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Abstract. Modal specification is a well-known and widely used formalism used
as an abstraction theory for transition systems. Modal specifications are transi-
tion systems equipped with two types of transitions: must-transitions that are
mandatory to any implementation, and may-transitions that are optional. The
duality of transitions allows to develop a unique approach for both logical and
structural compositions, and eases the step-wise refinement process for building
implementations.
We propose Modal Specifications with Data (MSD), the first modal specification
theory with explicit representation of data. Our new theory includes all the essential
ingredients of a specification theory. As MSD are potentially infinite-state systems,
we propose symbolic representations based on effective predicates. Our theory
serves as a new abstraction-based formalism for transition systems with data.

1 Introduction

Modern IT systems are often large and consist of complex assemblies of numerous
reactive and interacting components. The components are often designed by independent
teams, working under a common agreement on what the interface of each component
should be. Consequently, the search for mathematical foundations which support compo-
sitional reasoning on interfaces is a major research goal. A framework should support
inferring properties of the global implementation, designing and advisedly reusing
components.

Interfaces are specifications and components that implement an interface are under-
stood as models/implementations. Specification theories should support various features
including (1) refinement, which allows to compare specifications as well as to replace a
specification by another one in a larger design, (2) structural composition, which allows
to combine specifications of different components, (3) logical conjunction, expressing
the intersection of the set of requirements expressed by two or more specifications, and
last (4) a quotient operator that is dual to structural composition and allows synthesizing
a component from a set of assumptions.
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Among existing specification theories, one finds modal specifications [1], which are
labeled transition systems equipped with two types of transitions: must-transitions that
are mandatory for any implementation, and may-transitions which are optional for an
implementation. Modal specifications are known to achieve a more flexible and easy-to-
use compositional development methodology for CCS [2], which includes a considerable
simplification of the step-wise refinement process proposed by Milner and Larsen. While
being very close to logics (conjunction), the formalism takes advantage of a behavioral
semantics allowing for easy composition with respect to process construction (structural
composition) and synthesis (quotient). However, despite the many advantages, only a few
implementations have been considered so far. One major problem is that contrary to other
formalisms based on transition systems, there exists no theory of modal specification
equipped with rich information such as data variables.

In this paper, we add a new stone to the cathedral of results on modal specifications
[3, 4], that is we propose the first such theory equipped with rich data values. Our
first contribution is to design a semantical version of modal specifications whose states
are split into locations and valuations for possibly infinite-domain variables. For every
component, we distinguish between local variables, that are locally controlled by the
component, and uncontrolled variables that are controlled by other components and
can be accessed, but not modified. Combining variables with sets of actions labeling
transitions offers a powerful set of communication primitives that cannot be captured
by most existing specification theories. We also propose a symbolic predicate-based
representation of our formalism. We consider effective predicates that are closed un-
der conjunction, union, and membership—classical assumptions in existing symbolic
theories (e.g. [5]). While the semantic level is possibly infinite-state, the syntactical
level permits us to reason on specifications just like one would with the original modal
specifications, but with the additional power of rich data.

Continuing our quest, we study modal refinement between specifications. Refinement,
which resembles simulation between transition systems, permits to compare sets of
implementations in a syntactic manner. Modal refinement is defined at the semantic
level, but can also be checked at the symbolic level. We propose a predicate abstraction
approach that simplifies the practical complexity of the operation by reducing the
number of states and simplifying the predicates. This approach is in line with the work
of Godefroid et al. [6], but is applied to specification-based verification rather than to
model checking.

We then propose definitions for both logical and structural composition, on the level
of symbolic representations of specifications. These definitions are clearly not direct
extensions of the ones defined on modal specifications as behaviors of both controlled
and uncontrolled variables have to be taken into account. As usual, structural composition
offers the property of independent implementability, hence allowing for elegant step-
wise refinement. In logical composition, two specifications which disagree on their
requirements can be reconciled by synthesizing a new component where conflicts have
been removed. This can be done with a symbolic pruning of bad states, which terminates
if the system is finite-state, or if the structure of the transition system induced by the
specification relies, for instance, on a well-quasi order [7]. Finally, we also propose a
quotient operation, that is the dual operation of structural composition, which works for
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a subclass of systems, and we discuss its limitation. This operator, absent from most
existing behavioral and logical specification theories, allows synthesizing a component
from a set of assumptions.

In Sect. 2 we introduce modal specifications with data and their finite symbolic
representations, refinement, an implementation relation and consistency. In Sect. 3 we
define the essential operators of every specification theory, that is parallel composition,
conjunction and quotient. For verification of refinement between infinite-state specifica-
tions we propose in Sect. 4 an approach based on predicate abstraction techniques. We
summarize related works in Sect. 5 and conclude in Sect. 6.

Acknowledgment. We would like to thank Rolf Hennicker for valuable comments on a
draft of the paper.

2 Modal Specifications with Data

We will first introduce specifications which are finite symbolic representations of modal
specifications with data. We will then propose modal refinement and derive an imple-
mentation relation and a consistency notion.

In the following, P(M) denotes the powerset ofM , P≥1(M) = P(M)\{∅}, and
the union of two disjoint sets is denoted by M ]N , which is M ∪N with M ∩N = ∅.

Let V be a fixed set of variables, each variable ranging over a fixed domain D.
For a given subset V ⊆ V, a data state s over V is a mapping s : V → D. If V =
{x1, x2, . . . , xn} and d1, d2, . . . , dn ∈ D, we write [x1 7→ d1, x2 7→ d2, . . . , xn 7→ dn]
for the data state s which maps every xi to di, for 1 ≤ i ≤ n. We write JV K for the
set of all possible data states over V . For disjoint sets of variables V1 and V2 and data
states s1∈JV1K and s2∈JV2K, the operation (s1 · s2) composes the data states resulting
in a new state s = (s1 · s2) ∈ JV1 ] V2K, such that s(x) = s1(x) for all x ∈ V1 and
s(x) = s2(x) for all x ∈ V2. This is naturally lifted to sets of states: if S1 ⊆ JV1K and
S2 ⊆ JV2K then (S1 · S2) = {(s1 · s2) | s1 ∈ S1, s2 ∈ S2} ⊆ JV1 ] V2K.

