Skip to main content

Modeling Ontological Structures with Type Classes in Coq

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7735))

Abstract

In the domain of ontology design as well as in Conceptual Modeling, representing universals is a challenging problem. Most approaches which have addressed this problem rely either on Description Logics (DLs) or on First Order Logic (FOL), but many difficulties remain especially about expressiveness. In mathematical logic and program checking, type theories have proved to be appealing but so far, they have not been applied in the formalization of ontologies. To bridge this gap, we present here the main capabilities of a theory for representing ontological structures in a dependently-typed framework which relies both on a constructive logic and on a functional type system. The usability of the theory is demonstrated with the Coq language which defines in a precise way what ontological primitives such as classes, relations, properties and meta-properties, are in terms of type classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alia, I., Abdelmoty, A.I., Smart, P.D., Jones, C.B., Fu, G., Finch, D.: A critical evaluation of ontology languages for geographic information retrieval on the Internet. Journal of Visual Languages & Computing 16(4), 331–358 (2005)

    Article  Google Scholar 

  2. Barlatier, P., Dapoigny, R.: A Type-Theoretical Approach for Ontologies: the Case of Roles. Applied Ontology 73, 311–356 (in press, 2012)

    Google Scholar 

  3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS series. Springer (2004)

    Google Scholar 

  4. Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating subsumption in SNOMED CT: An exploration into large description logic-based biomedical terminologies. Artificial Intelligence in Medicine 39, 183–195 (2007)

    Article  Google Scholar 

  5. Booch, G.: Object-Oriented Design with Applications. Benjamin Cummings, Redwood City (1991)

    Google Scholar 

  6. Bourbaki, N.: Univers, Séminaire de Géométrie Algébrique du Bois Marie Théorie des topos et cohomologie étale des schémas (SGA 4), 1. Lecture notes in mathematics, vol. 269, pp. 185–217. Springer (1972)

    Google Scholar 

  7. Chein, M., Mugnier, M.L., Simonet, G.: Nested graphs: a graph-based knowledge representation model with FOL semantics. In: Procs. of KR 1998, pp. 524–534. Morgan Kaufmann (1998)

    Google Scholar 

  8. Cirstea, H., Coquery, E., Drabent, W., Fages, F., Kirchner, C., Maluszynski, J., Wack, B.: Types for Web Rule Languages: a preliminary study. Technical report A04-R-560, PROTHEO - INRIA Lorraine - LORIA (2004)

    Google Scholar 

  9. Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coq Development Team, The Coq Reference Manual, Version 8.3., INRIA, France (2010)

    Google Scholar 

  11. Dapoigny, R., Barlatier, P.: Towards Ontological Correctness of Part-whole Relations with Dependent Types. In: Procs. of the Sixth Int. Conference (FOIS 2010), pp. 45–58 (2010a)

    Google Scholar 

  12. Dapoigny, R., Barlatier, P.: Modeling Contexts with Dependent Types. Fundamenta Informaticae 104(4), 293–327 (2010b)

    MathSciNet  MATH  Google Scholar 

  13. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Proc. of Ninth Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 141–151. AAAI Press (2004)

    Google Scholar 

  14. Angelov, K., Enache, R.: Typeful Ontologies with Direct Multilingual Verbalization. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 1–20. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Guarino, N.: The Ontological Level. In: Casati, R., Smith, B., White, G. (eds.) Philosophy and the Cognitive Science, pp. 443–456. Holder-Pivhler-Tempsky (1994)

    Google Scholar 

  17. Guarino, N., Welty, C.: An Overview of OntoClean. In: Handbook on Ontologies, pp. 151–172 (2004)

    Google Scholar 

  18. Guarino, N.: The Ontological Level: Revisiting 30 Years of Knowledge Representation. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 52–67. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Foundations of Conceptual Modeling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 65–78. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of Twente (Centre for Telematics and Information Technology) (2005)

    Google Scholar 

  21. Guizzardi, G., Masolo, C., Borgo, S.: In Defense of a Trope-Based Ontology for Conceptual Modeling: An Example with the Foundations of Attributes, Weak Entities and Datatypes. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 112–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Howard, W.A.: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. The formulae-as-types notion of construction, pp. 479–490. Academic Press (1980)

