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The First-order Logical Environment

Robert E. Kent

Ontologos

Abstract. This paper describes the first-order logical environment FOLE.
Institutions in general (Goguen and Burstall [4]), and logical environ-
ments in particular, give equivalent heterogeneous and homogeneous
representations for logical systems. As such, they offer a rigorous and
principled approach to distributed interoperable information systems via
system consequence (Kent [6]). Since FOLE is a particular logical envi-
ronment, this provides a rigorous and principled approach to distributed
interoperable first-order information systems. The FOLE represents the
formalism and semantics of first-order logic in a classification form. By
using an interpretation form, a companion approach (Kent [7]) defines
the formalism and semantics of first-order logical/relational database
systems. In a strict sense, the two forms have transformational passages
(generalized inverses) between one another. The classification form of
first-order logic in the FOLE corresponds to ideas discussed in the Infor-
mation Flow Framework (IFF [12]). The FOLE representation follows a
conceptual structures approach, that is completely compatible with for-
mal concept analysis (Ganter and Wille [2]) and information flow (Bar-
wise and Seligman [1]).

Keywords: schema, specification, structure, logical environment.

1 Introduction

The paper “System Consequence” (Kent [6]) gave a general and abstract so-
lution to the interoperation of information systems via the channel theory of
information flow (Barwise and Seligman [1]). These can be expressed either for-
mally, semantically or in a combined form. This general solution closely follows
the theories of institutions (Goguen and Burstall [4]), 1 information flow and
formal concept analysis (Ganter and Wille [2]). By following the approach of the
“System Consequence” paper, this paper offers a solution to the interoperation
of distributed systems expressed in terms of the formalism and semantics of first-
order logic. It does this be defining FOLE, the first-order logical environment. 2

Since this paper develops a classification form of first order logic as a logical en-
vironment, the interaction of information systems expressed in first order logic

1 The technical aspect of this paper is described in the spirit of Goguen’s categorical
manifesto [3] by using the terminology of mathematical context, passage and bridge
in place of category, functor and natural transformation.

2 A logical environment is a special and more structurally pleasing case of an institu-
tion, where the semantics is completely compatible with satisfaction.
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have a firm foundation. Section 2 surveys the architecture of the first-order log-
ical environment FOLE. Section 3 discusses the linguistic/formal and semantic
components of FOLE; detailed discussions of the functional base and relational
superstructure are given in Appendix A.1 and Appendix A.2, respectively. Sec-
tion 4 explains how FOLE is a logical environment; a proof of this fact is given in
Appendix A.4. Section 5 discusses FOLE information systems. Finally, section 6
summarizes and states future plans for work on these topics.

2 Architecture
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Fig. 1. FOLE Fibered Architecture

Figure 1 is a 3-dimensional visualization of the fibered architecture of the
first-order logical environment FOLE. Each node of this figure is a mathematical
context, whereas each edge is a passage between two contexts. There is a projec-
tion from the 2-D prism below Struc representing the relational superstructure
(subsec. A.2) to the 2-D prism below Alg representing the functional base (sub-
sec. A.1). The front diamond below Lang represents the linguistics/formalism,
whereas the back diamond below Struc represents the semantics. The projective
passages from semantics to linguistics/formalism represent the fibration left-to-
right and the indexing right-to-left. The vee-shape at the top of each diamond
states that the top mathematical context is a product of the side contexts modulo
the bottom context. The mathematical contexts on the left side of each diamond
form the relational aspect, whereas the mathematical contexts on the right side
form the functional aspect that lifts the relational to the (first-order) logical
aspect. The 2-D prism below Log represents the institutional architecture.
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3 Components

The architectural components (Fig.1) divide up according to kind and aspect.
The outer level describes the kind of component. The indexing kind is a lan-
guage (type set, relational schema, operator domain, etc.) (front diamond Fig.1),
whereas the indexed kind is either a formalism or a semantics (classification, re-
lational structure, algebra, etc.) (back diamond Fig.1). The inner level describes
the aspect of component. There are basic, relational, functional and logical as-
pects (bottom, left, right or top node in either Fig.1 diamond).
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Fig. 2. Analogy

Fig.2 illustrates an analogy between the top-level ontological categories dis-
cussed in (Sowa [9]) and the components of the first-order logical environment
FOLE (the relational aspect or 2-D prism belowRel). The pair ‘physical-abstract’,
which corresponds to the Heraclitus distinction physis-logos, is represented in
the FOLE by a classification between instances and types of various kinds. The
triples (triads) ‘actuality-prehension-nexus’ and ‘form-proposition-intention’ cor-
respond to Whitehead’s categories of existence. The latter triple, which is analo-
gous to the ‘entity type-signature-relation type’ triple, is represented in the FOLE
by a relational language (schema) S = 〈R, σ,X〉 (Appendix A.2.1). The former
triple, which is analogous to the ‘entity instance-tuple-relation instance’ triple,
is represented in the FOLE by the tuple function K

τ
−→ List(Y ) (part of a FOLE

structure). The firstness category of ‘independent(actuality,form)’ is represented
in the FOLE by an entity classification E = 〈X,Y, |=E〉 (Appendix A.2.2). The
thirdness category of ‘mediating(nexus,intention)’ is represented in the FOLE

by a relation classification R = 〈R,K, |=R〉 between relational instances (keys)
and relational types (or a classification between relational instances and logical
formula, more generally) (Appendix A.2.2). The secondness category of ‘rela-
tive(prehension,proposition)’ is represented in the FOLE by the list construction
of an entity classification List(E) = 〈List(X),List(Y ), |=List(E)〉 between tu-
ples and signatures (Appendix A.2.2). Finally, the entire graph of the top-level
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ontological categories is represented in the FOLE by a (model-theoretic) struc-
ture (classification form) M = 〈R, 〈σ, τ 〉, E〉, where the relation R and entity
E classifications are connected by a list designation 〈σ, τ 〉 : R ⇒ List(E) (Ap-
pendix A.2.2). This is appropriate, since a (model-theoretic) structure represents
the knowledge in the local world of a community of discourse.

4 Logical Environment

The FOLE institution (logical system) (Kent [6]) has at its core the mathe-
matical context of first-order logic (FOL) languages Lang. For any language
L = 〈S,O〉, there is a set of constraints fmla(L) representing the formalism at
location L, and there is a mathematical context of structures struc(L) repre-
senting the semantics at location L. For any first-order logic (FOL) language

morphism L2 = 〈S2,O2〉
〈r,f,ω〉
−−−−→ 〈S1,O1〉 = L1, there is a constraint function

fmla(L2)
fmla(r,f,ω)
−−−−−−−→ fmla(L1) (Appendix A.2.1) representing flow of formalism

in the forward direction, and there is a structure passage struc(L2)
struc(r,f,ω)
←−−−−−−−

struc(L1) (Appendix A.2.2) representing flow of semantics in the reverse direc-

tion. This structure passage has a relational componentRel(S2)
rel〈r,f〉
←−−−− Rel(S2)

and a functional (algebraic) component Alg(O2)
alg〈f,ω〉
←−−−−− Alg(O1).

FOLE is an institution, since the satisfaction relation is preserved during
information flow along any first-order logic (FOL) language morphism L2 =

〈S2,O2〉
〈r,f,ω〉
−−−−→ 〈S1,O1〉 = L1: struc(r, f, ω)(M1) |=L2 (〈I ′2, s

′
2, ϕ
′
2〉

h2−→ 〈I2, s2, ϕ2〉)

iffM1 |=L1 fmla(〈I ′2, s
′
2, ϕ
′
2〉

h2−→ 〈I2, s2, ϕ2〉). In short, “satisfaction is invariant
under change of notation”. The institution FOLE is a logical environment, since

for any language L = 〈S,O〉 = 〈R, σ,X,Ω〉, ifM2
〈k,g,h〉
−−−−→M1 is a lang -vertical

structure morphism over L, then we have the intent orderM2 ≥LM1; that is,
M2 |=L (ϕ ⊢ ψ) implies M1 |=L (ϕ ⊢ ψ) for any S-sequent (ϕ ⊢ ψ). In short,
“satisfaction respects structure morphisms”. (See Appendix A.4 for a proof of
this in the relational aspect.)

5 Information Systems

Following the theory of general systems, an information system consists of a
collection of interconnected parts called information resources and a collection of
part-part relationships between pairs of information resources called constraints.
Semantic information systems have logics 3 as their information resources. Just
as every logic has an underlying structure, so also every information system has

3 A first-order logic L = 〈M, T 〉 in FOLE consists of a first-order structure M and
a first-order specification T that share a common first-order language lang(M) =
lang(T ). A logic enriches a first-order structure with a specification. The logic is
sound when the structureM satisfies every constraint in the specification T .
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an underlying distributed system. As such, distributed systems have structures
for their component parts.

A FOLE distributed system is a passageM : I→ Struc pictured as a diagram
of shape I within the ambient mathematical context of first-order structures. As
such, it consists of an indexed family {Mi | i ∈ |I|} of structures together with

an indexed family {Mi
me−−→ Mj | (e : i → j) ∈ I} of structure morphisms.

A FOLE (semantic) information system is a diagram L : I → Log within the
mathematical context of first-order logics. This consists of an indexed family of

logics {Li : i ∈ |I|} and an indexed family of logic morphisms {Li
le−→ Lj | (e :

i → j) ∈ I}. An information system L has an underlying distributed system
M = L ◦ struc of the same shape with Mi = struc(Li) for all i ∈ |I|. An

information channel 〈γ :M⇒ ∆(C), C〉 consists of an indexed family {Mi
γi
−→

C | i ∈ |I|} of structure morphisms with a common target structure C called the
core of the channel. Information flows along channels. We are mainly interested in
channels that cover a distributed systemM : I→ Struc, where the part-whole
relationships respect the system constraints (are consistent with the part-part
relationships). In this case, there exist optimal channels. An optimal core is
called the sum of the distributed system, and the optimal channel components
(structure morphisms) are flow links.

System interoperability is defined by moving formalism over semantics. The
fusion (unification)

∐
L of the information system L represents the whole sys-

tem in a centralized fashion. The fusion logic is defined by direct system flow:
(i) direct logic flow of the component parts of the information system along the
optimal channel over the underlying distributed system to a centralized location
(the mathematical context of structures at the optimal channel core), and (ii)
product combining the contributions of the parts into a whole. The consequence
L� of the information system L represents the whole system in a distributed
fashion. This is an information system defined by inverse system flow: (i) con-
sequence of the fusion logic, and (ii) inverse logic flow of this consequence back
along the same optimal channel, transfering the constraints of the whole sys-
tem (the fusion logic) to the distributed locations (structures) of the component
parts. See Kent [6] for further details. 4

6 Summary and Future Work

In this paper we have described the first-order logical environment FOLE in classi-
fication form. This gives a holistic treatment of first-order logic, by the use of sev-
eral novel elements: the use of signatures (type lists) for relational arities, in place
of ordinal numbers; the use of abstract tuples (relational instances, keys), thus
making FOLE compatible with relational databases; the use of classifications for

4 In light of the transformation described in Appendix A.5.2, an information system of
sound logics can be regarded as a system of logical/relational databases. The system
consequence of such systems represents database interoperabilty. Kent [6] has more
details about the information flow of sound logics in an arbitrary logical environment.
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both entities and relations; and the use of relational constraints for the sentences
of the FOLE institution. FOLE also has an interpretation form (Kent [7]) that rep-
resents the formalism and semantics of logical/relational databases, including
relational algebra. There are transformational passages between the classifica-
tion form and a strict version of the interpretation form. Appendix A.5.2 briefly
discusses the transformation from sound logics to logical/relational databases.

FOLE has advantages over other approaches to first-order logic: in FOLE the
formalism is completely integrated into the semantics; the classification form of
FOLE has a natural extension to relational/logical databases, as represented by
the interpretation form of FOLE; and FOLE is a logical environment, thus allowing
practitioners a rigorously defined approach towards the interoperation of online
semantic systems of information resources that include relational databases.

Future work includes: finishing work on the interpretation form of FOLE;
further work on defining the transformational passages between the classification
and interpretation forms; developing a linearization process from FOLE to sketch-
like forms of logic such as Ologs (Spivak and Kent [11]); and linking FOLE with
the Common Logic standard.
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A Appendix

A.1 Functional Base.

A.1.1 Linguistics/Formalism.