Like in the work of de Alfaro et al. [8] we define specifications with respect to an
assertion language allowing suitable predicate representation. Given a set V of variables,
we denote by Pred(V ) the set of first-order predicates with free variables in V ; we
assume that these predicates are written in some specified first-order language with
existential (∃) and universal (∀) quantifiers and with interpreted function symbols and
predicates; in our examples, the language contains the usual arithmetic operators and
boolean connectives (∨,∧,¬,⇒). Syntactic equality of predicates is written with the
symbol ≡. Given a set of variables V we denote by (V )′ an isomorphic set of ’primed’
variables from V : so if x ∈ V then (x)′ ∈ (V )′. We use this construction to represent
pre- and post-values of variables. A variable (x)′ ∈ (V )′ represents the next state value
of the variable x ∈ V . Given a formula ϕ ∈ Pred(V ) and a data state s ∈ JV K, we
write ϕ(s) if the predicate formula ϕ is true when its free variables are interpreted as
specified by s. Given a formula ψ ∈ Pred(V1 ] (V2)

′) and states s1 ∈ JV1K, s2 ∈ JV2K,
we often write ψ(s1, s2) for ψ(s1 · t2) where t2 ∈ J(V2)′K such that t2((x)′) = s2(x)
for all x ∈ V2. Given a predicate ϕ ∈ Pred(V ), we write (ϕ)′ ∈ Pred((V )′) for the
predicate obtained by substituting x with (x)′ in ϕ, for all x ∈ V . We write JϕK for the
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set {s ∈ JV K | ϕ(s)} which consists of all states satisfying ϕ ∈ Pred(V ) (for predicates
with primed and unprimed variables), and ϕ is consistent if JϕK 6= ∅. We write ∃V ϕ
meaning existential quantification of ϕ over all variables in the set V , and similar for
universal quantification. Finally, for a predicate ψ ∈ Pred(V1 ] (V2)

′), we write ◦ψ for
∃(V2)′ψ, and ψ◦ for ∃V1ψ.

Our theory enriches modal automata with variables. Specifications not only express
constraints on the allowed sequences of actions, but also their dependence and effect on
the values of variables. Like in the loose approach of modal specifications [1] which
allows under-specification using may and must modalities on transitions, we allow loose
specification of the effects of actions on the data state. From a given location and a given
data state, a transition to another location is allowed to lead to several next data states.
Unlike in modal specifications, variables are observable in our framework, allowing for
modeling shared variable communication.

A signature Sig = (Σ,V L, V G) determines the alphabet of actions Σ and the set
of variables V = V L ] V G of an interface. The variables in V L are local (controlled)
variables, owned by the interface and visible to any other component. V G contains the
uncontrolled variables owned by the environment, which are read-only for the interface.

Specifications are finite modal transition systems where transitions are equipped with
predicates. A transition predicate ψ ∈ Pred(V ] (V L)′) relates a previous state, deter-
mined by all controlled and uncontrolled data states, with the next possible controlled
data state.

Definition 1. A specification is a tuple A = (Sig ,Loc, `0, ϕ0, E♦, E�) where Sig =
(Σ,V L, V G) is a signature, Loc is a finite set of locations, `0 ∈ Loc is the initial
location, ϕ0 ∈ Pred(V L) is a predicate on the initial local state, and E♦, E� are finite
may- and must-transition relations respectively:

E♦, E� ⊆ Loc ×Σ × Pred(V ] (V L)′)× Loc.

Given a specification A, locations `, `′ ∈ Loc, and action a ∈ Σ, we refer to the set of
transition predicates on may-transitions by Maya(`, `′) = {ψ | (`, a, ψ, `′)∈E♦} and
on must-transitions by Musta(`, `′) = {ψ | (`, a, ψ, `′)∈E�}.

Example 1. Consider a specification of a print server, shown in Fig. 1. Must-transitions
are drawn with solid arrows and may-transitions with dashed ones. Every solid arrow
representing a must-transition has an implicit may-transition shadowing it which is not
shown. Every transition is equipped with a transition predicate over unprimed variables,
referring to the pre-state, and primed variables, referring to the poststate. The print server
receives new print jobs (newPrintJob), stores them and assigns them either a low
or high priority; the numbers of low and high priority jobs are modeled by controlled
variables l and h, respectively; l and h are natural numbers. A job with low priority can
also be reclassified to high priority (incPriority). The printer server can send (send)
a job to a printer, and then wait for the acknowledgment (ack). In state `1, if there is a
job with high priority and the uncontrolled boolean variable priorityMode is true, then
there must be a send transition. The specification is loose in the sense that if a second
print job is received in state `1, then the behavior is left unspecified.
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[l + h = 0]
`0 `1 `2

`3

newPrintJob
[(l)′ + (h)′ = 1]

incPriority
[l = 1 ∧ (l)′ = 0 ∧ (h)′ = 1]

send [l + h = 1 ∧ (l)′ + (h)′ = 0]

send
[h = 1 ∧ priorityMode ∧ (h)′ = 0]

ack [(l)′ = 0 ∧ (h)′ = 0]

newPrintJob
send
newPrintJob
incPriority
ack

Fig. 1. Abstract specification P of a print server.

We now define the kind of transition systems which will be used for formalizing the
semantics of specifications. A specification is interpreted as a variant of modal transition
systems where the state space is formed by the cartesian product Loc × JV LK, i.e. a
state is a pair (`, s) where ` ∈ Loc is a location and s ∈ JV LK is a valuation of the
controlled variables. To motivate the choice of the transition relations in the semantics
of specifications, we first describe the intended meaning of may- and must-transitions.

A may-transition (`, a, ψ, `′) ∈ E♦ in the specification expresses that in any im-
plementation, in any state (`, s) and for any guard g ∈ JV GK (that is a valuation of
uncontrolled variables V G) the implementation is allowed to have a transition with
guard g and action a to a next state (`′, s′) such that ψ(s · g, s′). The interpretation of a
must-transition (`, a, ψ, `′)∈E� is a bit more involved: Any implementation, in state
(`, s), and for any guard g ∈ JV GK, if there is a valuation s′ ∈ JV LK such that ψ(s ·g, s′),
then the implementation is required to have a transition from state (`, s) with guard g
and action a to at least some state t′ such that ψ(s · g, t′). The requirement expressed
by must-transitions cannot be formalized by standard modal transition systems, but
fortunately, a generalization called disjunctive modal transition systems introduced in
[9] can precisely capture these requirements. May-transitions target (as usual) only one
state, but must-transitions branch to several possible next states (thus must-transitions
are hypertransitions), with an existential interpretation: there must exist at least one
transition with some target state which is an element from the set of target states of the
hypertransition.