    Google Scholar 

  23. Kabbaj, A., Janta-Polczynski, M.: From PROLOG+ + to PROLOG+CG: A CG Object-Oriented Logic Programming Language, B. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 540–554. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Kaneiwa, K., Mizoguchi, R.: Ontological Knowledge Base Reasoning with Sort-Hierarchy and Rigidity. In: Procs. of KR 2004, pp. 278–288. AAAI Press (2004)

    Google Scholar 

  25. Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole relations. Applied Ontology 3(1-2), 91–110 (2008)

    Google Scholar 

  26. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. Journal of the ACM 42, 741–843 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krötzsch, M., et al.: How to reason with OWL in a logic programming system. In: Procs. of RuleML 2006 (2006)

    Google Scholar 

  28. Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library (D18). Laboratory for Applied Ontology-ISTC-CNR (2003)

    Google Scholar 

  30. McKinna, J.: Why dependent types matter. In: Procs. of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, vol. 41(1), p. 1 (2006)

    Google Scholar 

  31. Mugnier, M.L., Leclère, M.: On querying simple conceptual graphs with negation. Data & Knowledge engineering 60(3), 468–493 (2007)

    Article  Google Scholar 

  32. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge About Information Systems. ACM Trans. on Information Systems 8(4), 325–362 (1990)

    Article  Google Scholar 

  33. Napoli, A.: Subsumption and classification-based reasoning in object-based representations. In: Procs. of the 10th European Conference on Artificial Intelligence (ECAI 1992), pp. 425–429. John Wiley & Sons Ltd. (1992)

    Google Scholar 

  34. Noonan, H.: Identity. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2011), http://plato.stanford.edu/archives/win2011/entries/identity/

  35. Pires, L.F., van Sinderen, M., Munthe-Kaas, E., Prokaev, S.M.H., Plas, D.J.: Techniques for describing and manipulating context information, Freeband/A MUSE D3.5v2.0, Lucent Technologies (2005)

    Google Scholar 

  36. Paulin-Mohring, C.: Inductive Definitions in the System Coq - Rules and Properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  37. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog. In: Proc. of Tenth Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 68–78. AAAI Press (2006)

    Google Scholar 

  38. Saibi, A.: Typing algorithm in type theory with inheritance. In: Procs. of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1997), pp. 292–301. ACM Press (1997)

    Google Scholar 

  39. Setzer, A.: Object-Oriented Programming in Dependent Type Theory. In: Trends in Functional Programming, Intellect, vol. 7, pp. 91–108 (2007)

    Google Scholar 

  40. Smith, B., Rosse, C.: The Role of Foundational Relations in the Alignment of Biomedical Ontologies. In: Fieschi, M., et al. (eds.) MEDINFO 2004. IOS Press, Amsterdam (2004)

    Google Scholar 

  41. Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Sowa, J.F.: Using a lexicon of canonical graphs in a semantic interpreter. Relational models of the lexicon, pp. 113–137. Cambridge University Press (1988)

    Google Scholar 

  43. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)

    Google Scholar 

  44. Sowa, J.F.: Conceptual Graphs. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, ch. 5, pp. 213–237. Elsevier (2008)

    Google Scholar 

  45. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. Mathematical Structures in Computer Science 21(4), 795–825 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Werner, B.: On the strength of proof-irrelevant type theories. Logical Methods in Computer Science 4(3) (2008)

    Google Scholar 

  47. Woods, W.A.: Understanding Subsumption and Taxonomy: a Framework for progress. In: Sowa, J. (ed.) Principles of Semantic Networks, pp. 45–94. Morgan Kaufmann (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dapoigny, R., Barlatier, P. (2013). Modeling Ontological Structures with Type Classes in Coq. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds) Conceptual Structures for STEM Research and Education. ICCS 2013. Lecture Notes in Computer Science(), vol 7735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35786-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35786-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35785-5

  • Online ISBN: 978-3-642-35786-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics