivable that the transducerKi synthesized at iteration i will be exponential (or even double-exponential
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for LTL) in the size of the specification formula ϕi. At this point it is probably best to stop the process, refine the
specifications (i.e., break step i into multiple sub-steps), and try again. However, it is important to note that even if the
process is continued, andKi is added to the library, the time complexity of the succeeding iterations does not deteriorate
since the single-round 〈L, el〉-synthesis algorithm is only polynomial in the maximal size m of any transducer in the
library.

4.2. Enforcing Modularity

In this section, we address two main issues that may hinder the efforts of our single-round 〈L, el〉-synthesis
algorithm to synthesize a succinct hierarchical transducer K.

The first issue is that of ensuring that, when possible, K indeed makes use of the more complex transducers in
the library (especially transducers synthesized in previous rounds) and does not rely too heavily on the less complex,
or atomic, transducers. An obvious and most effective solution to this problem is to simply not have some (or all)
of the atomic transducers present in the library. The second issue is making sure that K does not have too many
sub-transducers, which can happen if it uses too many copies of the same transducer K′ ∈ L=∅, each with a different
set of exits. We also discuss some other points of interest regarding the synthesis of exits.

We address the above issues by constructing, for each constraint we want to enforce on the synthesized transducer
K, an APT A, called the constraint monitor, such that A accepts only connectivity trees that satisfy the constraint. We
then synthesize K by checking the non-emptiness not ofATϕ , but of the product ofATϕ with all the constraints monitors.
Note that a nondeterministic monitor (i.e., an NPT) of exponential size can also be used, without adversely affecting
the time-complexity, if the product with it is taken after we translate the product of ATϕ and the other (polynomial)
APT monitors, to an equivalent NPT.

A simple and effective way to enforce modularity in Algorithm 1 is that once a transducerKi is synthesized in round
i, one incorporates in subsequent rounds a monitor that rejects any connectivity tree containing a node labeled by some
key sub-transducers of Ki. This effectively enforces any transducer synthesized using a formula that refers to atomic
propositions present only in Ki (and its disallowed sub-transducers) to use Ki, and not try to build its functionality
from scratch. As to other ways to enforce modularity, the question of whether one system is more modular than another,
or how to construct a modular system, has received many, and often widely different, answers. Here we only discuss
how certain simple modularity criteria can be easily implemented on top of our algorithm. For example, some people
would argue that a function that has more than, say, 10 consecutive lines of code in which no other function is called, is
not modular enough. A monitor that checks that in no path in a connectivity tree there are more than 10 consecutive
nodes labeled with an atomic transducer can easily enforce such a criterion. We can even divide the transducers in the
library into groups, based on how “high level” they are, and enforce lower counts on lower level groups. Essentially,
every modularity criterion that can be checked by a polynomial APT, or an exponential NPT, can be used. Enforcing
one context-free property can also be done, albeit with an increase in the time complexity. Other non-regular criteria
may be enforced by directly modifying the non-emptiness checking algorithm instead of by using a monitor, and we
reserve this for future work.

As for the issue of synthesized exits, recall that for each transducer K′ ∈ L=∅ we can have as many as Ω(|K′|)el
copies of K′ in Lel, each with a different set of exit states. Obviously, we would not like the synthesized transducer K
to use so many copies as sub-transducers. It is not hard to see that one can, for example, build an NPT of size O(|Lel|)
that guesses for every K′ ∈ L=∅ a single set of exits E, and accepts a connectivity tree iff the labels of all the nodes in
the tree agree with the guessed exits. Note that after the end of the current round of synthesis, we may choose to add
K′E to the library (in addition, or instead of K′).

Another point to note about the synthesis of exits is that while a transducer K surely satisfies the formula ϕi it
was synthesized for, KE may not. Consider for example a transducer K which is simply a single state, labeled with
p, with a self loop. If we remove the loop and turn this state into an exit, it will no longer satisfy ϕi = p ∧Xp or
ϕi = Gp. Now, depending on one’s point of view, this may be either an advantage (more flexibility) or a disadvantage
(loss of original intent). We believe that this is mostly an advantage, however, in case it is considered a disadvantage,
a few possible solutions come to mind. First, for example if ϕi = Gp, one may wish for K to remain without exits
and enforce E = ∅. Another option, for example if ϕi = p ∧Xp, is to synthesize in round i a modified formula like
ϕ′i = p ∧ ¬exit ∧X(p ∧ exit), with the thought of exits in mind. Yet another option is to add, at iterations after i, a
monitor that checks that if KE is the label of a node in the connectivity tree then ϕi is satisfied. The monitor can check
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that ϕi is satisfied inside KE , in which case the monitor is a single state automaton, that only accepts if E is such that
KE |= ϕi (possibly using semantics over truncated paths [15]); alternatively, the monitor can check that ϕi is satisfied
in the currently synthesized connectivity tree, starting from the node labeled by KE , in which case the monitor is based
on ATϕi

.

5. Hierarchical Games and the Proof of Lemma 4.2

We now give the details of the proof of Lemma 4.2 which makes heavy use of hierarchical two-player parity games.
We start by providing some necessary definitions and constructs. Additional information regarding these constrructs
can be found in [7].

5.1. The product of a transducer and a Kripke structure
Given a hierarchical transducer K = 〈ΣI ,ΣO, 〈K1,...,Kn〉〉, whose input alphabet ΣI is the output alphabet of

a Kripke structure S = 〈ΣI ,W, in,R,Λ〉, we can build a hierarchical structure K ⊗ S by taking the product of K
and S. The hierarchical structure K ⊗ S has a sub-structure Ki,q for every 2 ≤ i ≤ n and every state q ∈W , which
is essentially the product of the sub-transducer Ki with S, where the initial state of Ki is paired with the state q of
S. For i = 1, we need only the sub-structure K1,in . The hierarchical order of the sub-structures is consistent with
the one in K. Thus, the sub-structure Ki,q can be referred to by boxes of a sub-structure Kj,p only if i > j. Let
Ki = 〈Wi,Bi, ini,Exit i, τi, δi,Λi〉, then Ki,q = 〈Wi ×W,Bi ×W, (ini, q),Exit i ×W, τi,q,Ri,q,Λi,q〉 is such that:

• For (b, w) ∈ Bi ×W , we have that τi,q(b, w) = (τi(b), w).

• For (u,w) ∈Wi ×W , we have that ((u,w), (v, w′)) ∈ Ri,q iff (w,w′) ∈ R and δi(u,Λ(w′)) = v.

• For (b, w) ∈ Bi ×W , and an exit (e, w′) ∈ Exitτi(b) ×W of it, we have that 〈((b, w), (e, w′)), (v, w′′)〉 ∈ Ri,q
iff (w′, w′′) ∈ R and δi((b, e),Λ(w′′)) = v.

• For (u,w) ∈Wi ×W , we have that Λi,q((u,w)) = (Λi(u),Λ(w)).

Given σ ∈ ΣI , consider the Kripke structure Sσ = 〈ΣI ,ΣI , σ,ΣI × ΣI ,ΣI × ΣI〉, that has one state for every
letter in ΣI (labeled by that letter), its initial state is σ, and it has a transition from every letter to every letter. Then, it is
easy to see that the following holds.

Lemma 5.1. Given a hierarchical transducer K, and a letter σ ∈ ΣI , the computation tree TK,σ can be obtained by
unwinding the hierarchical structure K ⊗ Sσ .

5.2. Hierarchical Membership Games
A hierarchical two-player game [7] is a game played between two players, referred to as Player 0 and Player 1.

The game is defined by means of a hierarchical arena and a winning condition. The players move a token along the
hierarchical arena, and the winning condition specifies the objectives of the players as to the sequence of states traversed
by the token. A hierarchical arena is a hierarchical structure with an empty output alphabet, in which the state space of
each of the underlying sub-structures is partitioned into states belonging to Player 0 and states belonging to Player 1.
When the token is in a state belonging to one of the players, it chooses a successor to which the token is moved. We
refer to the underlying substructures as sub-arenas. Formally, a hierarchical two-player game is a pair G = (V,Γ),
where V = 〈V1,...,Vn〉 is a hierarchical arena, and Γ is a winning condition. For every 1 ≤ i ≤ n, the sub-arena
Vi = 〈W 0

i ,W
1
i ,Bi, ini,Exit i, τi,Ri〉, is simply a hierarchical structure 〈∅, 〈W 0

i ∪ W 1
i ,Bi, ini,Exit i, τi,Ri, ∅〉〉

whose set of states Wi = W 0
i ∪W 1

i is partitioned to Player 0 states W 0
i , and Player 1 states W 1

i . The parity winning
condition Γ :

⋃
iWi → C maps all states (of all sub-arenas) to a finite set of colors C = {Cmin,..., Cmax} ⊂ IN.

Given a hierarchical structure S = 〈Σ, 〈S1,...,Sn〉〉 and an SAPTA = 〈Σ, Q, q0, δ, F 〉, the hierarchical two-player
game GS,A = (V,Γ) for S and A is defined as follows. The hierarchical arena V has a sub-arena Vi,q for every
2 ≤ i ≤ n and state q ∈ Q, which is essentially the product of the structure Si with A, where the initial state of Si is
paired with the state q of A. For i = 1, we need only the sub-arena V1,q0 . The hierarchical order of the sub-arenas is
consistent with the one in S. Thus, the sub-arena Vi,q can be referred to by boxes of sub-arena Vj,p only if i > j. Let
Si = 〈W ′i ,B′i, in ′i,Exit

′
i, τ
′
i ,R′i,Λ′i〉. Then, the sub-arena Vi,q = 〈W 0

i,q,W
1
i,q,Bi,qini,q,Exit i,q, τi,q,Ri,q〉 is defined

as follows.
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• W 0
i,q = W ′i × (Q∨ ∪Q(ε,∨)), W 1

i,q = W ′i × (Q∧ ∪Q(ε,∧)), ini,q = (in ′i, q), and Exit i,q = Exit ′i ×Q∨,∧.

• Bi,q = B′i ×Q, and τi,q(b, q) = (τ ′i(b), q).

• For a state u = (w, q̂) ∈ W ′i × Q, if q̂ ∈ Qε and δ(q̂,Λ′i(w)) = {p0,..., pk}, then (u, v) ∈ Ri,q iff v ∈
{(w, p0),..., (w, pk)}; and if q̂ ∈ Q∨,∧, then (u, v) ∈ Ri,q iff v = (w′, δ(q̂,Λ′i(w))) and (w,w′) ∈ R′i.

• For (b, p) ∈ B′i ×Q, and an exit (e, q̂) ∈ Exit ′τ ′
i(b) ×Q∨,∧ of this box, we have that (((b, p), (e, q̂)), v) ∈ Ri,q

iff v = (w′, δ(q̂,Λ′i(e))) and ((b, e), w′) ∈ R′i.

The winning condition of the game GS,A is induced by the acceptance condition of A. Thus, for each state (w, q)
of a sub-arena Vi,q , we have that Γ(w, q) = F (q). For the formal definition of plays, strategies, etc., please see [7]. It
is important to note that, as is the case for flat membership games, a Player 0 strategy for GS,A corresponds to a run of
A on the unwinding of S, a memoryless Player 0 strategy corresponds to a memoryless run, and a winning Player 0
strategy corresponds to an accepting run. Furthermore, a Player 0 strategy for a sub-arena Vi,q corresponds to a run of
A, starting in state q, on the unwinding of the sub-structure Si.