Definition 2. A modal specification with data (MSD) is a tuple

S = (Sig ,Loc, `0, S0,−−→♦,−−→�)

where Sig , Loc, `0 are like in Def. 1, S0 ⊆ JV LK is a set of initial data states, and
−−→♦,−−→� ⊆ Loc × JV LK× JV GK×Σ × (Loc ×P≥1(JV LK)) are the may- (♦) and
must- (�) transition relations such that every may-transition targets a single state: if
(`, s, g, a, (`′, S′)) ∈ −−→♦ then |S′| = 1.

A state (`, s) ∈ Loc × JV LK is called syntactically consistent iff targets reachable
by must-transitions are also reachable by may-transitions: if (`, s, g, a, (`′, S′)) ∈−−→�

then (`, s, g, a, (`′, {s′})) ∈−−→♦ for all s′ ∈ S′. S is syntactically consistent iff all
states are syntactically consistent, and the set of initial data states is nonempty, i.e.
S0 6= ∅.
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(`0, [l 7→ 0, h 7→ 0])

(`1, [l 7→ 1, h 7→ 0])

(`1, [l 7→ 0, h 7→ 1])

. . .

. . .

[prio
rityM

ode 7→
true

]

new
Print

Job

[priorityMode 7→ false]newPrintJob

Fig. 2. Excerpt of the semantics of the abstract print server specification.

May-transitions (`, s, g, a, (`′, S′)) ∈ −−→♦ are often written (`, s)
g a−−→♦ (`′, S′), and

similarly for must-transitions.
We can now define formally how a specification translates to its semantics in terms

of an MSD. As already described above, the semantics of a may-transition of the specifi-
cation is given by the set of may-transitions pointing to single admissible target states,
and a must-transition gives rise to (must-)hypertransitions targeting all the admissible
poststates.

Definition 3. The semantics of a specification A = (Sig ,Loc, `0, ϕ0, E♦, E�) is given
by the MSD 〈A〉sem = (Sig ,Loc, `0, S0,−−→♦,−−→�) where S0 = Jϕ0K and the transi-
tion relations are defined as follows. For each `, `′ ∈ Loc, s, s′ ∈ JV LK, g ∈ JV GK, and
a ∈ Σ:

i. If (`, a, ψ, `′)∈E♦ and ψ(s · g, s′) then (`, s)
g a−−→♦ (`′, {s′}),

ii. If (`, a, ψ, `′)∈E� and ψ(s · g, s′) then (`, s)
g a−−→� (`′, {t′ ∈ JV LK | ψ(s · g, t′)}).

A specification A is called syntactically consistent iff its semantics 〈A〉sem is syntacti-
cally consistent. In the following we will always assume that specifications and MSD
are syntactically consistent.

Example 2. An excerpt of the semantics of our abstract specification of the print server
(see Fig. 1) can be seen Fig. 2. As before, we draw must-transitions with a solid arrow,
and has an implicit set of may-transitions shadowing it which are not shown, i.e. for
each target (`, S′) of a must-transition and each s ∈ S′ there is a may-transition with the
same source state and with target state (`, {s}).

The first must-transition (`0,newPrintJob, (l)′ + (h)′ = 1, `1)∈E� of the print
server specification gives rise to the transitions shown in Fig. 2. Any new print job must
be stored in either l or h but which one is not yet fixed by the specification. Thus in the
semantics this is expressed as a disjunctive must-transition to the unique location `1 and
the next possible data states [l 7→ 1, h 7→ 0] and [l 7→ 0, h 7→ 1].

A refinement relation allows to relate a concrete specification with an abstract
specification. Refinement should satisfy the following substitutability property: If A
refines B then replacing B with A in a context C[·] gives a specification C[A] refining
C[B]. Refinement will be a precongruence, i.e. it is compatible with the structural and
logical operators on specifications in the above sense.

Our definition of refinement is based on modal refinement [10, 9] for (disjunctive)
modal transition systems, where the may-transitions determine which actions are permit-
ted in a refinement while the must-transitions specify which actions must be present in a
refinement and hence in any implementation. We adapt it with respect to data states.
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(`′′0 , s0) (`′′1 , s1)

g1 a

g3 c

R

(`′0, s0) (`′1, s1)

(`′1, s2)
S g1

a
g4 d

g3 c

(`0, s0)

(`0, s1)

(`1, s1)

(`1, s2)

T g1
a

g2 b

g4 d

g3 c

Fig. 3. Successive refinement of an MSD T.

Example 3. We motivate our adaption of modal refinement to take into account data
states with the help of a small example shown in Fig. 3. We draw may-transitions with
a dashed arrow, and must-transitions with a solid arrow. Every must-transition has an
implicit set of may-transitions shadowing it which are not shown. The MSD T (to the
right) has two initial states, both having `0 as the initial location. The must-transition
starting from (`0, s0) expresses that in any implementation there must be a transition
leading to at least one of the states (`1, s1) and (`1, s2). The MSD T can be refined
to the MSD S (by dropping one may-transition and turning one may-transition to a
must-transition), and then S is refined by the MSD R, by refining the must-transition
(`′0, s0, g1, a, (`

′
1, {s1, s2})) in S to the must-transition (`′′0 , s0, g1, a, (`

′′
1 , {s1})) in R,

and by strengthening the transition with guard g3 and action c to a must-transition.

Definition 4. Let T1 = (Sig ,Loc1, `
0
1, S

0
1 ,−−→♦,1,−−→�,1) and T2 = (Sig ,Loc2, `

0
2,

S0
2 ,−−→♦,2,−−→�,2) be MSD over the same signature Sig = (Σ,V L, V G). A relation
R ⊆ Loc1 × Loc2 × JV LK is a refinement relation iff for all (`1, `2, s) ∈ R:

i. Whenever (`1, s)
g a−−→♦,1 (`′1, {s′}) then there exists (`2, s)

g a−−→♦,2 (`′2, {t′}) such
that s′ = t′ and (`′1, `

′
2, s
′) ∈ R.

ii. Whenever (`2, s)
g a−−→�,2 (`′2, S

′
2) then there exists (`1, s)

g a−−→�,1 (`′1, S
′
1) such that

S′1 ⊆ S′2 and (`′1, `
′
2, s
′) ∈ R for all s′ ∈ S′1.

We say that T1 refines T2, written T1 ≤sem T2, iff S0
1 ⊆ S0

2 and there exists a
refinement relation R such that for any s ∈ S0

1 also (`01, `
0
2, s) ∈ R. A specification A1

refines another specification A2, written A1 ≤ A2, iff 〈A1〉sem ≤sem 〈A2〉sem.

The refinement relation is a preorder on the class of all specifications. Refinement
can be checked in polynomial time in the size of the state space of the MSD (for variables
with finite domains). In general the domain may be infinite, or prohibitively large, so in
Sect. 4 we revisit the question of refinement checking using abstraction techniques.

Example 4. The semantics of our abstract print server specification, shown in Fig. 2, can
be refined as shown in Fig. 4. Now, both must-transitions point to the location `1 with
the data state [l 7→ 1, h 7→ 0] which means that any new incoming print job is assigned a
low priority, independent of the uncontrolled variable priorityMode.

An MSD for which the conditions (1) −−→♦ = −−→� and (2) |S0| = 1 are satisfied,
can be interpreted as (an abstraction of) an implementation: there are no design choices
left open as (1) all may-transitions are covered by must-transitions and (2) there is only
one initial data state possible. Any MSD for which the conditions (1) and (2) are satisfied,
is called transition system with data (TSD) in the following. Note that TSD cannot be
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(`0, [l 7→ 0, h 7→ 0])

(`1, [l 7→ 1, h 7→ 0])

(`1, [l 7→ 0, h 7→ 1])

. . .

. . .

[priorit
yMode 7→ true]

newPrintJo
b

[priorit
yMode 7→ false]

newPrintJo
b

Fig. 4. Refinement of the MSD shown in Fig. 2.

strictly refined, i.e. for any TSD I and any MSD S with the same signature, S ≤sem I
implies I ≤sem S.

An implementation relation connects specifications to implementations (given as
TSD) satisfying them. We can simply use refinement as the implementation relation.
Given a specification A and some TSD I, we write I |= A for I ≤sem 〈A〉sem, so our
implementation I is seen as the model which satisfies the property expressed by the
specification A. Now the set of implementations of a specification is the set of all its
refining TSD: given a specification A, we define Impl(A) = {I | I |= A}.

Our implementation relation |= immediately leads to the classical notion of consis-
tency as existence of models. A specification A is consistent iff Impl(A) is non-empty.
Consequently, as modal refinement is reflexive, any specification A for which 〈A〉sem is
a TSD, is consistent.

By transitivity, modal refinement entails implementation set inclusion: for specifica-
tions A and B, if A ≤ B then Impl(A) ⊆ Impl(B). The relation Impl(A) ⊆ Impl(B)
is sometimes called thorough refinement [11]. Just like for modal transition systems,
thorough refinement does not imply modal refinement in general [12]. To establish equiv-
alence we follow [13] by imposing a restriction on B, namely that it is deterministic. An
MSD is deterministic if

(1) if (`, s, g, a, (`′, S′)), (`, s, g, a, (`′′, S′′)) ∈−−→� then (`′, S′) = (`′′, S′′),
(2) if (`, s, g, a, (`′, S′)), (`, s, g, a, (`′′, S′′)) ∈−−→♦ ∪ −−→� then `′ = `′′.

A specification B is deterministic, if the MSD 〈B〉sem is deterministic. Note that for
may-transitions, determinism only requires that for the same source state, guard and
action, the transition leads to a unique next location. The reason why this is sufficient is
that modal refinement explicitely distinguishes states by their data state part: two states
(`, s) and (`′, s′) can only be related if their data state parts s, s′ coincide.

Now, turning back to the relationship of modal refinement and inclusion of imple-
mentation sets (thorough refinement), we can prove the following theorem. Under the
restriction of determinism of the refined (abstract) specification we can prove complete-
ness of refinement. This theorem effectively means that modal refinement, as defined for
MSD, is characterized by set inclusion of admitted implementations.

Theorem 1. Let A and B be two specifications with the same signature such that B is
deterministic. Then A ≤ B if and only if Impl(A) ⊆ Impl(B).

3 Compositional Reasoning

In this section we propose all the essential operators on specifications a good specification
theory should provide. We will distinguish between structural and logical composition.
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Structural composition mimics the classical composition of transition systems at the
specification level. Logical composition allows to compute the intersection of sets of
models and hence can be used to represent the conjunction of requirements made on an
implementation. Furthermore we will introduce a quotient operator which is the dual
operator to structural composition.

From now on, we assume that for any two specifications with the signatures Sig1 =
(Σ1, V

L
1 , V

G
1 ) and Sig2 = (Σ2, V

L
2 , V

G
2 ), respectively, we can assume that Σ1 = Σ2

and V L1 ] V G1 = V L2 ] V G2 . This is not a limitation, as one can apply the constructions
of [4] to equalize alphabets of actions and sets of variables.

Parallel composition. Two specifications A1 and A2 with Sig1 = (Σ1, V
L
1 , V

G
1 ),

Sig2 = (Σ2, V
L
2 , V

G
2 ), respectively, are composable iff V L1 ∩ V L2 = ∅. Then their

signatures can be composed in a straightforward manner to the signature

Sig1 ‖ Sig2 = (Σ1, V
L
1 ∪ V L2 , (V G1 ∪ V G2 ) \ (V L1 ∪ V L2 ))

in which the set of controlled variables is the union of the sets of controlled variables
of A1 and A2, and the set of uncontrolled variables consists of all those uncontrolled
variables of A1 and A2 which are controlled neither by A1 nor by A2.

Definition 5. Let A1 and A2 be two composable specifications. The parallel composi-
tion of A1 and A2 is defined as the specification

A1 ‖ A2 = (Sig1 ‖ Sig2,Loc1 × Loc2, (`
0
1, `

0
2), ϕ

0
1 ∧ ϕ0

2, E♦, E�)

where the transition relations E♦ and E� are the smallest relations satisfying the rules:

1. if (`1, a, ψ1, `
′
1)∈E♦,1 and (`2, a, ψ2, `

′
2)∈E♦,2 then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E♦,

2. if (`1, a, ψ1, `
′
1)∈E�,1 and (`2, a, ψ2, `

′
2)∈E�,2 then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E�.

Composition of specifications, similar to the classical notion of modal composition
for modal transition systems [10], synchronizes on matching shared actions and only
yields a must-transition if there exist corresponding matching must-transitions in the
original specifications. Composition is commutative (up to isomorphism) and associative.
Our theory supports independent implementability of specifications, which is a crucial
requirement for any compositional specification framework [14].

Theorem 2. Let A1,A2,B1,B2 be specifications such that A1 and B1 are composable.
If A1 ≤ A2 and B1 ≤ B2, then A1 ‖ B1 ≤ A2 ‖ B2.

The analog of parallel composition on the level of specifications is parallel com-
position ‖sem on the level of MSD which is a straightforward translation of the above
symbolic rules. In fact one can prove that both parallel compositions ‖ and ‖sem are
equivalent, i.e. that 〈A1 ‖ A2〉sem = 〈A1〉sem ‖sem 〈A2〉sem for any two composable
specifications A1,A2.
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Remark 1. Interface theories based on transition systems labeled with input/output ac-
tions usually involve a notion of compatibility, which is a relation between interfaces
determining whether two components can work properly together. Since the present the-
ory does not have a notion of input/output it is enough to require that two components are
composable, i.e. that their local variables do not overlap. A pessimistic input/output com-
patibility notion has been proposed in our previous work [15]. Optimistic input/output
compatibility based on a game semantics allows computing all the environments in
which two components can work together. Following our recent works in [16, 4], one
can enrich labels of transitions in the present theory with input and output and apply the
same game-based semantics in order to achieve an optimistic composition.

Syntactical consistency. Our next two specification operators, conjunction and quotient,
may yield specifications which are syntactically inconsistent, i.e. either there is no legal
initial data state or there are states with a must-transition but without corresponding
may-transition.

In general, given a specification A, syntactic consistency implies consistency, i.e.
Impl(A) 6= ∅, but in general, the reverse does not hold. However, every consistent
specification can be “pruned” to a syntactically consistent one, by pruning backwards
from all syntactically inconsistent states, removing states which have to reach some of
the “bad” states. Pruning will be shown to preserve the set of implementations.

For a specification A = (Sig ,Loc, `0, ϕ0, E♦, E�), the pruning (or reduction) of
A, denoted by ρ(A), is done as follows. Let B : Loc → Pred(V L) be a mapping
of locations to predicates over the local variables. We define a predecessor operation,
iteratively computing all states that are forced to reach a “bad” state. Define a weakest
precondition predicate, for ψ ∈ Pred(V ] (V L)′), ϕ ∈ Pred(V L), by

wpψ[ϕ] ≡ ∃V G.◦ψ ∧ (∀(V L)′.ψ ⇒ (ϕ)′) (1)

which computes the largest set of local states such that there exists an uncontrolled state
g ∈ JV GK such that ψ maps to at least one next state, and all next states satisfy ϕ. Then

predec(B)(`) ≡ B(`) ∨
∨
a∈Σ,`′∈Loc,ψ∈Musta(`,`′) wpψ[B(`′)]

and predec0(B) ≡ B, predecj+1(B) ≡ predec(predecj(B)) for j ≥ 0, and then finally
predec∗(B) ≡

⋃
j≥0 predec

j(B). Define bad : Loc → Pred(V L), for any ` ∈ Loc, by

bad(`) ≡
∨

a∈Σ,`′∈Loc,ψ∈Musta(`,`′)

∃V G.◦ψ ∧

∀(V L)′.ψ ⇒ ∧
ψ′∈Maya(`,`′)

¬ψ′


and thus bad(`) is satisfied by a valuation s ∈ JV LK iff there is a must-transition for
which no choice of the next data state is permitted by the may-transitions.

In general, for infinite-domain variables, the computation of predec∗(bad) may
not terminate. In [7], it was shown that reachability and related properties in well-
structured transition systems with data values, that are monotonic transition systems with
a well-quasi ordering on the set of data values, is decidable. This result can be used for
specifications with infinite-domain variables to show that under these assumptions, there
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is some j ≥ 0 such that for all ` ∈ Loc, Jpredecj(bad)(`)K = Jpredecj+1(bad)(`)K. In
the following, for the specification operators conjunction and quotient (which may result
in a syntactically inconsistent specification and hence need to be pruned) we assume that
such a j ≥ 0 exists.

The pruning ρ(A) of A is defined if ϕ0 ∧ ¬predecj(bad)(`0) is consistent; and
in this case, ρ(A) is the specification (Sig ,Loc, `0, ϕ0 ∧ ¬predecj(bad)(`0), Eρ♦, E

ρ
�)

where, for χgood = ¬predecj(bad),

Eρ♦ =
{
(`1, a, χgood(`1) ∧ ψ ∧ (χgood(`2))

′, `2) | (`1, a, ψ, `2)∈E♦
}
,

Eρ� =
{
(`1, a, χgood(`1) ∧ ψ ∧ (χgood(`2))

′, `2) | (`1, a, ψ, `2)∈E�
}
.

Crucially the pruning operator has the expected properties:

Theorem 3. Let A be a deterministic, possibly syntactically inconsistent specification.
Then ρ(A) is defined if and only if A is consistent. And if ρ(A) is defined, then

1. ρ(A) is a specification (hence syntactically consistent),
2. ρ(A) ≤ A,
3. Impl(A) = Impl(ρ(A)), and
4. for any specification B, if B ≤ A, then B ≤ ρ(A).

Logical composition. Conjunction of two specifications yields the greatest lower bound
with respect to modal refinement. Syntactic inconsistencies arise if one specification
requires a behavior disallowed by the other.

Definition 6. Let A1 and A2 be two specifications with the same signature Sig . The
conjunction of A1 and A2 is defined as the possibly syntactically inconsistent specifica-
tion

A1 ∧A2 = (Sig ,Loc1 × Loc2, (`
0
1, `

0
2), ϕ

0
1 ∧ ϕ0

2, E♦, E�)

where the transition relations E♦, E� are the smallest relations satisfying the rules, for
any `1 ∈ Loc1, `2 ∈ Loc2, a ∈ Σ,

1. If (`1, a, ψ1, `
′
1)∈E♦,1, (`2, a, ψ2, `

′
2)∈E♦,2, then

((`1, `2), a, ψ1 ∧ ψ2, (`
′
1, `
′
2))∈E♦,

2. If (`1, a, ψ1, `
′
1)∈E�,1, then

((`1, `2), a, ψ1 ∧ (
∨
ψ2∈Maya

2 (`2,`′2)
ψ2), (`

′
1, `
′
2))∈E�,

3. If (`2, a, ψ2, `
′
2)∈E�,2, then

((`1, `2), a, ψ2 ∧ (
∨
ψ1∈Maya

1 (`1,`′1)
ψ1), (`

′
1, `
′
2))∈E�,

4. If (`1, a, ψ1, `
′
1)∈E�,1 then

((`1, `2), a,
◦ψ1 ∧

(
∀(V L)′.ψ1 ⇒

∧
ψ2∈M ¬ψ2

)
, (`′1, `2))∈E�,

where M =
⋃
`′2∈Loc2

Maya2 (`2, `
′
2),

5. If (`2, a, ψ2, `
′
2)∈E�,2 then

((`1, `2), a,
◦ψ2 ∧

(
∀(V L)′.ψ2 ⇒

∧
ψ1∈M ¬ψ1

)
, (`1, `

′
2))∈E�,

where M =
⋃
`′1∈Loc1

Maya1 (`1, `
′
1).
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The first rule composes may-transitions (with the same action) by conjoining their
predicates. Rule (2) and (3) express that any required behavior of A1 (A2 resp.), as long
as it is allowed by A2 (A1 resp.), is also a required behavior in A1 ∧A2. Rules (4) and
(5) capture the case when a required behavior of A1 is not allowed by A2. Conjunction
is commutative and associative.

Refinement is a precongruence with respect to conjunction for deterministic specifi-
cations. Moreover, under the assumption of determinism, the conjunction construction
yields the greatest lower bound with respect to modal refinement:

Theorem 4. Let A, B, C be specifications with the same signature and let A and B be
deterministic. If A ∧B is consistent then

1. ρ(A ∧B) ≤ A and ρ(A ∧B) ≤ B,
2. C ≤ A and C ≤ B implies C ≤ ρ(A ∧B),
3. Impl(ρ(A ∧B)) = Impl(A) ∩ Impl(B).

Quotient as the dual operator to structural composition. The quotient operator allows
factoring out behaviors from larger specifications. Given two specifications A and B the
quotient of B by A, in the following denoted B 
A, is the most general specification
that can be composed with A and still refines B.

In the following, we assume for the signatures SigA = (Σ,V LA , V
G
A ) and SigB =

(Σ,V LB , V
G
B ) that V LA ⊆ V LB . The signature of the quotient B 
A is then SigB
A =

(Σ,V LB
A, V
G
B
A) with V LB
A = V LB \ V LA and V GB
A = V GB ∪ V LA . Note that, as said

before, we restrict ourselves to the case where V LA ] V GA = V LB ] V GB .
It is unknown if in our general model of specifications a finite quotient exists.

For specifications involving variables with finite domains only, a semantic quotient
operation can be defined, which works on the (finite) semantics of A and B. As already
noticed in previous works, e.g. [17], non-determinism is problematic for quotienting,
and thus specifications are assumed to be deterministic. In our case, even when assuming
deterministic specifications, the non-determinism with respect to the next local data state
is still there: thus the quotient B 
A, when performing a transition, does not know the
next data state of A. However, due to our semantics, in which transitions are guarded by
uncontrolled states, the quotient can always observe the current data state of A. This
extension of the usual quotient can be shown that it satisfies the following soundness and
maximality property: Given MSD S and T such that S is deterministic and T 
sem S is
consistent, and assume a semantic pruning operator ρsem which is the straightforward
translation of pruning ρ to the semantic level. Then X ≤sem ρsem(T
sem S) if and only
if S ‖sem X ≤sem T for any MSD X.

Now our goal is to compute the quotient at the symbolic level of specifications. We do
this for a restricted subclass of specifications in which each occurring transition predicate
ψ is separable, meaning that ψ is equivalent to ◦ψ ∧ ψ◦. Although this might seem
as a serious restriction, we can often transform the transition systems with transition
predicates of the form (x)′ = x + 1 to a transition system with transition predicates
which are separable and keep the same set of implementations. For instance, if we know
that there are only finitely many possible values v1, . . . , vn for x in the current state,
we can “unfold” the specification and replace the transition predicates (x)′ = x+ 1 by
(x)′ = vi, for 1 ≤ i ≤ n.

12



The symbolic quotient introduces two new locations, the universal state (univ) and
an error state (⊥). In the universal state the quotient can show arbitrary behavior and
is needed to obtain maximality, and the error state is a syntactically inconsistent state
used to encode conflicting requirements. The state space of the quotient is given by
LocB × LocA × Pred(V LA ), so every state stores not only the current location of B and
A (like in [17]) but includes a predicate about the current possible data states of A. For
notational convenience, for ϕ ∈ Pred(V1 ] V2) and ϕ1 ∈ Pred(V1), we write ϕ 
 ϕ1

for (∀V1.ϕ1 ⇒ ϕ) ∈ Pred(V2).

Definition 7. Let A and B be two specifications such that V LA ⊆ V LB . The quotient
of B by A is defined as the possibly syntactically inconsistent specification B
A =
(SigB
A, (LocB×LocA× Pred(V LA )) ∪ {univ,⊥}, (`0B, `0A, ϕ0

A), ϕ0
B 
 ϕ0

A, E♦, E�)

where the transition relations are given by, for all a ∈ Σ and all ξA ∈ Pred(V LA ),

1. if (`B, a, ψB, `
′
B)∈E♦,B and (`A, a, ψA, `

′
A)∈E♦,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦B 
 ψ◦A), (`′B, `
′
A, ψ

◦
A))∈E♦,

2. if (`B, a, ψB, `
′
B)∈E�,B and (`A, a, ψA, `

′
A)∈E�,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦B 
 ψ◦A), (`′B, `
′
A, ψ

◦
A))∈E�,

3. if (`B, a, ψB, `
′
B)∈E�,B and (`A, a, ψA, `

′
A)∈E�,A, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ ¬(ψ◦B 
 ψ◦A),⊥)∈E�,
4. if (`B, a, ψB, `

′
B)∈E�,B, then

((`B, `A, ξA), a, ξA ∧ ◦ψB ∧ ¬(
∨
ψA∈M

◦ψA),⊥)∈E�

where M =
⋃
`′A∈LocA

MustaA(`A, `
′
A),

5. ((`B, `A, ξA), a,¬ξA, univ)∈E♦,
6. ((`B, `A, ξA), a, ξA ∧ ¬(

∨
ψA∈M

◦ψA), univ)∈E♦

where M =
⋃
`′A∈LocA

MayaA(`A, `
′
A),

7. (univ, a, true, univ)∈E♦,
8. (⊥, a, true,⊥)∈E�.

