
Efficiently Managing Multimedia Hierarchical Data
with the WINDSURF Library�

Ilaria Bartolini, Marco Patella, and Guido Stromei

DEIS, Università di Bologna, Italy
{i.bartolini,marco.patella,guido.stromei}@unibo.it

Abstract. Complex multimedia data are at the heart of several modern appli-
cations, such as image/video retrieval and the comparison of collection of doc-
uments. Frequently, such complex data are modeled as hierarchical objects that
consist of different components, like videos including shots, images including
visually coherent regions, and so on. When such complex objects are to be com-
pared, for example, for assessing their mutual similarity, this is usually done by
recursively comparing component elements. However, due to such complexity, it
is often hard to efficiently perform a number of tasks, like processing of queries
or understanding the impact of different alternatives available for the definition
of similarity between objects. In this article, we propose a unified model for the
representation of complex multimedia data, introducing the WINDSURF software
library, with the goal of allowing a seamless management of such data. The li-
brary provides a framework for evaluating the performance of alternative query
processing algorithms for efficient retrieval of multimedia data. Important fea-
tures of the WINDSURF library are its generality, flexibility, and extensibility.
These are guaranteed by the appropriate instantiation of the different templates
included in the library: in this way, each user can realize her particular retrieval
model of need.

1 Introduction

Despite their ubiquitous and prominent role in nowadays life, Multimedia (MM) informa-
tion still present a variety of challenges for their effective and efficient retrieval. Among
these, the extraction of content and its subsequent indexing represent two of the most
analyzed areas of research. However, the inherently complex nature of some multimedia
data (like videos, images, web pages, and so on) makes it hard to exploit out-of-the-box
solutions that were devised for simpler scenarios (e.g., textual documents). Indeed, in
many MM cases the classical information retrieval (IR) models cannot be applied with-
out either oversimplifying the type of queries that can be issued by an user or completely
giving up efficiency or effectiveness. An example, that arises in several MM scenarios,
is that of MM documents that are composed of several component elements. Requesting
documents that are relevant to a given query documentQ entails retrieving elements that
are relevant to Q elements, and then somewhat combining the results at the document
level. This hierarchical structure of documents is general enough to be able to model

� This work was partially supported by the CoOPERARE MIUR Project.

M.S. Obaidat, J.L. Sevillano, and J. Filipe (Eds.): ICETE 2011, CCIS 314, pp. 347–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

348 I. Bartolini, M. Patella, and G. Stromei

different MM IR applications, but poses some peculiar challenges due to its very nature:
for example, how are document elements compared to query elements? how the rele-
vance of elements is aggregated in order to assess the relevance of whole documents? is
indexing of whole documents a possible choice? in case, is it a better choice than index-
ing elements? Above questions recur whenever the hierarchical model is applied for the
retrieval of MM documents; however, answers cannot be given independently from the
application at hand, since each particular scenario presents its peculiarities. When en-
hancing differences among applications, we should however note that several affinities
are still present and that solutions proposed for a particular scenario could be applied to
other similar scenarios as well, provided that the underlying model is the same.

In this paper, we present the WINDSURF library for management of MM hierarchi-
cal data, with the goal of providing a general, flexible, and extensible software frame-
work for analyzing the impact on performance of the different aspects included in its
retrieval model. In particular, the library presents an emphasis on query processing tech-
niques, offering different index-based algorithms for the efficient resolution of similar-
ity retrieval queries, where documents are requested whose content is (in some sense)
similar to that of the query. Indeed, it turns out that algorithms included in the WIND-
SURF library have a wide range of applicability and can therefore be helpful for a va-
riety of scenarios. We expect the library to be particularly useful to those researchers
that have to analyze how different alternatives in the representation/comparison of ele-
ments/documents interact in providing different effectiveness/efficiency performances,
without the burden of defining ex-novo algorithms for retrieving query results. We also
note that processing of similarity queries may not be the main goal of the application
at hand, rather it could be just a component of a more complex system: as an exam-
ple, TRECVID 2011 (http://trecvid.nist.gov/) includes several tasks call-
ing for efficient retrieval of similar video shots. For instance, the semantic indexing
(SIN) task involves the automatic tagging of video segments in order to perform filter-
ing, categorization, browsing, and search (this is commonly performed by associating
the same tags to shots sharing similar visual/audio content [4]); the content-based copy
detection (CCD) task, on the other hand, aims to automatically detect copies of video
segments, which clearly can be based on the retrieval of similar video content.

We first precisely define the hierarchical retrieval model of WINDSURF (Section 2),
by also presenting real-world examples of its use, and provide a general view of the
library (Section 3), including its query processing algorithms (Section 4). Then (Sec-
tion 5), we show how the library can be customized so as to behave according to the
requirements of the particular application at hand and we provide examples of use of the
library in the Region-Based Image Retrieval (RBIR) scenario (Section 6): this was the
original application scenario of the library and also justifies its name (WINDSURF stand-
ing for Wavelet-based INDexing of imageS Using Region Fragmentation [1]). Finally,
we draw our conclusions, by also highlighting future directions of research (Section 7).

2 The WINDSURF Retrieval Model

The retrieval model of WINDSURF is as follows: we have a database D of N docu-
ments, D = {D1, . . . , DN}, where each document D is composed of nD elements,

Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library 349

D = {R1, . . . , RnD}. Each element R is described by way of features that represent,
in an appropriate way, the content of R. Given a query document Q = {Q1, . . . , Qn}
composed of n elements, and an element distance function δ, that measures the dissim-
ilarity of a given pair of elements (using their features), we want to determine the set of
best documents in D with respect to Q.

The above formulation of the problem is sufficiently general to encompass different
retrieval paradigms, each having a different way of specifying which documents are to
be considered “best” for the query at hand: this can be demonstrated by applying the
WINDSURF retrieval model to some real world examples.

Example 1. Our first example deals with the comparisons of web sites. In this case, each
element R is a web page contained in a web site D and we want to discover whether
a new web site Q is similar to some existing web sites in our database D. Comparison
between web pages is performed by taking into account contained keywords, e.g., by
using the vector space model [18], so that features extracted from each page include
keywords using tf × idf values after stopping & stemming (see Figure 1).

k1

k3

k2 k2

k4

k1

query web site query page DB page DB web site

page distance δ

Fig. 1. Comparing web sites

Example 2. In RBIR, the D database consists in still images that are segmented into
regions, where pixels included in a single region R share the same visual content (e.g.,
color & texture). Image regions are compared according to their visual features and we
want to retrieve images that are similar in content to a user-specified query image Q
(see Figure 2).

Example 3. As a third example, we consider the comparison of videos based on simi-
larity, where each video D is first segmented into shots, i.e., sequences of video frames
that are coherent in their visual content. Then, each shot R is represented by a sin-
gle key frame (this can be either the first frame of the shot, or the middle one, or the
medoid of shot frames), so that shots can be compared by means of a simple image
similarity function. Finally, we can compare whole videos by aggregating the similari-
ties between shots (see Figure 3). Note that different applications (like duplicate video
detection) might impose different constraints on the “matching” of video shots, e.g., re-
questing that only shots of similar length can be coupled or that shots that are shown in
very different moments cannot be matched; clearly, this has an impact on the computa-
tion of similarity between videos, thus a researcher might be interested in investigating
the effect of such constraints on the result of a query requesting for, say, the 5 videos
most similar to a given query video Q.

350 I. Bartolini, M. Patella, and G. Stromei

DB image regions

region distance δ

query regionsquery image DB image

Fig. 2. Comparing segmented images in Region-based Image Retrieval

cut
shot B1

cut
shot B2

cut
shot B3

cut
shot A1

cut
shot A2 shot A3

shot B4

video B

video A

Fig. 3. Comparison of videos based on video shots

For the rest of the paper, we will assume as given the way documents are divided into
elements (e.g., the image segmentation algorithm in Example 2, or the shot segmen-
tation of videos in Example 3), the features used to represent such elements, and the
(element) distance function δ, being understood that similar elements will have a low δ
value: our focus here is to demonstrate how different retrieval models can be enclosed
by the WINDSURF model, thus proving its generality.

Another important factor to be considered is the definition of the query result, i.e.,
how the best documents wrt Q are specified. Indeed, different applications typically
have different ways of assessing the similarity between documents, given the similari-
ties between component elements. In WINDSURF, two different retrieval modalities are
supported: quantitative (k-NN) and qualitative (Skyline).

– In the k Nearest Neighbor (k-NN) quantitative model [14], similarity between
documents is numerically assessed by way of a document distance function d that
combines together the single element distances into an overall value. Consequently,
documentDa is considered better thanDb for the queryQ iffd (Q,Da) < d

(
Q,Db

)

holds and the query result consists of the k DB documents closest to the query.

Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library 351

– As an alternative to the quantitative model, the qualitative (Skyline) model does not
rely on the specification of a numerical value, according to which DB documents
can be sorted for decreasing values of similarity wrt to the query, rather document
Da is considered better than Db for the query Q iff Da does no worse than Db

on all query elements and there exists at least one query element on which Da is
strictly better than Db. This necessarily includes those documents that would be the
best alternative according to some specific document distance function [8].

Regarding k-NN queries, it has to be noted that, usually, the computation of the docu-
ment distance d is obtained by combining three basic ingredients:

1. the element distance δ,
2. the set of constraints that specify how the component elements of the query Q have

to be matched to the component elements of another (database) document D, and
3. the aggregation function that combines distance values between matched elements

into an overall document distance value (e.g., a simple average of distance values
between matched elements).

Often, the overall document distance is computed by aggregating scores of the best
possible matching, i.e., the one that minimizes the overall document distance; in this
case, the computation of d also includes the resolution of an optimization problem in
the space of possible matchings between elements of Q and elements of D. We finally
note that the result of any query depends on the combination of all three ingredients,
so that changing one of them might lead to completely different results. As we will
show later, the characteristics of the overall document distance also determine which
algorithms can be used to efficiently solve the k-NN query.

As to the Skyline retrieval model, our definition of domination among documents
follows the one described in [3] for the case of segmented images. Intuitively, the con-
cept of domination is defined for tuples, while here we are considering sets of elements;
thus, the dominance criterion needs to be properly extended to deal with this additional
complexity in the structure of objects to be compared. For this purpose, each document
can be defined as the set of possible matchings of its elements with query elements, each
matching being a tuple of distance values between a query element Qi and its matched
element of D, Rj . The domination between matchings can be then straightforwardly
defined. Finally, domination between documents is built on top of the concept of dom-
ination between matchings, stating that a document Da dominates another document
Db wrt the query Q iff for each matching of Db there exists a matching of Da that
dominates it.

2.1 Alternative Retrieval Models

Albeit the WINDSURF retrieval model is sufficiently general to encompass the charac-
teristics of several multimedia scenarios, see [10] for a recent example, it is interesting
to note its analogies with other different models. For example, the Bag of Words (BoW)
model for computer vision [7] represents images as sets of patches (these are similar to
elements in WINDSURF). Then, all patches included in any DB image are converted into
codewords, where each codeword is representative of several patches. This produces a

352 I. Bartolini, M. Patella, and G. Stromei

codebook and each image can be described as the set of codewords representing its
patches. In this way, the retrieval models used for textual documents [18] can be di-
rectly applied for images, since the codebook is equivalent to a dictionary. The difficult
part here is the generation of the codebook (how many codewords? how to compare
patches?).

We also note that our k-NN retrieval model also includes those cases where the im-
age distance d also considers global characteristics; for example, this is the case when
the particular d to be used for a given query is learned by exploiting side informa-
tion [19,10].

3 Overview of the WINDSURF Library

The WINDSURF library is written in Java and is released under the “QPL” license, be-
ing freely available at URI http://www-db.deis.unibo.it/Windsurf/ for
education and research purposes only. It consists of five main packages, each focusing
on a section of the main architecture.

Document: the Document package includes the definition of classes modelling doc-
uments, elements, and features. It also contains the specification of the element
distance δ and (possibly) of the document distance d.

FeatureExtractor: the FeatureExtractor is the component in charge of extract-
ing the features from a given document. This is performed in two steps: first the
document is decomposed into elements (segmentation), then features are computed
for each element (extraction).

QueryProcessor: the QueryProcessor (QP) is the component that solves queries
over document features. It contains algorithms for the efficient resolution of both
k-NN and Skyline queries, by exploiting the presence of indices built on document
features. In case indices are not available, the package also incorporates sequential
algorithms for solving queries.

FeatureManager: the FeatureManager (FM) is the component in charge of stor-
ing/retrieving the document features from the DB, providing an abstraction from
the underlying used DBMS. In order to achieve an efficient management of fea-
tures, these can be saved into a relational DBMS (in particular, the WINDSURF

library includes code for using the MySQL1 RDBMS).
IndexManager: the IndexManager (IM) package contains classes managing the

feature indices. These can be exploited by the QP for the efficient resolution of
queries over the features (see Section 4). WINDSURF supports indices built on top
of both elements and documents: as we will see in the following, this allows the def-
inition of alternative query processing algorithms. In particular, an implementation
of the M-tree index [6] is included.2

Figure 4 provides an abstract view of how packages of the library cooperate during the
insertion and the retrieval phase. When a new document is to be added to the document

1 http://www.mysql.com/
2 For efficiency reasons, the implementation of M-tree is written in C++.

Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library 353

Document Elements

FeatureExtractor

FeatureManager IndexManager

Features
DB Feature index

(a)

Query
document

Query
elements

FeatureExtractor

FeatureManager IndexManager

Features
DB Feature index

QueryProcessor

Query results

(b)

Fig. 4. Data flow in the WINDSURF library: (a) insertion phase, (b) retrieval phase

database (Figure 4 (a)), it is first processed by the FeatureExtractor package
which breaks it into component elements and extracts elements’ features. These are
then forwarded to the FM and IM components that store the features in the features
DB and the features index, respectively. On the other hand, at query time (Figure 4 (b))
features extracted by the FeatureExtractor are fed into the QP component, whose
algorithms exploit the Feature and Index managers in order to pick query results out.

4 Query Processing Algorithms

Our main goal in designing the WINDSURF library was the performance comparison of
different algorithms for the retrieval of complex documents, in terms of both efficiency
and effectiveness. In this view, the core of the library consists of the QP component, that
presents alternative algorithms for the resolution of queries. Regarding efficiency, QP
algorithms might exploit indices built on features in order to avoid a full sequential eval-
uation, a non viable solution for large document DBs. Our arguments will be developed
independently of the specific index; rather, we will refer to a generic distance-based

354 I. Bartolini, M. Patella, and G. Stromei

index, i.e., any index that relies on the computation of distances to return back objects.
Distance-based indices include both multi-dimensional [9] and metric [5] indices, rele-
vant examples of which are the R-tree [11] and the M-tree [6], respectively. To be useful
for our purposes, distance-based indices should also provide a sorted access interface,
i.e., to output data in increasing order of distance with respect to the object with which
the index is queried: this is quite common, thanks also to the existence of algorithms of
general applicability [12,13]. Depending on the used algorithm, indices in the WIND-
SURF library might be built on either elements (for which the element distance δ is used
for indexing purposes) or whole documents (where indexing is based on the document
distance d).

In order to evaluate the efficiency of each query processing algorithm, all classes
provide statistics about relevant operations, including:

Document distances: the number of distance evaluations among documents (only rel-
evant for k-NN queries); this is considered a costly operation, since it typically
involves comparing several component elements and combining them in order to
produce the overall score (as said, the latter might also require solving an optimiza-
tion problem).

Element distances: the number of distance evaluations among elements; depending
on the number of features and on the element distance function δ, this too might be
a costly operation.

Sorted accesses: the number of accesses to the underlying element index; as we will
show, some algorithms exploit an index built on document elements, that is used
to sort DB elements in order of increasing distance values with respect to query
elements. A sorted access returns a single DB element and requires the index to
perform some computations.

Document dominations: the number of comparisons among documents in order to see
whether a document dominates another one (Skyline queries only); again, this is a
costly operation since it might require comparing several matchings.

Time: the overall time needed to solve a single query; this can be also detailed by
considering the time needed for retrieving features from the DB, accessing the
underlying indices, computing document distances, or comparing documents for
domination.

The QP includes efficient algorithms for the efficient resolution of both k-NN and Sky-
line queries [3]. Each algorithm will be described here in general terms, by specifying
under which hypotheses it is able to correctly solve a query.

SEQ. This sequential k-NN algorithm (QueryProcessor.SF.QuerySFSequential
class) retrieves all documents in D and compares them with Q, by using the document
distance d. Only the k best documents, i.e., the ones having the lowest d values, are kept
and returned as the query result. No specific requirement on d or δ is needed, since the
algorithm simply follows the definition of k-NN query.

k-NN-set. This index-based k-NN algorithm (QueryProcessor.SF.kNNset.kNNset
class) exploits an element index TR to reduce the number of document and element

Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library 355

distances to be computed [3]. The k-NN-set algorithm iteratively alternates sorted ac-
cesses to the index TR to retrieve DB elements with random accesses that compute a
document distance d (Q,D) between the query and the document whose element has
been retrieved by the last sorted access. In this case, document distances are computed
only during the random access phase, while element distances can be computed within
the index and during each random access (since distances between all elements of both
Q and of D might be required to compute d (Q,D)).

The algorithm applies to any document distance function d that can be bounded
from below, i.e., for those d such that if, for document D = {R1, . . . , RnD} and query
Q = {Q1, . . . , Qn}, it is δ (Qi,Rj) ≥ θi, ∀i, j, then a function T exists such that
d (Q,D) ≥ T (θi). This is required to guarantee correctness of the provided result: it
means that, for a document Da whose all elements are “closer” to query elements than
all those of another document Db, it is also d (Q,Da) ≤ d

(
Q,Db

)
. Indeed, since the

underlying index TR provides DB elements in order of increasing distance to query
elements (sorted access), the algorithm cannot terminate until it is guaranteed that no
document yet to be seen in a sorted access is closer to Q than the best k documents seen
so far.

k-NN-imgIdx. This k-NN algorithm (QueryProcessor.SF.ImgIdx.QuerySFIndex
class) exploits a document index TD . Since, for hypothesis, TD supports sorted ac-
cesses, the k-NN-imgIdx algorithm simply performs k of such accesses to return the
query result. We note here that multi-dimensional access methods cannot be used to
index whole documents, because a document is a set (and not a vector) of elements,
thus metric indices are needed for this purpose. It then follows that the distance d used
to compare documents should be a metric.

Sky-set. This is the only index-based Skyline algorithm included in the WINDSURF

library (QueryProcessor.Skyline.Skyset.Skyset class) and uses an ele-
ment index TR [3] (the Skyline retrieval model cannot be supported by document in-
dices, because a document distance function is not defined in this case). Similar to the
k-NN-set algorithm, Sky-set resorts to sorted and random accesses; the main differ-
ence with k-NN-set is that, after each sorted access, no document distance is computed,
rather the newly accessed document D is compared for domination with documents in
the current solution, possibly leading to drop some current results or D itself. The cor-
rectness of Sky-set follows from the very definition of domination among documents
and the use of a threshold tuple θ. In fact, unseen documents will only contain elements
whose distance values are higher than those included in θ: it follows that any document
D which is not dominated by θ cannot be dominated by any unseen document, thus it
can be output as a Skyline result. We finally note that, although our definition of the
result of a Skyline query only include undominated documents, Sky-set is able to it-
eratively return results in layers [2]: according to this definition, documents in a layer
are not dominated by any document, except by documents in previous layers (for each
document D in layer i and for all j < i, it exists at least a document D′ in layer j that
dominates D).

356 I. Bartolini, M. Patella, and G. Stromei

5 Customizing the Library

The WINDSURF library includes abstract and general classes able to represent any ap-
plication following the retrieval model described in Section 2. As stated in the intro-
duction, one of the basic features of the library is its generality and ability of being
customized to cover a broad range of application scenarios. In this section we first de-
tail how a user of the WINDSURF library can instantiate classes so as to implement her
specific needs, then describe some possible customizations.

In order to correctly exploit the library, a user has to follow five basic steps:

1. Extending the Document and Element classes within the Document package.
For this, the user has to specify the format of features that represents documents
and document elements. In particular, the element distance δ is modelled by the
distance method in the Element class, while the document distance d is (pos-
sibly) implemented by the distance method in the Document class.

2. Implementing classes in the FeatureExtractor package for analyzing doc-
uments, in order to break them into their component elements and extract their
features.

3. Writing classes in the FeatureManager and IndexManager packages for
storing/retrieving document/element features to/from the underlying DBMS and
indices.

4. Building the DB and the indices containing documents and elements. This is per-
formed by way of the insert method within the FeatureManager and
IndexManager classes, that save features of a single Document within the
DB/index, according to the insertion logic depicted in Figure 4 (a).

5. Querying the DB (possibly exploiting indices) by creating an instance of the Query
class within the QueryProcessor package. Such object (which is built using a
single Document) could be used in conjunction with any of the algorithms listed
in Section 4, see Figure 4 (b).

Although the previously listed steps are the only ones required for the basic use of
the library, advanced users may require additional, more sophisticated, customizations.
Most commonly, these will affect classes in the following packages.

FeatureManager and IndexManager packages: The library already includes
generic code for using the MySQL DBMS and the M-tree [6] index (a template-based
C++ library itself), but other implementations of the generic abstract classes for features
management are possible. It is worth noting that, as stated in Section 4, separate index
structures should be provided for the management of documents and elements, and that
such indices should support the sorted access interface: this is required by the k-NN-set
and the Sky-set algorithms, but also allows the retrieval of documents/elements using
k-NN or range queries [21].

QueryProcessor package: This package contains the implementations of algo-
rithms described in Section 4, but also allows the specification of other aspects of doc-
ument retrieval using either the k-NN or the Skyline model. Particularly important is
the QueryProcessor.SF sub-package, containing the implementation of several

Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library 357

alternatives for the computation of the document distance d via the use of scoring func-
tions. The library already implements four of such functions, that will be detailed in the
following.

Earth’s Mover Distance (EMD): using the EMD scoring function [17], elements of
the documents to be compared are matched in a many-to-many modality. The
“amount” of matching of any element is limited to the “size” of such element (for
example, in the case of image regions, this equals the fraction of image pixels in-
cluded in the region at hand); the average of best-matched elements is used as the
aggregation function, thus defining an optimization problem that corresponds to
the well-known transportation problem, which can be solved in O(n3 logn) time.
It is easily proved that a document distance d defined in this way is a metric and
can be bounded from below, thus it could be exploited by algorithms described in
Section 4.

IRM: the IRM scoring function used by the SIMPLIcity RBIR system [20] is based on
a greedy algorithm (with complexity O(n2 logn)) that obeys the same constraints
and uses the same aggregation function (i.e., the average) as EMD. Consequently,
the document distance computed by IRM is never lower than the one of EMD: this
also implies that IRM can be also bounded from below (although with a looser
bound wrt the one for EMD) but it does not satisfy the metric postulates.

1− 1 Assignment: in this case, which is the one originally exploited by the WIND-
SURF RBIR system [1], each element of a document can be only matched to at
most one element of the other document, and vice versa. Then a “biased” average
is used to aggregate distance values of matched elements, so as to appropriately
penalize documents that do not match all the query elements. This defines an as-
signment problem, which can be solved using the Hungarian Algorithm in O(n3)
time [16]. Again, it is easy to see that this document distance can be bounded from
below but is not a metric.

Greedy 1− 1: this last scoring function is computed by way of a greedy algorithm
(whose complexity is O(n2)) for the assignment problem. The corresponding doc-
ument distance is thus never lower than the one computed using the previous func-
tion, is also bounded from below, but is not a metric.

In case the number of document elements, n, is high, above algorithms would be limited
by their super-linear complexity. In such cases, it is likely that the user would specify
alternative (approximate) algorithms, e.g., the pyramid match algorithm detailed in [10].

6 Use Cases

In this section, we demonstrate how the use of the WINDSURF library classes can be
helpful in performing complex tasks over documents that comply with the WINDSURF

model. The case study we consider here is that of a researcher investigating the impact
of the different alternatives offered by the WINDSURF RBIR system (see Example 2).
In particular, she is interested in the efficiency and the effectiveness of the query models
available in the library as applied to the WINDSURF image features, which are detailed

358 I. Bartolini, M. Patella, and G. Stromei

in [1]. Following the five steps enumerated in Section 5, the user has to first implement
classes in the following packages (note that the library already includes such code):

Document package: features for each image region (element) include color/texture
characteristics that are represented by way of a 36-dimensional vector; the region
distance δ implements the Bhattacharyya metric distance [15], while the image
distance d implements all the alternatives included in Section 5, see [3].

FeatureExtractor package: a Haar-Wavelet filter is applied to each image (doc-
ument) and pixels of the filtered image are then clustered together using a K-means
algorithm; so-obtained clusters correspond to image region, whose features are ex-
tracted from visual characteristics of included pixels.

FeatureManager and IndexManager packages: classes are included for stor-
ing/retrieving image/region features to/from the MySQL DBMS and the M-tree
index.

We include here the results of some experiments performed on a real image dataset con-
sisting of about 15,000 color images (corresponding to about 63,000 regions) extracted
from the IMSI collection (http://www.imsisoft.com).

As a first demonstration of use of the library, we compare the effectiveness of the
Bhattacharyya region distance with respect to a simpler Euclidean (L2) distance for
establishing the similarity between region features: this is easily done by simply re-
defining the δ distance within the Document package. Figure 5 shows that the use
of the Bhattacharyya distance is justified by its far superior accuracy with respect to
the Euclidean distance, in spite of its higher cost (almost doubling the time needed to
compute the L2 metric). Although we only present here results for k-NN queries, ex-
periments for Skyline queries (not included here for the sake of brevity) confirm the
trend exhibited by Figure 5. Again, we note that this result can be obtained by sim-
ply redefining the distance method of the Element class within the Document
package.

As another proof of usability of the library, we compared the effectiveness of the
document distances described in Section 5. To this end, the k-NN-set algorithm was
repeatedly executed with the different d distances. We obtained the results shown in
Figure 6. It can be seen that all image distances behave almost the same, with the re-
markable exception of the Greedy 1 − 1 alternative, whose accuracy is very low for
the first retrieved results. This result, which has been obtained with no cost, since all
alternatives are already available within the library, may suggest that a choice between
the first three alternatives should be based on efficiency considerations only.

Finally, we show a result of the performance comparison for the three index-based
algorithms described in Section 4: Figure 7 compares the efficiency of k-NN-set (using
both the EMD and the 1−1 document distance), k-NN-imgIdx (using EMD), and Sky-
set according to 4 different performance metrics, as described in Section 4. It is worth
noting that k-NN-imgIdx performs the worst among considered algorithms: this might
sound strange at first, since only k sorted accesses to the document index are needed and
no computation is done outside of the index itself, but this is not enough to compensate

Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library 359

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30

P

k

Bhattacharyya

Euclidean

Fig. 5. Effectiveness of different element distance functions for the RBIR case: Precision (P) as
a function of the number of retrieved documents (k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30

P

k

EMD
IRM
1-1
Greedy 1-1

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

P

krel

EMD
IRM
1-1
Greedy 1-1

(b)

Fig. 6. Effectiveness of different document distance functions for the RBIR case: Precision (P)
as a function of the number of (a) retrieved documents (k) and (b) relevant retrieved documents
(krel)

0%

20%

40%

60%

80%

100%

120%

doc. distances elem. distances sorted
accesses

time

k-NN-set (1-1) k-NN-set (EMD) k-NN-imgIdx Sky-set

Fig. 7. Efficiency of the query processing index-based algorithms: k-NN-set using the EMD and
the 1− 1 document distances, k-NN-imgIdx using EMD and Sky-set (graphs are normalized to
the maximum values so as to emphasize relative performance)

360 I. Bartolini, M. Patella, and G. Stromei

for the very high number of document distances that are computed within the index.3

Again, the library classes already contain the code for obtaining this important result,
demonstrating that, when dealing with complex documents, a simplistic approach is not
always the best one, and several alternatives should be taken into account to find out the
best combination of efficiency and effectiveness.