Theorem 5.1. [7] Given a hierarchical structure S and an SAPT A, we have that A accepts the unwinding TS of S,
iff Player 0 has a winning strategy in the hierarchical game GS,A.

We now have all the definitions necessary to construct the membership games Gs
K⊗S%,Aϕ

, and GKT,AT
ϕ

.

5.3. The Membership Game Gs
K⊗S%,Aϕ

Given a library L of hierarchical transducers with input and output alphabets ΣI and ΣO, and a bound el ∈ IN, let
T = 〈T, V 〉 be a regular connectivity tree, letM = 〈{1,..., el} × ΣI ,Lel, 〈M,m0, ∅, δT ,ΛT 〉〉 be a flat transducer
such that T is equal to the (lean) computation tree TM, and letK=〈ΣI ,ΣO, 〈K1,...,Kn〉〉 be the hierarchical transducer
induced by it. Recall that for every b ∈M , we denote by E(b) the set of top-level exits of ΛT (b). For the purpose of
this proof, it is much more convenient to consider a slightly different version of the induced hierarchical transducer K,
where the top level sub-transducer K1 contains only boxes and no states. That is, we replace every top-level state w,
with a box that refers to the atomic transducer Kς , where ς is such that ΛT (w) = ς . We also relax the definition of
hierarchical transducers (as well as hierarchical structures and arenas) to allow the top-level initial state to be not a state
but a box. Formally, K1 = 〈∅,M,m0, τ1, δ1, ∅〉, where:

• For b ∈M , we have that τ1(b) = i, where i is such that Ki is the top-level sub-transducer of ΛT (b).

• For b ∈M , we have for every e ∈ E(b), and every σ ∈ ΣI , that δ1((b, e), σ)=δT (b, (idx(e, E(b)), σ)).

It is easy to see that the difference between the version of K with top-level states, and the modified version without
them, is mainly syntactic. Thus, for example, the two versions have isomorphic flat expansions and computation trees,
and Lemma 5.1 also holds if K has no top-level states. Also, note that since the set of directions of the input trees of an
SAPT plays no role in the definition of its run, the computation trees of these two versions of K are indistinguishable
by any SAPT. Finally, one can easily verify that Theorem 5.1 remains valid also if the hierarchical structure S has no
top-level states.

By Lemma 5.1, the computation tree TK,% can be obtained by unwinding the hierarchical structure K ⊗ S%. By
definition, K ⊗ S% has a sub-structure Ki,σ, for every 2 ≤ i ≤ n and every σ ∈ ΣI , which is the product of Ki with
Sσ , plus a top-level sub-structure K1,% = 〈∅,M × ΣI , (m0, %), ∅, τ1,%,R1,%,Λ1,%〉, where:

• For (b, σ) ∈M × ΣI , we have that τ1,%(b, σ) = (i, σ), where i is such that Ki is the top-level sub-transducer of
ΛT (b).

• For (b, σ) ∈M × ΣI , and an exit (e, σ̂) ∈ Exitτ1(b) × ΣI of this box, we have that 〈((b, σ), (e, σ̂)), (b′, σ′)〉 ∈
R1,% iff δT (b, (idx(e, E(b)), σ′)) = b′.
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Given a temporal logic formula ϕ, by Definition 3.1 and Theorem 2.1, K |= ϕ iff TK,% is accepted by the SAPTAϕ.
Hence, by Theorem 5.1, K |= ϕ iff Player 0 has a winning strategy in the hierarchical membership game GK⊗S%,Aϕ of
K⊗S% andAϕ. LetAϕ = 〈ΣI ∪ΣO, Qϕ, q

0
ϕ, δϕ, Fϕ〉 be an SAPT withQϕ partitioned toQ(ε,∧)

ϕ ,Q(ε,∨)
ϕ ,Q∧ϕ, andQ∨ϕ,

and let K⊗S% be as above. By definition, GK⊗S%,Aϕ
has a sub-arena Vi,σ,q for every (i, σ, q) ∈ {1,..., n}×ΣI ×Qϕ,

which is the product of the sub-structure Ki ⊗ Sσ with Aqϕ (recall that Aqϕ is Aϕ with initial state q), plus a top-level
sub-arena V1,%,q0ϕ

= 〈∅, ∅,M × ΣI ×Qϕ, (m0, %, q
0
ϕ), ∅, τ̌ , Ř〉, where:

• For (b, σ, q) ∈ M × ΣI × Qϕ, we have that τ̌(b, σ, q) = (i, σ, q), where i is such that Ki is the top-level
sub-transducer of ΛT (b).

• For a box (b, σ, q) ∈M × ΣI ×Qϕ, let ΛT (b) = KE , and let ΛE be the labeling function of the top-level sub-
transducer ofKE . Given an exit (e, σ̂, q̂) ∈ E×ΣI×Q(ε,∨)

ϕ of this box, we have that 〈((b, σ, q), (e, σ̂, q̂)), (b′, σ′,
q′)〉 ∈ Ř iff q′ = δϕ(q̂, (ΛE(e), σ̂)) and δT (b, (idx(e, E), σ′)) = b′.

In [7], in order to solve a hierarchical game, one simplifies it, turning it into an equivalent flat game, by replacing
every box of the top-level sub-arena with a gadget that is a 3-level DAG. We briefly recall below the structure of these
gadgets, and describe the result of the simplification of the membership game GK⊗S%,Aϕ

. Let β = (b, σ, q) be a box of
V1,%,q0ϕ

, let Vi,σ,q be the sub-arena that it refers to, let ΛT (b) = KE , and let Rel(KE , σ, q) be the set of all relevant
summary functions10 of the runs of Aqϕ on TKE ,σ . A gadget H(KE ,σ,q) contains all the nodes reachable from the root p
of the following 3-level DAG structure:

• The set of nodes of H(KE ,σ,q) is {p} ∪ Rel(KE , σ, q) ∪ (E × ΣI × Q∨,∧ϕ × C). The Player 0 nodes are
{p} ∪ (E × ΣI ×Q∨ϕ × C), and the Player 1 nodes are Rel(KE , σ, q) ∪ (E × ΣI ×Q∧ϕ × C).