Rules (1) and (2) capture the cases when both A and B can perform a may- and must-
transition, respectively. Rules (3) and (4) capture any inconsistencies which can arise if
for a must-transition in B there is no way to obtain a must-transition by composition
of the quotient with A. In order to obtain maximality, we add a universal state univ in
which the behavior of the quotient is not restricted (rules (5)–(7)). Finally, the rule (8)
makes the error state syntactically inconsistent.

Since we only have finitely many transition predicates ψA in A, and they are all
separable, the set of locations (LocB×LocA× ({ψ◦A | ψA occurring in A}∪{ϕ0

A}))∪
{univ,⊥} of B
A is also finite. Thus we can construct the symbolic quotient in a finite
number of steps, starting in the initial state (`0B, `

0
A, ϕ

0
A), and iteratively constructing

the transitions. Soundness and maximality of the quotient follows from the following
theorem.

Theorem 5. Let A and B be specifications such that V LA ⊆ V LB , all transition predicates
of A and B are separable, A is deterministic and B 
A is consistent. Then for any
specification C such that SigC = SigB
A, C ≤ ρ(B 
A) if and only if A ‖ C ≤ B.
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[l + h = 0]
`′0 `′1

newPrintJob
[(l)′ = l + 1 ∧ (h)′ = h]

incPriority
[l > 0

∧ (l)′ = l − 1
∧ (h)′ = h+ 1]

ack [(l)′ = l ∧ (h)′ = h]

send
[l + h > 0
∧ (priorityMode ∧ h > 0 =⇒ (h)′ = h− 1 ∧ (l)′ = l)
∧ (¬(priorityMode ∧ h > 0) =⇒ ((h)′ = h− 1 ∧ (l)′ = l)

∨ ((l)′ = l − 1 ∧ (h)′ = h))]

Fig. 5. Refined print server specification Q.

4 Predicate Abstraction for Verification of Refinement

We now switch our focus to the problem of deciding whether a specification A refines
another specification B (which reduces to checking 〈A〉sem ≤sem 〈B〉sem). As soon
as domains of variables are infinite, 〈A〉sem and 〈B〉sem may be MSD with infinitely
many states and transitions. In this case, this problem is known to be undecidable in
general. Thus we propose to resort to predicate abstraction techniques [18]. Given two
specifications A and B we derive over- and under-approximations Ao and Bu which
are guaranteed to be finite MSD. Then, we show that Ao ≤sem Bu implies A ≤ B.

Example 5. Fig. 5 shows a print server specification Q which we will show is a re-
finement of the abstract specification P in Fig. 1. The behavior of the print server is
now fixed for any number of print jobs. Moreover, the send transition has been refined
such that depending on the priority mode (provided by the environment of the print
server) a job with high priority (in case priorityMode is true) or a job with low priority
(otherwise) is chosen next.

Given a specification A = (Sig ,Loc, `0, ϕ0,−−→♦,−−→�) with Sig = (Σ,V L, V G),
we partition the local state space and the uncontrolled state space using finitely many
predicates φ1, φ2, . . . , φN ∈ Pred(V L) and χ1, χ2, . . . , χM ∈ Pred(V G). We fix these
predicates in the following to simplify the presentation. The signature of the abstrac-
tion is then given by Sigabstr = (Σ,V Labstr , V

G
abstr ), where V Labstr = {x1, x2, . . . ,

xN} and V Gabstr = {y1, y2, . . . , yM}. All variables xi, yj have Boolean domain. A
variable xi (yj) encodes whether the predicate φi (χj) holds or not.

Any abstract state ν ∈ JV Labstr K is a conjunction of predicates
∧N
i=1 φ

ν(xi)
i , where

φ
ν(xi)
i =φi if ν(xi)=1, else φν(xi)

i =¬φi. Further, a set of abstract states N⊆JV Labstr K
corresponds to

∨
ν∈N ν. Similarly for any ω∈JV Gabstr K and for M⊆JV Gabstr K.

The transition relation of the over-approximation expands the allowed behaviors
and limits the required behaviors. Dually, the under-approximation will further re-
strict the allowed behavior and add more required transitions. In other words, over-
approximation is an existential abstraction on may-transitions and universal abstraction
on must-transitions; dually for the under-approximation.

Formally, the over-approximation Ao of A is defined by the finite TSD (Sigabstr ,
Loc, `0, S0

abstr ,−−→♦,abstr ,−−→�,abstr ), where the initial abstract state contains all par-
titions overlapping with concrete initial states S0

abstr = {ν ∈ JV Labstr K | ∃V L.ν ∧ ϕ0},
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and the abstract transition relations are derived as follows. For all `, `′ ∈ Loc, a ∈ Act,
ν, ν̇ ∈ JV Labstr K, ω ∈ JV Gabstr K,

i. If ∃V.∃(V L)′.ν ∧ ω ∧ (
∨
ψ∈Maya(`,`′) ψ) ∧ (ν̇)′, then (`, ν)

ω a−−→♦,abstr (`′, {ν̇}),
so there is a may-transition between partitions in the abstraction if there was a
may-transition between any states in these partitions in the concrete system.

ii. Whenever, for some N ⊆ JV Labstr K, the predicate

∀V.ν ∧ ω ⇒
∨
ψ∈Musta(`,`′)

◦ψ ∧ (∀(V L)′.ψ ⇒ (N)′) (2)

is true andN is minimal with respect to this property, then (`, ν)
ω a−−→�,abstr (`′, N).

For the under-approximation Bu of B, we assume that every transition predicate ψ on a
must-transition must be separable (see page 12). Moreover, in order to soundly capture
must-transitions, we must be able to exactly describe the target set of (concrete) local
states by a union of abstract states; so for any (`, a, ψ, `′) ∈ E�,B, there exists a set
N ⊆ JV Labstr K such that ∀(V L)′. ψ◦⇔ (N)′. The under-approximation Bu is the finite
TSD (Sigabstr ,Loc, `

0, S0
abstr ,−−→♦,abstr, −−→�,abstr ), where S0

abstr = {ν ∈ JV Labstr K |
∀V L.ν ⇒ ϕ0}, and for all `, `′∈Loc, a∈Act, ν, ν̇∈JV Labstr K, ω ∈ JV Gabstr K,

i. If ∀V.∀(V L)′.ν ∧ ω ∧ (ν̇)′ ⇒
∨
ψ∈Maya(`,`′) ψ then (`, ν)

ω a−−→♦,abstr (`′, {ν̇}),
ii. For every (`, a, ψ, `′)∈E�,, if ∃V.ν∧ω∧ ◦ψ, then (`, ν)

ω a−−→�,abstr (`′, N) where
N ⊆ JV Labstr K such that ∀(V L)′.ψ◦ ⇔ (N)′.

Correctness of the abstraction follows from the following theorem.

Theorem 6. Ao ≤sem Bu implies A ≤ B.

Example 6. Fig. 6 and Fig. 7 are over- and under-approximations of Q and P, re-
spectively. The MSD represent abstractions w.r.t. the predicates φ0,0 ≡ h = l = 0,
φ0,1 ≡ l = 0 ∧ h = 1, φ1,0 ≡ l = 1 ∧ h = 0, and φ>1 ≡ h + l > 1 for the
controlled variables l and h, and ω1 ≡ priorityMode, ω2 ≡ ¬priorityMode for the
uncontrolled variable priorityMode. Note that all transition predicates in P are separa-
ble, and all possible (concrete) poststates can be precisely captured by the predicates
φ0,0, φ0,1, φ1,0, φ>1. For better readability we have omitted most of the guards ω1,
ω2, i.e. every transition without guard stands for two transitions with the same action,
source and target state(s), and with ω1 and ω2 as guard, respectively. Moreover, the state
(`3, φ0,0 ∨ φ0,1 ∨ φ1,0 ∨ φ>1) is a simplified notation which represents all the states
(`3, φ) with φ ∈ {φ0,0, φ0,1, φ1,0, φ>1} and all may-transitions leading to it lead to each
of the states, and the may-loop stands for all the transitions between each of the states.
Obviously, Qo ≤sem Pu, and from Thm. 6 it follows that Q ≤ P.

Even though this abstraction technique requires separability of predicates, it is
applicable to a larger set of specifications. Sometimes, as already described in the
previous section, transitions with non-separable predicates can be replaced by finite sets
of transitions to achieve separability, without changing the semantics of the specification.
Automatic procedures for generation of predicates are subject of future work. Finally,
our abstraction also supports compositional reasoning about parallel composition in the
following sense:
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(`0, φ0,0)

(`1, φ0,1)

(`1, φ1,0)

(`2, φ0,0)

(`3, φ0,0 ∨ φ0,1 ∨ φ1,0 ∨ φ>1)

newPrintJob
incPriority
send
ack

newPrintJob
incPriority

send

ω1 send
send

ack

new
Pr

int
Job

new
Prin

tJo
b

Fig. 6. Under-approximation Pu.

(`′0, φ0,0)

(`′0, φ0,1)

(`′0, φ1,0)

(`′1, φ0,0)

(`′0, φ>1)

(`′1, φ>1) (`′1, φ0,1)

(`′1, φ1,0)
newPrintJob

incPriority

send

send

ack

new
Pr

int
Job

new
Prin

tJo
b

sen
dack

send

send

newPrintJob

ack ack

incPriority

Fig. 7. Over-approximation Qo.

Theorem 7. Let A and B be two composable specifications, and V GA‖B=(V GA ∪V GB )r
(V LA ] V LB ). Let EA ⊆ Pred(V LA ), EA ⊆ Pred(V LB ), and F ⊆ Pred(V GA‖B) be sets of
predicates partitioning the respective data states.

A is approximated w.r.t. EA for V LA , and EB ∪ F for V GA = V GA‖B ] V
L
B and

similarly, B is approximated w.r.t. EB and EA ∪ F . Finally, A ‖ B is approximated
w.r.t. EA ∪EB for V LA‖B = V LA ] V LB , and F for V GA‖B. We assume that each predicate,
in any abstraction of A, B, or A ‖ B, are encoded with the same variable.

Then (A ‖B)o ≤sem Ao ‖sem Bo, and Au ‖sem Bu ≤sem (A ‖B)u.

This result allows reusing abstractions of individual components in a continued develop-
ment and verification process. For instance, if we want to verify A ‖ B ≤ C then we
can compute (or reuse) the less complex abstractions Ao and Bo. Thm. 7 implies then
that from Ao ‖sem Bo ≤sem Cu we can infer A ‖ B ≤ C.

5 Related work

The main difference to related approaches based on modal process algebra taking data
states into account, e.g. [19] is that they cannot naturally express logical and structural
composition in the same formalism. A comparison between modal specifications and
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other theories such as interface automata [20] and process algebra [2] can be found in [3].
In [8], the authors introduced sociable interfaces, that is a model of I/O automata [21]
equipped with a data and a game-based semantics. While their communication primitives
are richer, sociable interfaces do not encompass any notion of logical composition and
quotient, and their refinement is based on an alternating simulation.

Transition systems enriched with predicates are used, for instance, in the approach
of [22, 23] where they use symbolic transition systems (STS), but STS do not support
modalities and loose data specifications as they focus more on model checking than on
the (top down) development of concurrent systems by refinement.

In [15] modal I/O automata has been extended by pre- and postconditions viewed as
contracts, however, only semantics in terms of sets of implementations have been defined
(implementations with only input actions correspond to our TSD). Modal refinement
as defined in [15] is coarser than in this paper, and moreover, neither conjunction nor a
quotient operation are defined.

6 Conclusion

We have proposed a specification theory for reasoning about components with rich
data state. Our formalism, based on modal transition systems, supports: refinement
checking, consistency checking with pruning of inconsistent states, structural and logical
composition, and a quotient operator. We have defined symbolic representations of the
operators and have shown that they are equivalent to the semantic definitions—this
allows for automatic analysis of specifications. We have also presented a predicate
abstraction technique for modal specifications with data. We believe that this work is a
significant step towards practical use of specification theories based on modal transition
systems. The ability to reason about data domains permits the modeling of industrial
case studies.

In the future, we intend to develop larger case studies. Furthermore, we would like
to extend the formalism with more complex communication patterns and to investigate
in which cases we can still obtain all the operators on specifications, in particular the
quotient operator. We are also planning to implement the theory in the MIO Workbench
[24, 25, 26], a verification tool for modal input/output interfaces.
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