7 Conclusions

We have presented the WINDSURF library for the management of complex (hierarchi-
cal) multimedia data, with the goal of providing tools for their efficient retrieval. The
library was designed with the aim of generality and extensibility, so as to be applica-
ble to a wide range of multimedia scenarios that fit its similarity-based retrieval model.
Due to the inherent complexity of multimedia data, we designed the WINDSURF re-
trieval model to include all the different facets introduced by the hierarchical nature of
the data (for example, how documents are characterized, how they are split into compo-
nent elements, how elements are to be compared, how similarities at the element level
are to be aggregated, and so on). Such facets can be instantiated in several alternative
ways (each choice possibly giving different results) and an user may want to compare
the performance of such alternatives in the scenario at her hand: we believe that the use
of the WINDSURF library could help in abstracting away the details of generic query
processing algorithms, since the above-mentioned facets can be realized by simply im-
plementing abstract classes of the library. We are currently working in extending the
library with new query processing algorithms and to incorporate other scenarios (e.g.,
videos [4]) as instances of the library available for downloading. Moreover, a current
limitation of the WINDSURF retrieval model is that elements of a document are all of
a same type: we plan to extend the model to consider elements of different types, so
that only elements of the same type can be compared. For example, if we consider
a multimedia document composed of textual sections and images, it makes sense to
only compare text with text and images with images. Another important application of
this concept is the use of cross-domain information to improve the retrieval of a given
type of content, for example, exploiting surrounding text and/or links existing to other
documents (à la PageRank) to boost image/video retrieval.

References

1. Ardizzoni, S., Bartolini, I., Patella, M.: Windsurf: Region-based image retrieval using
wavelets. In: IWOSS 1999, Florence, Italy, pp. 167–173 (September 1999)

2. Bartolini, I., Ciaccia, P., Oria, V., Özsu, T.: Flexible integration of multimedia sub-queries
with qualitative preferences. Multimedia Tools and Applications 33(3), 275–300 (2007)

3 We note here that k-NN-set computes document distances outside of the index, only for those
documents that are retrieved under sorted access. On the other hand, Sky-set does not compute
any document distance, but has nonetheless to compare documents for domination: in Figure 7
each of such comparisons is computed as a document distance, in order to compare algorithms
on a fair basis.

Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library 361

3. Bartolini, I., Ciaccia, P., Patella, M.: Query processing issues in region-based image
databases. Knowledge and Information Systems 25(2), 389–420 (2010)

4. Bartolini, I., Patella, M., Romani, C.: SHIATSU: Semantic-Based Hierarchical Auto-
matic Tagging of Videos by Segmentation using Cuts. In: AIEMPro 2010, Florence, Italy
(September 2010)

5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquı́n, J.L.: Proximity searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search
in metric spaces. In: VLDB 1997, Athens, Greece, pp. 426–435 (August 1997)

7. Fei-Fei, L., Fergus, R., Torralba, A.: Recognizing and learning object categories. In: CVPR
2007 Short Course, Minneapolis, MN (June 2007)

8. Fishburn, P.: Preference structures and their numerical representations. Theoretical Computer
Science 217(2), 359–383 (1999)

9. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 30(2),
170–231 (1998)

10. Grauman, K.: Efficiently searching for similar images. Communications of the ACM 53(6),
84–94 (2010)

11. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD 1984,
Boston, MA, pp. 47–57 (June 1984)

12. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM TODS 24(2),
265–318 (1999)

13. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM
TODS 28(4), 517–580 (2003)

14. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in
relational database systems. ACM Computing Surveys 40(4) (October 2008)

15. Kailath, T.: The divergence and Bhattacharyya distance measures in signal selection. IEEE
Transactions on Communication Technology 15(1), 52–60 (1967)

16. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistic
Quarterly 2, 83–97 (1955)

17. Rubner, Y., Tomasi, C.: Perceptual Metrics for Image Database Navigation. Kluwer, Boston
(2000)

18. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of In-
formation by Computer. Addison-Wesley, Reading (1989)

19. Wu, L., Hoi, S.C.H., Jin, R., Zhu, J., Yu., N.: Distance metric learning from uncertain side
information with application to automated photo tagging. In: ACM MM 2009, Vancouver,
Canada, pp. 135–144 (October 2009)

20. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive Integrated Matching for
Picture LIbraries. IEEE TPAMI 23(9), 947–963 (2001)

21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space
Approach, Advances in Database Systems, vol. 32. Springer (2006)

	Efficiently Managing Multimedia Hierarchical Data with the WINDSURF Library
	Introduction
	The WINDSURF Retrieval Model
	Alternative Retrieval Models

	Overview of the WINDSURF Library
	Query Processing Algorithms
	Customizing the Library
	Use Cases
	Conclusions