• The set of edges is
⋃
g∈Rel(KE ,σ,q)({(p, g)} ∪ {(g, (h, g(h))) : h ∈ (E × ΣI ×Q∨,∧ϕ ) ∧ g(h) 6=a}).

• A node (e, σ, q′, c) ∈ (E × ΣI ×Q∨,∧ϕ × C) is colored by c. These are the only colored nodes.

The simplification of V1,%,q0ϕ
is performed by replacing every box β = (b, σ, q) with a copy of the gadget

H(ΛT (b),σ,q). To prevent name clashes between copies of the same gadget, we let Hβ be a copy of H(ΛT (b),σ,q) with all
nodes renamed by superscripting them with β. A box β is substituted with Hβ by replacing every transition that enters
β with a transition that enters the root pβ of Hβ , and replacing every transition that exits β through an exit (e, σ, q′)
with one transition, going out of every leaf of the form (e, σ, q′, c) that is present in Hβ . Applying this simplification
to V1,%,q0ϕ

, we obtain the flat game Gs
K⊗S%,Aϕ

= (V s,Γs), where Vs = 〈W 0s
,W 1s

, ∅, ins, ∅, ∅,Rs〉, and Γs are as
follows:

• W s =
⋃
β∈(M×ΣI×Qϕ)(H

β), where:

– W 0s
=

⋃
β=(b,σ,q)∈M×ΣI×Qϕ

({pβ} ∪ {(e, σ̂, q̂, c)β : (e, σ̂, q̂, c) ∈ (E(b)× ΣI ×Q∨ϕ × C)}) ∩W s.

– W 1s
=
⋃
β=(b,σ,q)∈M×ΣI×Qϕ

({gβ : g ∈ Rel(ΛT (b), σ, q)} ∪ {(e, σ̂, q̂, c)β : (e, σ̂, q̂, c) ∈ (E(b)× ΣI ×
Q∧ϕ × C)}) ∩W s.

• ins = p(m0,%,q
0
ϕ).

• For every β = (b, σ, q) ∈ (M × ΣI ×Qϕ), with ΛT (b) = KE , the following transitions are inRs:

– ∪g∈Rel(KE ,σ,q){(pβ , gβ)}

– ∪g∈Rel(KE ,σ,q){(gβ , (h, gβ(h))) : h ∈ (E × ΣI ×Q∨,∧ϕ ) ∧ gβ(h) 6=a}.

10In [7], summary functions were defined in terms of Player 0 strategies. For the special case of the membership game we consider, Player 0
strategies correspond to runs ofAϕ, and the definition of summary functions given in [7] coincides with the one given in Section 4.1.2.
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– Let ΛE be the labeling function of the top-level sub-transducer of KE . For every node (e, σ̂, q̂, c)β of Hβ ,
and every β′ = (b′, σ′, q′) ∈ (M × ΣI ×Qϕ), we have that the transition ((e, σ̂, q̂, c)β , pβ

′
) is in Rs iff

q′ = δϕ(q̂, (ΛE(e), σ̂)) and b′ = δT (b, (idx(e, E), σ′)).

• For every β ∈M × ΣI ×Qϕ, and every node w = (e, σ′, q′, c)β of Hβ , we have that Γs(w) = c. All the other
nodes11 are colored by Cmin.

Theorem 5.2. [7] Player 0 wins the hierarchical game GK⊗S%,Aϕ iff it wins the simplified game Gs
K⊗S%,Aϕ

.

Applying Theorems 5.1 and 5.2 to the constructions above we get that:

Corollary 5.1. Aϕ accepts TK,% iff Player 0 wins the game Gs
K⊗S%,Aϕ

.

5.4. The Membership Game GKT,AT
ϕ

We now turn our attention to constructing the membership game GKT,AT
ϕ

. As before, letM = 〈{1,..., el}×ΣI ,Lel,
〈M,m0, ∅, δT ,ΛT 〉〉 be a flat transducer such that T is equal to the (lean) computation tree TM. It is not hard to see
that T can be obtained by unwinding the following Kripke structure12 KT = 〈Lel,W, in,R,Λ〉, where:

• W = M × {1,..., el} × ΣI , and in = (m0, 1, %).

• For (b, i, σ), (b′, i′, σ′) ∈W , we have that ((b, i, σ), (b′, i′, σ′)) ∈ R
iff δT (b, (i′, σ′)) = b′.

• For every (b, i, σ) ∈W , we have that Λ(b, i, σ) = ΛT (b).

Observe that since the transitions of ATϕ mix conjunctions and disjunctions, one cannot construct the arena of the
membership game of KT and ATϕ by directly taking their product. Indeed, doing so would result with nodes of the
arena that cannot be assigned to any single player. Hence, we first unfold the transition relation of ATϕ , and obtain an
equivalent automaton ÃTϕ = 〈Lel,Q, q0, δ̃, F̃ 〉, where the moves from every state are either pure conjunctions or pure
disjunctions. Note that this requires that we allow ÃTϕ to have ε-moves. Thus, like an SAPT, the states of ÃTϕ are divided
into four setsQ(ε,∨),Q(ε,∧),Q∨ andQ∧. However, unlike an SAPT, we allow states inQ∨,∧ to send copies in different
states to different directions. That is, for s ∈ Q∨,∧, and KE ∈ Lel, we have that δ̃(s,KE) ⊆ ({1,..., el} × ΣI)×Q.

To construct ÃTϕ , we simply have to unfold the transition relation of ATϕ . That is, for every state s = (σ, q, c) ∈
ΣI ×Q∨,∧ϕ × C of ATϕ , and every KE ∈ Lel, we direct the transition from s, when reading KE , to the entry node of a
3-level DAG gadget H(KE ,σ,q) that unfolds δ((σ, q, c),KE). Since δ((σ, q, c),KE) is not dependent on the color c, the
gadget only depends on σ, q and KE . We use the same notation for naming these gadgets, as for the gadgets used in
the simplification of the game GK⊗S%,Aϕ

, for the simple reason that they are exactly the same gadgets. In fact, the
transition relation of ATϕ is defined the way it is precisely because unfolding it gives these gadgets. Note that resolving
the outermost disjunction and conjunction of δ((σ, q, c),KE) amounts to choosing some g ∈ Rel(KE , σ, q), and some
(e, σ′, q′) ∈ (E × ΣI ×Q∨,∧ϕ ), and that once g is chosen, the only leaf of the form (e, σ̂, q̂, c) that is reachable from
g is such that c = g(e, σ̂, q̂). Hence, H(KE ,σ,q) faithfully represents the unfolding of δ((σ, q, c),KE) even though its
leaves include the extra component c. Also, note that since the gadgets are used to simply unfold the transition relation,
only the moves going out of their leaves are not ε-moves and correspond to real moves on the input tree. Before we
formally describe ÃTϕ , observe that even though every gadget H(KE ,σ,q) is used only once in ÃTϕ , the names of nodes
are not unique across different gadgets. Hence, to get unique names, for every η ∈ Lel × ΣI ×Qϕ we subscript the
names of nodes in Hη with η. Formally, ÃTϕ = 〈Lel,Q, q0, δ̃, F̃ 〉, where:

• Q = (ΣI ×Q∨,∧ϕ × C) ∪ {q0} ∪
⋃
η∈(Lel×ΣI×Qϕ)(Hη), where:

11In [7], these nodes were left uncolored. However, since there is no cycle that goes only through uncolored nodes, coloring such nodes with
Cmin does not change anything.

12Technically, the unwinding of KT has the set of directions M × {1,..., el} × ΣI , whereas the set of directions of T is {1,..., el} × ΣI .
However, by simply ignoring the M component, we get T .
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– Q(ε,∨) = (ΣI ×Q∨,∧ϕ × C) ∪ {q0} ∪
⋃
η∈(Lel×ΣI×Qϕ){pη}.

– Q(ε,∧) =
⋃
η∈(Lel×ΣI×Qϕ){gη : g ∈ Rel(η)}.

– Q∨ =
⋃
η=(KE ,σ,q)∈(Lel×ΣI×Qϕ){(e, σ̂, q̂, c)η ∈ Hη : (e, σ̂, q̂, c) ∈ (E × ΣI ×Q∨ϕ × C)} ∩ Q.

– Q∧ =
⋃
η=(KE ,σ,q)∈(Lel×ΣI×Qϕ){(e, σ̂, q̂, c)η ∈ Hη : (e, σ̂, q̂, c) ∈ (E × ΣI ×Q∧ϕ × C)} ∩ Q.

• Since certain states are only reachable via ε moves, where the input does not change, δ̃ is a partial function which
is defined only for s ∈ Q, and KE ∈ Lel, for which it is possible to reach s when the current input is KE . Thus:

– δ̃(q0,KE) = δ̃((%, q0
ϕ, Cmin),KE).

– If s = (σ, q, c) ∈ (ΣI ×Q∨,∧ϕ × C), then δ̃(s,KE) = {p(KE ,σ,q)}.

– If s = pη , where η ∈ (Lel × ΣI ×Qϕ), then δ̃(s,KE) = {gη : g ∈ Rel(η)}.

– If s = gη , where g is a summary function in Rel(KE , σ, q), then δ̃(s,KE) = {(h, g(h)) : h ∈ (E × ΣI ×
Q∨,∧ϕ ) ∧ g(h) 6=a}.

– If s = (e, σ̂, q̂, c)η, then δ̃(s,KE) =
⋃
σ′∈ΣI

{((idx(e, E), σ′), (σ′, δϕ(q̂, (ΛE(e), σ̂)), c))}, where ΛE is
the labeling function of the top-level sub-transducer of KE .

• Finally, for every s ∈ Q, if s = (e, σ̂, q̂, c)η ∈ Q∨,∧, or s = (σ, q, c) ∈ (ΣI × Q∨,∧ϕ × C), then F̃ (s) = c;
otherwise, F̃ (s) = Cmin.

Note that since states in (ΣI ×Q∨,∧ϕ ×C) ∪ {q0} (i.e., the original states of ATϕ ) have a single successor per input,
their classification as (ε,∨) states, and not as (ε,∧) states, is arbitrary. Also, note that since Lemma 4.2 which we are
trying to prove only concerns connectivity trees, we do not care how ÃTϕ behaves on trees where the root is not labeled
by an atomic transducer. Going over the definitions of ATϕ and ÃTϕ , one can easily see that given a regular connectivity
tree T , then ATϕ accepts the unwinding of KT iff ÃTϕ does.

Our last step is to construct the arena of the membership game GKT,AT
ϕ

. Recall that, intuitively, this arena is the

product of KT and ÃTϕ , and that the successors of every node (w, s), where w is a state of KT and s is a state of
ÃTϕ , are pairs (w′, s′), where s′ is a successor of s that is sent to the successor w′ of w when reading the label of w.
Note, however, that we can eliminate some redundancies, as follows. By the last item in the definition of the transition
relation δ̃, for every node w = (b, i, σ) of KT and every state of the form s = (σ′, q, c) ∈ ΣI × Q∨,∧ϕ × C of ÃTϕ ,
the node (w, s) of the product arena is reachable only if σ = σ′; and by the second item in the definition of δ̃, every
such node (w, s) has only a single successor, namely, (w, p(ΛT (b),σ,q)). Thus, we can simply eliminate the node (w, s)
and direct every incoming transition directly to its single successor. Note that since all of the predecessors of (w, s)
have the same color c as (w, s), skipping it does not affect the winning condition. For similar reasons, the initial node
((m0, 1, %), q0) of the arena can be replaced by its successor ((m0, 1, %), p(ΛT (m0),%,q0ϕ)). Formally, after removing the

above redundancies, we have that GKT,AT
ϕ

= (Ṽ , Γ̃), with Ṽ = 〈W̃ 0, W̃ 1, ∅, ĩn, ∅, ∅, R̃〉, where:

• W̃ = (M × {1,..., el} × ΣI)×
⋃
η∈(Lel×ΣI×Qϕ)(Hη), where:

– W̃ 0 = (M × {1,..., el} × ΣI) × (
⋃
η=(KE ,σ,q)∈(Lel×ΣI×Qϕ)({pη} ∪ {(e, σ̂, q̂, c)η : (e, σ̂, q̂, c) ∈ (E ×

ΣI ×Q∨ϕ × C)})) ∩ W̃ .

– W̃ 1 = (M × {1,..., el} × ΣI) × (
⋃
η=(KE ,σ,q)∈(Lel×ΣI×Qϕ)({gη : g ∈ Rel(η)} ∪ {(e, σ̂, q̂, c)η :

(e, σ̂, q̂, c) ∈ (E × ΣI ×Q∧ϕ × C)})) ∩ W̃ .

• ĩn = ((m0, 1, %), p(ΛT (m0),%,q0ϕ)).

• For everyw = (b, i, σ̀) ∈M×{1,..., el}×ΣI , with ΛT (b) = KE , and every η = (KE , σ, q) ∈ {KE}×ΣI×Qϕ,
the following transitions are in R̃:
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– ∪g∈Rel(KE ,σ,q){〈(w, pη), (w, gη)〉}.
– ∪g∈Rel(KE ,σ,q){〈(w, gη), (w, (h, g(h)))〉 : h ∈ (E × ΣI ×Q∨,∧ϕ ) ∧ g(h) 6=a}
– Let ΛE be the labeling function of the top-level sub-transducer of KE . For every node (e, σ̂, q̂, c)η

of Hη, and every σ′ ∈ ΣI , we have that the transition 〈(w, (e, σ̂, q̂, c)η), ((b′, i′, σ′), pη′)〉 is in R̃, iff
b′ = δT (b, (idx(e, E), σ′)), and i′ = idx(e, E), and η′ = (ΛT (b′), σ′, δϕ(q̂, (ΛE(e), σ̂))).

• Finally, for every w ∈M × {1,..., el} ×ΣI , for every η ∈ (Lel ×ΣI ×Qϕ), and every s=(e, σ′, q′, c)η of Hη ,
we have that Γ̃(w, s) = c. All the other nodes are colored by Cmin.

Observe that for every w = (b, i, σ̀) ∈ M × {1,..., el} × ΣI , and every η = (KE , σ, q) ∈ (Lel × ΣI × Qϕ),
by the third item in the definition of R̃, the only nodes of the form (w, pη) that have incoming edges are such that
KE = ΛT (b), and σ̀ = σ. By the first and second items in the definition of R̃ this property propagates, and we get
that for every sη ∈ Hη (be it the root, a summary function node, or a leaf) the node (w, sη) has incoming edges only
if KE = ΛT (b) and σ̀ = σ. We can thus delete all the nodes (w, sη) in Ṽ for which the above connections between
w and η do not exist, since they are not reachable. Also, note that the transitions going out of a node (w, sη) of Ṽ ,
where w = (b, i, σ) ∈M × {1,..., el} × ΣI , are completely independent of i, and that the classification of (w, sη) as
a Player 0 or a Player 1 node is also independent of i. Thus, we can safely merge all nodes that differ only in their
{1,..., el} component into a single node by dropping the {1,..., el} component.

After deleting the unreachable nodes mentioned above, and dropping the {1,..., el} component, we get that for
every β = (b, σ, q) ∈ M × ΣI × Qϕ, and every state sη ∈ H(ΛT (b),σ,q), there is exactly one node left in Ṽ that
corresponds to β and sη , that is, the node ((b, σ), sη). By mapping every such node ((b, σ), sη) of Ṽ , to the node sβ of
the arena Vs of the game Gs

K⊗S%,Aϕ
, we get an isomorphism between (what remained of) Ṽ and Vs. That is, the two

arenas (including the coloring) are identical up to the naming of their nodes. Hence, the games GKT,AT
ϕ

and Gs
K⊗S%,Aϕ

are equivalent. Recall that by the construction above Player 0 wins GKT,AT
ϕ

iffATϕ accepts T , and that by Corollary 5.1
Player 0 wins Gs

K⊗S%,Aϕ
iff Aϕ accepts TK,%, which completes the proof.

6. Incomplete Information

A natural setting that was considered in the synthesis literature is that of incomplete information [24, 25]. For
example, in a distributed system, it is common that one processor cannot see the local variables of another processor,
and only has access to the shared global variables. In the incomplete information setting, in addition to the set of
input signals I that the system can read, the environment also has internal signals H that the system cannot read, and
one should synthesize a system whose behavior depends only on the readable signals, but satisfies a specification
which refers also to the unreadable signals. It is important to note that all signals, both I and H , are visible to the
synthesis algorithm, but that the signals in H are not visible to the synthesized program when it runs. More formally,
the specification temporal logic formula is given with respect to the alphabet ΣI = 2I∪H (instead of just 2I as in the
complete information setting), and the synthesized system can be viewed as a strategy P : (2I)

∗ → ΣO that maps a
finite sequence of sets of the visible input signals (i.e., the visible part of the history of the actions of the environment
so far) into a set of current output signals. In other words, the behavior of the synthesized system must be the same
given two histories that differ only in their H components because they are indistinguishable by the system due to its
incomplete information. As for the complete information setting, when P interacts with an environment that generates
infinite input sequences, it associates with each input sequence an infinite computation over ΣI ∪ ΣO, and it induces a
computation tree. This tree has a fixed branching degree |ΣI |, and it embodies all the possible inputs (and hence also
computations) of P . Realizability of a temporal specification ϕ over ΣI is the problem of determining whether there
exists a system P whose computation tree satisfies ϕ, and synthesis amounts to finding such a P .

Given this high similarity between the complete and incomplete information settings, it may seem that adapting a
synthesis algorithm designed for the complete information setting to the incomplete setting should be easy. Unfor-
tunately, this has not been the case for the traditional synthesis algorithms for branching time logics. To appreciate
the difficulty, recall that the traditional synthesis algorithms work by constructing an appropriate computation tree-
automaton that accepts computation trees that satisfy the specification formula. A finitely-representable witness to the
non-emptiness of this automaton is the desired system. Observe that a computation tree has a fixed branching degree
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|ΣI |, and it is labeled by letters in ΣI × ΣO. In the complete information setting, there are no restrictions placed on
the ΣO components of the labeling. A node y labeled by (σi, σo), is taken to mean that given the history of input
signals represented by y, the system represented by this computation tree would output σo. However, in the incomplete
information setting not every labeling of a computation tree represents a legal system - we must add the restriction that
two nodes y, y′ in the tree that differ only in their hidden, i.e. H , signals (recall that now ΣI = 2I∪H ) must have the
same labeling! Indeed, since as far as the system can see these two nodes are indistinguishable it must produce the
same output in both cases. Thus, computation trees that do not satisfy this additional restriction do not represent a legal
system, and should be rejected by the computation tree automaton. The problem is that this restriction is not regular in
the sense that a finite tree automaton can not check that a computation tree satisfies it. Hence, the computation tree
automaton developed for the complete information setting can not be easily adapted to reject trees that violate the
restriction imposed by the incomplete information setting. See [8, 9] for a related discussion on recursive (formally,
pushdown) systems with incomplete information.

As we noted before, the hierarchical synthesis problem studied in this article presents difficulties that prevent
us from using the computation tree automaton approach. Recall that the automaton at the heart of our single-round
synthesis algorithm does not run on computation trees, but rather on connectivity trees. The result is that in our case the
similarities between the complete and incomplete information settings can be used to their fullest, and that handling the
incomplete information setting is so easy that it is practically trivial. The required modifications are the following:

• In the definition of the problem, let ΣI = 2I∪H (instead of ΣI = 2I ).

• Define the connectivity trees to be Lel-labeled complete ({1,..., el} × 2I)-trees (instead of ({1,..., el} × ΣI)-
trees). This ensures that the synthesized transducer behaves in the same way on input letters that differ only in
their hidden components.

• As a result of the above change in the definition of connectivity trees, the expression
⊕
σ′∈ΣI

in the transition
function of ATϕ should be changed to

⊕
σ′∈2I .

All the proofs remain valid with the natural changes resulting from the above. Thus, our algorithm solves, with the
same complexity, also the hierarchical synthesis problem with incomplete information, and we have:

Theorem 6.1. The 〈L, el〉-synthesis problem with incomplete information is EXPTIME-complete for a µ-calculus
formula ϕ, and is 2EXPTIME-complete for an LTL formula (for el that is at most polynomial in |ϕ| for µ-calculus, or
at most exponential in |ϕ| for LTL).

7. Conclusion

We presented an algorithm for the synthesis of hierarchical systems which takes as input a library of hierarchical
transducers and a sequence of specification formulas. Each formula drives the synthesis of a new hierarchical transducer
based on the current library, which contains all the transducers synthesized in previous iterations together with the
starting library. The main challenge in this approach is to come up with a single-round synthesis algorithm that is
able to efficiently synthesize the required transducer at each round. We have provided such an algorithm that works
efficiently, i.e., with the same complexity as the corresponding one for flat systems; and uniformly, i.e., it can handle
different temporal logic specifications, including the modal µ-calculus, as well as imperfect information. In order to
ensure that the single-round algorithm makes real use of previously synthesized transducers we have suggested the use
of auxiliary automata to enforce modularity criteria. We believe that by decoupling the process of enforcing modularity
from the core algorithm for single-round synthesis we gain flexibility that allows one to apply different approaches to
enforcing modularity, as well as future optimizations to the core synthesis algorithm.

Appendix A. The propositinal µ-Calculus and LTL

The propositinal µ-Calculus. The µ-calculus is a propositional modal logic augmented with least and greatest fixpoint
operators. We consider a µ-calculus where formulas are constructed from Boolean propositions with Boolean
connectives, the temporal operators EX (”exists next”) and AX (”for all next”), as well as least (µ) and greatest (ν)
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fixpoint operators. We assume that µ-calculus formulas are written in positive normal form (negation only applied to
atomic propositions).

Formally, let ΣO and Var be finite and pairwise disjoint sets of atomic propositions and propositional variables.
The set of µ–calculus formulas over ΣO and Var is the smallest set such that

• true and false are formulas;

• p and ¬p, for p ∈ ΣO, are formulas;

• x ∈ Var is a formula;

• ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2 are formulas if ϕ1 and ϕ2 are formulas;

• AXϕ and EXϕ are formulas if ϕ is a formula;

• µy.ϕ(y) and νy.ϕ(y) are formulas if y is a propositional variable and ϕ(y) is a formula containing y as a free
variable.

Observe that we use positive normal form, i.e., negation is applied only to atomic propositions.
We call µ and ν fixpoint operators and use λ to denote a fixpoint operator µ or ν. A propositional variable y occurs

free in a formula if it is not in the scope of a fixpoint operator λy, and bounded otherwise. Note that y may occur both
bounded and free in a formula. A sentence is a formula that contains no free variables. For a formula λy.ϕ(y), we
write ϕ(λy.ϕ(y)) to denote the formula that is obtained by one-step unfolding, i.e., replacing each free occurrence of y
in ϕ with λy.ϕ(y).

The closure cl(ϕ) of a µ-calculus sentence ϕ is the smallest set of µ-calculus formulas that contains ϕ and is
closed under sub-formulas (that is, if ψ is in the closure, then so do all its sub-formulas that are sentences) and fixpoint
applications (that is, if λy.ϕ(y) is in the closure, then so is ϕ(λy.ϕ(y))). For every µ-calculus formula ϕ, the number
of elements in cl(ϕ) is linear in the length of ϕ. Accordingly, we define the size |ϕ| of ϕ to be the number of elements
in cl(ϕ). A µ-calculus formula is guarded if for every variable y, all the occurrences of y that are in a scope of a
fixpoint modality λ are also in a scope of a modality AX or EX that is itself in the scope of λ. Thus, a µ-calculus
sentence is guarded if for all y ∈ Var , all the occurrences of y are in the scope of a next modality. Given a µ-calculus
formula, it is always possible to construct in linear time an equivalent guarded formula (c.f.,[11, 26]).

The semantics of the µ–calculus is defined with respect to a Kripke structure S = 〈ΣO,W, in, R,Λ〉, where ΣO
represents a set of atomic propositions, W is a finite set of states, R ⊆ W ×W is a transition relation that must be
total (i.e., for every w ∈ W there exists w′ ∈ W such that (w,w′) ∈ R), in0 is an initial state, and Λ : W → 2ΣO

maps each state to the set of atomic propositions true in that state. If (w,w′) ∈ R, we say that w′ is a successor of w.
A path in S is an infinite sequence of states, π = w0, w1,... such that for every i ≥ 0, (wi, wi+1) ∈ R. We denote the
suffix wi, wi+1,... of π by πi. We define the size |S| of S as |W |+ |R|.

Informally, a formula EXϕ holds at a state w of a Kripke structure S if ϕ holds at least in one successor of w.
Dually, the formula AXϕ holds in a state w of a Kripke structure S if ϕ holds in all successors of w. Readers not
familiar with fixpoints might want to look at [11, 12, 23, 40] for instructive examples and explanations of the semantics
of the µ-calculus. To formalize the semantics, we introduce valuations that allow to associate sets of points to variables.
Given a Kripke structure S = 〈ΣO,W, in,R,Λ〉 and a set {y1,..., yn} of propositional variables in Var, a valuation
V : {y1,..., yn} → 2W is an assignment of subsets of W to the variables y1,..., yn. For a valuation V , a variable y, and
a set W ′ ⊆ W , we denote by V[y ← W ′] the valuation obtained from V by assigning W ′ to y. A formula ϕ with
free variables among y1,..., yn is interpreted over the structure S as a mapping ϕS from valuations to 2W , i.e., ϕS(V)
denotes the set of states that satisfy ϕ under valuation V . The mapping ϕS is defined inductively as follows:

• trueS(V) = W and falseS(V) = ∅;

• for p ∈ ΣO, we have pS(V) = W ′ such that p ∈ Λ(w) for each w ∈W and (¬p)S(V) = W \ pS(V);

• for y ∈ Var, we have yS(V) = V(y);

• (ϕ1 ∧ ϕ2)S(V) = ϕS1 (V) ∩ ϕS2 (V)
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• (ϕ1 ∨ ϕ2)S(V) = ϕS1 (V) ∪ ϕS2 (V);

• (EXϕ)S(V) = {w ∈W : ∃w′.(w,w′) ∈ R and w′ ∈ ϕS(V)};

• (AXϕ)S(V) = {w ∈W : ∀w′.if(w,w′) ∈ R then w′ ∈ ϕS(V)};

• (µy.ϕ(y))S(V) =
⋂
{W ′ ⊆W : ϕS(V[y ←W ′]) ⊆W ′};

• (νy.ϕ(y))S(V) =
⋃
{W ′ ⊆W : W ′ ⊆ ϕS(V[y ←W ′])}.

Note that no valuation is required for a sentence.
Let S = 〈ΣO,W, in, R,Λ〉 be a Kripke structure and ϕ a sentence. For a state w ∈W , we say that ϕ holds at w in

S, denoted S,w |= ϕ, if w ∈ ϕS(∅). S is a model of ϕ if there is a w ∈W such that S,w |= ϕ. Finally, ϕ is satisfiable
if it has a model.

Linear Temporal Logic. Linear Temporal Logic (LTL) was introduced by Pnueli to specify and verify properties of
reactive systems [35]. Given a set of atomic propositions ΣO, an LTL formula is composed of atomic propositions,
the boolean connectives conjunction (∧) and negation (¬), and the temporal operators Next (X) and Until ( U). LTL
formulas are built up in the usual way from the above operators and connectives, according to the following grammar:

ϕ := p | ¬ϕ |ϕ ∧ ϕ |Xϕ |ϕUϕ

where p is an atomic proposition. The semantics of LTL formulas is given with respect to an infinite word w =
σ0σ1...σn... over 2ΣO , which can be seen as a labeling of a path from a Kripke structure. The satisfaction relation
w |= ϕ is defined in the standard way:

• if ϕ is an atomic proposition, then w |= ϕ if and only if ϕ ∈ σ0;

• w |= ¬ϕ if and only if w |= ϕ does not hold;

• w |= ϕ1 ∧ ϕ2 if and only if w |= ϕ1 and w |= ϕ2;

• w |= Xϕ if and only if w≥1 |= ϕ;

• w |= ϕ1Uϕ2 if and only if there exists i ≥ 0 such that w≥i |= ϕ2 and w≥j |= ϕ1 for all j such that 0 ≤ j < i.
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