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Abstract. This paper presents a real-time or online system for contin-
uous recognition of human actions. The system recognizes actions such
as walking, bending, jumping, waving, and falling and relies on spatial
features computed to characterize human posture. The paper evaluates
the utility of these features based on its joint or independent treatment
within the context of the Hidden Markov Model (HMM) framework. A
baseline approach wherein disparate spatial features are treated as an
input vector to trained HMMs is used to compare three different in-
dependent feature models. In addition, an action transition constraints
is introduced to stabilize the developed models and allow for continu-
ity in recognized actions. The system is evaluated across a dataset of
videos and results reported in terms of frame error rate, the frame de-
lay in recognizing an action, action recognition rate, and the missed and
false recognition rates. Experimental results shows the effectiveness of
the proposed treatment of input features and the corresponding HMM
formulations.
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1 Introduction

Recognizing human actions is a challenging problem that has received consid-
erable attention from the computer vision community in recent years. This is
especially the case due to its importance in various applications in the fields
of surveillance and activity monitoring, human computer interaction, intelligent
environments, etc. Each of these applications are domain specific and have addi-
tional requirements, but the general need for algorithms capable of detecting and
recognizing human actions in real time remains fundamental. Broadly speaking,
two primary considerations in analyzing human motion has been in modeling
the temporal and spatial variations exhibited due to differences in duration of
different actions performed and changing spatial characteristics of the human
form in performing each action [1].
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Over the past few years, a number of approaches have been proposed to ad-
dress these issues [2, [3]. Temporal templates have been proposed and used to
categorize actions [4]. Methods that explicitly model relative changes in spatial
descriptors over time [5], or estimates of global and local motion [6, [7] have also
been utilized. More recently, spatio-temporal feature based approaches have been
proposed and demonstrated for various action recognition applications. Repre-
sentations based on a set of interest points are used to capture key variations in
both space and time [8-12]. Space-time volumes built based on a global shape
estimated by the human silhouette was proposed by Blank et al. [13]. Correlation
of local features |14] and autocorrelation of features in space-time [15] have also
been used to describe human movements.

In general, spatial variations can be effectively modeled by local appearance
and shape representations while temporal variations require a more global treat-
ment of the input image sequence. On the other hand, temporal variations can
be effectively addressed by dynamic systems such as Hidden Markov Models
(HMM) [1, 16]. With this capability, the burden of modeling spatial variations
shifts to the selection of suitable feature sets to effectively discriminate different
actions [16].

In this paper, we focus on the treatment of spatial features in the context of
HMMs, specifically for the continuous recognition of actions within a real-time
or online constraint. We outline the baseline approach wherein disparate spatial
features are treated as an input vector to each HMM trained to recognize one of
many actions. In addition, we impose an action transition constraint that explic-
itly accounts for the recognized action at the previous time step in recognizing an
action at the current time step. Similar methods that rely on feature attributes
have been proposed, many of which suffer from challenges in modeling the high-
dimensional feature space [16]. We evaluate the baseline approach against a more
independent treatment of the input features. Each feature is used to train HMMs
for the specific action to be recognized and the output is fused to generate a fi-
nal decision. Further, we also consider a weighted fusion model. The different
treatments of input features and fusion methods are compared and evaluated
for the problem of recognizing human action in an indoor environment, where
the motions to be recognized include ‘walking’, ’bending’, jumping’, ‘waving’
and ’falling’. We propose the use of three features that describe human posture
and evaluate the different models on a dataset of 17 videos, totaling over 7200
frames. The overview of the implemented system is shown in figure [Il The rest
of the paper is organized as follows. Section 2l describes the human posture fea-
tures proposed and used in this work. Section 3] describes the baseline model for
action recognition as well as presents the different decision fusion models. Our
experimental results and evaluations are presented in section [l and section
concludes the paper.

2 Human Posture Features

Human posture features are primarily useful in describing actions representa-
tive of whole body movements. In this paper, we limit the set of actions to
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Fig. 1. Schematic of the Human Action Recognition System

be recognized to common events in an indoor environment including “walking’,
‘bending’, jumping’, ‘waving’ and ’falling’, all of which can intuitively be de-
scribed by features that represent the human as a single object. One of the most
common feature used is the height to width ratio (Fywg) of a bounding box
enclosing the detected region in the image |17, [18]. While this feature has been
demonstrated to have good applicability, stable extraction of this metric can be
challenging in real environments. In addition, every feature will be meritable for
a limited number of actions and each action may require multiple features to
be recognized robustly. Here, we propose two new features in addition to Fyw g
that characterizes human posture.

Human actions can be described by combination of descriptors. In this pa-
per, we concentrate more on human posture descriptors extracted from video
frames. We propose two new descriptors that characterize human posture and
we evaluate each proposed descriptors independently using our framework.

2.1 Nominal Height Ratio

The vertical height of the detected human in any image can provide an indication
of the posture. In fact, as an absolute metric, such a feature can be used to
identify progressive changes that may occur while a person performs actions
such as “standing’, “sitting’, ‘bending’, and ’falling’. Video metrology can provide
beneficial information in ascertaining such an absolute metric [19]. We propose
to compute the ratio of the true vertical height of the detected subject to the
vertical height measured in the 2D image as a new feature, termed the nominal
height ratio, FNygR.

For estimating the true height of the detected person, consider a reference
height given by the line segment AgBy, shown in figure 2l This vertical segment
can be defined based on the first occurrence of the detected person blob in a
video. The goal is to estimate the height of the same person when the person
moves from position By to By on the ground. Using projective geometry, we de-
termine the vertical vanishing point and horizontal vanishing line in the imaged
scene [20]. The line segment Ay By formed by the person standing at position By
on the ground will be parallel to line segment A, By formed by the person stand-
ing at position B; on the ground. By extension, line segment AgA; and ByB;
will also be parallel. Under camera projection, line segment AgBy and A; By will
intersect at the vertical vanishing point Y and line segment AgA; and By By will
intersect at point H on the horizontal vanishing line. Using the reference height,
whenever we detect the point By on the ground, we can determine the point Ay
by simple arithmetic calculations, which gives us the person’s true height A, By,
up to a scale. To calculate the nominal height ratio feature, we use the bounding
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Fig. 2. Estimation of true height based on the estimated vanishing geometry

box around the detected person at position By. Fnxmr is simply given by the
the ratio of bounding box height and the person’s estimated true height.

2.2 Upright Pose Model Projection Error

The second feature proposed in this paper is based on estimation of the 3D pose
of the detected person in the 2D image. We use the POSIT algorithm [21] to
estimate the pose of the detected person in the 2D image. For each detected
region that bounds the person, we determine four 2D points that correspond to
mid-points of the edges of the bounding box. We assume a simple cuboid as the
3D model representative of the person in a standing position. Next, we estimate
a correspondence of the 2D and 3D points by aligning the cuboid to the 2D point
along the bottom edge of the bounding box in the image. Back projecting rest
of the 3D points of the cuboid allows us to estimate the position of the cuboid
in the 2D image.

Let p = {p1,...,pr} be the set of k points within the bounding box in the 2D
image. Further, let P = {Py, ..., P;;} be the set of corresponding points in the 3D
model. Based on the POSIT algorithm [21], the projection of the 3D points in
the image can be given as p = {p1, ..., pr}. This allows us to now compute the
error between the projection of the cuboid and the actual bounding box in the
2D image as the sum of distances between the original points and back-projected
points. The estimated error is normalized by the size of bounding box. Hence,
the upright pose model projection error, Fyyprg, can be given by:

k
1
Fyme = D> (i =)’ 1
UME By, x By i:1(p Di) (1)

where Bj, and B,, are the height and width of the bounding box in the 2D image,
respectively.
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2.3 Height-to-Width Ratio

Height-to-width ratio, Fgwg, is a commonly used feature to recognize human
actions ﬂﬂ, ] This feature is easy to compute once the human silhouette has
been detected in an image. It is simply given by the ratio of the height to width of
the bounding box enclosing the human silhouette. Nonetheless, since the feature
is estimated entirely based on the 2D image information, it is susceptible to
errors due to different body types such as tall, short, wide, etc.

Figure Bl shows a plot of the three features for a representative set of images
taken from a video sequence. Each of the feature is a continuous valued signal. As
can be seen, when a person is ‘walking’, jumping’ or "waving’, Fxgr and Fgwr
has a higher value while Fy g has a lower value. This is quite the opposite when
a person is ’bending’ or ’falling’. Moreover, visual inspection suggests that the
Fynpur is a more stable feature than other two features for each of the actions.
The appropriate treatment of each of these features and their suitability for the
action recognition task at hand is based on the models described in the next
section.

—— Nominal Height Ratio
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Fig. 3. Visualization for three human posture features calculated from representative
video frames

3 Action Recognition

Hidden Markov Model is one of the parametric approaches that can model time-
sequential data, provide time-scale variability, and is effective in learning a par-
ticular temporal problem. HMMs have proved useful in many fields, specially in
speech recognition ﬂﬁ] For a detailed explanation of HMMs, we refer the reader
to the excellent tutorial by Rabiner ﬂﬁ] HMDMs have also been used in recog-
nition of complex human actions that don’t have accurate start and end times.
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As an example, ’bending’ and ’falling’ actions can occur over different time scales
wherein ‘bending’ is potentially an action that occurs over a longer duration as
compared to ’falling’ action. The first work that used Hidden Markov Model for
human action recognition was proposed by Yamato et al. [24]. They successfully
used the HMM with discrete observation symbols to model and recognize tennis
shots.

Broadly speaking, there exists two variations of HMM implementations based
on the nature of observation symbols, either discrete or continuous. Discrete
HMMs require quantization or conversion of a continuous valued input signal
to discrete observation symbols. Many approaches have been proposed to do
s0, including supervised and unsupervised mechanisms such as classification and
clustering. In each case, this imposes additional assumptions on the properties of
the input signal or features. Further, the generation of a comprehensive discrete
vocabulary can be a very challenging problem. On the other hand, continuous
HMDMs can directly model a continuous valued input signal, although the learn-
ing process is much more complicated. Since we are interested in recognizing
continuous actions and the features used in this work are continuous valued sig-
nals, we opt to build HMMs with continuous observation symbols and the input
signal is modeled by a mixture of Gaussians.

In evaluating the human posture features within the HMM framework, we
describe four formulations, each providing a different treatment of the input
features. In the first model, the posture features are considered conditionally de-
pendent and hence are modeled according to their joint probability distribution.
In each of the other three models, the features are considered to be condition-
ally independent allowing for the design of simpler models for recognizing each
action, wherein the contribution of each feature is realized by the fusion of the
distinct simpler models.

In presenting the models, let us define the following notations. Let E =
{e1,...,enr} be the set of M actions to be recognized, V = {vy,...,v:} be the
frames of the input video of length t, o, = [F}}, ..., FN]T be the N features ex-
tracted from frame vy, and O = {01, ...0; } be the sequence of observation symbols
for the input video.

In general, the Hidden Markov Model can be defined as A = {A, B, 7}, where,
A is the state transition probability distribution, B is the observation symbol’s
probability distribution for a given state, and = is the initial state distribution.
For each action e € E, we build an HMM \¢ and estimate the model parameters
(A, B, ) that optimize the likelihood of the corresponding training observations.
With these trained parameters, for a sequence of video frames V' with unknown
actions to be recognized, we extract posture features O and estimate the like-
lihood of the observation belonging to action e. Using the likelihood, P(O|A¢),
estimated across all HMMs for each possible action e € F, we select the action
with the highest probability, given as:

e* = argmax P(O|)\°) (2)
ecll
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The Baum-Welch algorithm |23, 25] is used to train the HMM for each action and
estimate the optimal model parameters. During HMM training phase, parame-
ter initialization is a very important stage that affects the model performance.
Initial parameters estimated would be ideal if the the local and global maxima
of the likelihood function computed would be the same. Unfortunately, there is
no simple way for initialization of HMM parameters, and randomization does
not always give the optimal solution in training HMMs. In our work, we use
a preprocessing step that manually segments the observation into states to get
a good initial estimate of model parameters. The observation itself is modeled
by a mixture of Gaussians to parameterize the observation symbol distribution.
The probability density function of sequence observation O is given as:

C
p(O) = Z ch(Ua Ec) (3)

where N is the normal distribution with mean u. and covariance Y., C' is the
number of Gaussians, and w, are the mixing weights for each Gaussian. For ac-
tion recognition task, the Viterbi algorithm [23] is used to estimate the best state
sequence given observation. Each action model is scored for a given observation
and the action with the highest probability is selected as the recognized action.

3.1 Continuous Action Constraint

In a continuous action recognition task, the transition between actions is often
constrained. Consider the example of a person walking and tripping, resulting
in a fall. One logical evaluation of this event would result in actions "walking’,
followed by ’bending’, and ’falling’. It would not be possible to observe ’falling’
without first observing ’bending’. Hence, ’bending’ constitutes a transition con-
straint between ‘walking’ and ’falling’. Figure [ pictorially represents this tran-
sition constraint among actions to be recognized. To effectively incorporate this
constraint, we propose a modification to the traditional HMM framework, similar
to grammar constraint in connected word recognition [23].

3.2 Posture Features with Continuous Action Constraint: A
Baseline Model

A critical issue in implementing HMMs is the choice of how the features are
being modeled. The features can be combined as one feature vector modeled
as a mixture of Gaussians or the features can be modeled separately leading
to multiple HMM models. In the latter case, the output of multiple HMMs has
to be fused to recognize one action. In this subsection, we outline our baseline
design that combines all features as one vector and integrates the model with
Continuous Action Constraint, as described in figure Bl For simplicity, we will
refer to this design as HM Mpase. The Continuous Action Constraint is incor-
porated by simply adding a binary weight vector @ of dimension M for the M
HMM action models. Given the observation O, using Viterbi algorithm we find
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Fig. 4. Continuous Action Constraint

the optimal state sequence. Then, we compute probability of observation given
each model P(O|\¢). The action at time ¢ is decided by selecting the maximum
weighted probability:
ej = argmax [af P(O|\%)] (4)
ecE
where of is the weight of HMM model for action e at time t and is controlled
by:

af =1if e;_; and e are in order (5)

af = 0if ej_; and e are not in order

F_NHRY !
F_HWR
F_UME

Feature

Vector

Action

Decision Action

Fig. 5. Baseline HMM model with Continuous Action Constraint

3.3 Fusion Models

Joint modeling of high-dimensional feature vectors can often result in higher
model fitting errors [16]. Hence, reducing feature dimensions by modeling them
as independent observations can decrease the fitting error and may enhance
performance of the HMMSs. It is common to observe that certain features are good
to describe some actions while others are not, and we may not effectively leverage
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or learn this information if we combine all the features. For these reasons, we
consider a fusion of models framework that treats each feature independently
and a fusion module is used to combine the resulting output probabilities for a
final recognition of action.

Consider a set of N features F' = F!, ..., FN. With actions we have denoted
above, lets define HMMs )\ii to model human action e; € E for each feature
F' 1 <i< N .Asaresult, we will have M x N HMMs for the M actions. The
framework integrated with Continuous Constraint Action is as shown in figure[l
For each feature, using the Viterbi algorithm, we can calculate the probability

HMM for F_NHR Feature

Combined Probability a;

I
1
]
]
I
Nominal > y
— Height T for Walking |
Ratio h
1
I:
1
|

Combined Probability
for Jumping

Combined Probability
for Waving

Action

s Action —»
Decision

Combined Probability
for Bending A

Upright

- Model Combined Probability

for Falling

Fig. 6. Multiple HMM models within a fusion framework with Continuous Action
Constraint

of single feature observation, P(O|\%,), given by each model. Now with M x N
normalized probability outputs, we propose four fusion mechanisms to obtain a
final decision; the first based on the sum rule, the second based on the product
rule, the third based on the weighted sum rule, and the fourth based on the
weighted product rule |26], resulting in models that we denote as HM Mgym,
HMMp,oq, and HM My sum, and HM My prod, respectively.

Sum Rule: For the decision based on the sum rule, we compute the sum of
all probabilities as Zfil P(O\)\;’;),l < j < M,1<i< N, and the action
recognized is given by:

N

e; = arg max [afZP(OP\E Dl (6)
eclE i=1

where of is the weight of HMM model for action e at time t, controlled by the
Continuous Action Constraint.
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Product Rule: Similarly, for decision based on the product rule, we compute
all product of probabilities as Hf\il P(O\A;’;), 1<j<M,1<i< N, and select
the action that has maximum product probability as:

N
¢ = argmax [of [] POOPG) 7)

ecE =1
Weighted Sum Rule: While the fusion of probabilities computed by each
HMM can be beneficial, it does not allow one to evaluate the merit of each con-
tribution. This can easily be incorporated by introduction of weights associated
with each HMM for each action. Hence, the fusion model can now be formulated

according to the weighted sum or product rule [26].

Let & = {99, ..., % } be the set of weights associated with each of the N HMMs
for each action e. For the decision based on weighted integration, we compute the
sum of all weighted probabilities as Zfil ¢ij(O|)\;ji), 1<j<M1<i<N,
and the action recognized is given by:

N
e = argmax [af 3 6£ P(O[AG ). (8)

ecE i—1
Weighted Product Rule: Similarly, for the weighted product model, the ac-
tion is recognized based on computing the product of exponential weighted prob-

I
abilities as Hfil P(O\A?i)¢‘ ,1 < j < M,1 <i< N.Hence, the final action
recognized is given by:

N
ej = arg max [of HP(O|)\6 %) 9)
eeE i=1

4 Experiments and Results

In evaluating the human posture features within the implementation of different
HMM formulations, we address the task of recognizing five actions, 'walking’,
‘bending’, ’jumping’, ‘waving’, and ’falling’ on real data sets acquired within
an indoor environment. A total of 17 videos (over 7200 frames) are including
in our dataset. 3 videos are used for the purpose of training the parameters
of the different HMM models for each action. In addition, 3 other videos are
used for validating the models and estimating the contribution (weights ¢) for
each HMM model set for the weighted sum formulation H M My syum, and the
weighted product formulation H M My proq. The remaining 11 videos are used
for testing. We use the mixture of Gaussians model for learning the background
and detecting the foreground blobs. Detected blobs are morphologically pro-
cessed to establish a bounding box. A Kalman filter based tracker is used track
the blob where the tracker uses the blob centroid, and the height and width of
the bounding box as the state variables. To establish ground-truth, each frame
in all videos is manually annotated.



254 K. Tran, I.A. Kakadiaris, and S.K. Shah

WALKING WALKING |88 WALKING | -

BENDING | . BENDING | BENDING | .

FALLING FALLING FALLING

JUMPING JUMPING | . JUMPING |

WAVING | . WAVING | WAVING | .

n, & Ry 4y, A W, S, Ry Ay, M
Mo, %y M, Y, e % Mo, %y Mo, Y,
it Ony s P ROCHRCHCR it On s P

Fig. 7. Confusion matrix showing the accuracy at frame level of recognized actions for
individual posture features

One of the key parameters in the design of an HMM is the length of the
observation symbols. For a continuous action recognition problem, this cannot be
known a priori, we empirically estimate this based on the training and validation
videos. During training, we vary the length of observations from t,,;, t0 tmas
for all HMM models simultaneously and pick the optimal observation length as
the one that results in the most accurate recognition of actions in the validation
videos. The benefit of a large window size is that the action to be recognized
will be modeled more accurately, resulting in a higher recognition accuracy. The
limitation on the other hand is that this will result in an increase in the delay
between the actual action performed and its recognition by the system.

Among the fusion models evaluated in this paper, the weighted models require
that each set of HMMs trained for a single posture feature be evaluated for its
contribution towards the final action recognition. To do so, we evaluate the
accuracy of the set of HMMs per feature on the validation videos. Accuracy
is measured by comparing the recognized action for each frame of the video
against the manually annotated ground-truth. Figure [1 shows the computed
accuracy for HMM models that use a single feature as input. The weights used
for the weighted models, H M My syum and H M My proq, are simply the accuracy
of correctly recognizing each action for each of the three independent feature
models.

4.1 Analysis of Features and Models

Having estimated the parameters for each of the different models, the accu-
racy of recognizing actions was computed based on testing across the 11 testing
videos. Table [[l summarizes the results and figure [ shows the confusion matrix
for each of the models. Accuracy was calculated in terms of the frame error
rate, the frame delay in recognizing an action, action recognition rate, and the
missed and false recognition rates. Frame error rate was calculated by simply
measuring the number of false recognized actions per frame. On the other hand,
action recognition rate is reported based on the actual number of action transi-
tions detected against the number present in the input video. The best action
recognition rate obtained by a single feature model is 91.91%, one based on the
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Table 1. Results indicating accuracy of the four different models across the testing
dataset

Model Frame Err. Rate Frame Delay(s) Action Recog. Rate Missed /False Rate
HMMpy,, 17.24% 5.2 91.91% 1.57%
HMMpy,, — 41.64% 6.31 82.41% 2.78%
HMMrp,,, . 42.66% 5.11 85.84% 2.43%
HMMBase 29.63% 3.67 91.91% 1.04%
HMMsum 21.39% 3.43 97.13% 0.70%
HMMproaq 17.14% 3.50 98.03% 0.61%
HMMw sum 16.91% 3.24 99.07% 0.52%
HMMw prod 16.43% 3.17 99.22% 0.35%

nominal height ratio. While all the three features perform reasonably well and
show some correlation, there is still sufficient variability as seen based on their
frame error rates that is effectively exploited by the fusion models. As a result,
the the fusion models outperform any individual feature and the base model that
simply uses them as a vector of features performs at par with the best feature
model. The sum and the product model show an increase in the recognition rate
as well as a drop in the frame error rates suggesting their ability to appropriately
exploit the diversity in the features. The weighted models account for errors as-
sociated with continuous recognition at each frame and show a corresponding
increase in the overall action recognition rate. The best performing model is the
weighted product model that shows 99.22% recognition rate with a frame error
rate of 16.43%. In general, the Viterbi algorithm requires the full observation

WALKING WALKING  [:#4 WALKING

BENDING | . BENDING | . BENDING | .

FALLING FALLING FALLING

JUMPING | .06 ! JUMPING | . JUMPING | .

WAVING | .01 WAVING | .| WAVING | .
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BENDING | | BENDING | .
FALLING FALLING
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Fig. 8. Confusion matrices showing the frame level action recognition accuracy for the
different HMM models
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sequence to calculate the probability of observation given the model before back-
tracking to resolve the complete sequence. During training, we optimize for this
delay and the results on the testing videos show that the recognition delay is, on
average, 3 to b frames across all models. For an input video at 30 frames/second,
this amounts in a delay of =~ 0.1-0.2 seconds.

5 Conclusion

In this paper, we have presented a system for the continuous recognition of
human actions and evaluated the same for a set of actions in an indoor environ-
ment. We have proposed human posture features and focused on their treatment
in the context of Hidden Markov Models, specifically for the recognition of ac-
tions within a real-time or online constraint. We use a baseline approach wherein
disparate spatial features are treated as an input vector to each HMM trained
to recognize one of many actions. We evaluate the baseline approach against
a more independent treatment of the input features. The different treatments
of input features and fusion methods are compared and evaluated. Overall, the
obtained results demonstrate the benefit of each of the human posture features
and, more importantly, the gain of treating the features as independent obser-
vations, thereby maximizing the redundancy and diversity of information. The
result also shows that the independent feature models, HM Mgym, HM Mp,.oq,
HM My sum, and HM My proq are more stable and accurate. The fusion models
HMMgym and HM Mp,.,q clearly outperform HM Mpgse.
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