Base Linguistics: Set.
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A set (of entity types) X defines a mathematical con-
text of type lists (signatures) List(X) = (Set↓X). The FOLE uses type lists for
relational arities, instead of ordinal numbers.

The first subcomponent of any linguistic component is a set of entity types
(sorts)X . Examples of entity types are ‘human’ representing the set of all human
beings, ‘blue’ representing the set of all objects of color blue, etc. A type list
(signature) 〈I, s〉 consists of an arity set I and a type map I

s
−→ X mapping

elements of the arity to entity types. This can be denoted by the list notation
(. . . si . . .) or the type declaration notation (. . . i :si . . .) for i∈ I and si ∈X . For
example, the type list ‘(make:String,model:String,year:Number,color:Color)’ is
a type list for cars with valence 4, arity set {make,model, year, color}, and type

map {make 7→ String, · · · }. A type list morphism 〈I2, s2〉
h
−→ 〈I1, s1〉 is an arity

function I2
h
−→ I1 that satisfies the commutative diagram h ·s1 = s2. We say that

s2 is at least as general as s1.
Given the natural numbers ℵ = {0, 1, · · · }, let ℵ denote the mathematical

context of finite ordinals (number sets) n = {0, 1, · · · , n−1} and functions be-
tween them. This is the skeleton of the mathematical context Fin of finite sets
and functions. Both represent the single-sorted case where X = 1. We have the
following inclusion of base language mathematical contexts. 5

ℵ

skeleton

⊆ Fin

single-sorted

⊆
∗

List(X)

many-sorted

Traditional first-order systems use the natural numbers ℵ for indexing relations.
More flexible first-order systems, such as FOLE or relational database systems,
use finite sets when single-sorted or type lists when many-sorted.

Algebraic Linguistics: Oper
set
−−→ Set. A functional language (operator domain)

is a pair 〈X,Ω〉, where X is a set of entity types (sorts) and Ω is an X-sorted

operator domain; that is, Ω = {Ωx,〈I,s〉 | x ∈ X, 〈I, s〉 ∈
∗

List(X)} is a collection
of sets of function (operator) symbols, where e ∈ Ωx,〈I,s〉 is a function symbol

of entity type (sort) x and finite arity 〈I, s〉, 6 symbolized by x
e
−⇁ 〈I, s〉. An

element c ∈ Ωx,〈∅,0X〉 is called a constant symbol of sort x. Any operator domain
〈X,Ω〉 defines a mathematical context of terms Term〈X,Ω〉, whose objects are

X-signatures 〈I, s〉 and whose morphisms are term vectors 〈I ′, s′〉
t
−⇁ 〈I, s〉, where

5 We use the mathematical context
∗

List(X) = (Fin↓X) for type lists of finite arity.
6 This is a slight misnomer, since 〈I, s〉 is actually the signature of the function symbol.
whereas the arity of e is the indexing set I and the valence of e is the cardinality |I |.
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t = {s′i′
ti′−⇁ 〈I, s〉 | i′ ∈ I ′} is an indexed collection (vector) of 〈I, s〉-ary terms.

Terms and term vectors are defined by mutual induction.

A morphism of functional languages is a pair 〈X2, Ω2〉
〈f,ω〉
−−−→ 〈X1, Ω1〉, where

X2
f
−→ X1 is a function of entity types (sorts) and ω : Ω2 → Ω1 is a collection

{(Ω2)x2,〈I2,s2〉

ωx2,〈I2,s2〉
−−−−−−−→ (Ω1)f(x2),

∑
f (I2,s2)

| x2 ∈ X2, 〈I2, s2〉 ∈
∗

List(X2)} of

maps between function symbol sets: ω maps a function symbol x2
e
−⇁ 〈I2, s2〉

in Ω2 to a function symbol f(x2)
ω(e)
−−−⇁

∑
f (I2, s2) = 〈I2, s2 · f〉 in Ω1. Given

any morphism of functional languages 〈X2, Ω2〉
〈f,ω〉
−−−→ 〈X1, Ω1〉, there is a term

passage Term〈X2,Ω2〉

term〈f,ω〉
−−−−−−→ Term〈X1,Ω1〉 defined by induction. Let Oper

denote the mathematical context of functional languages (operator domains).

Algebraic Formalism. Let O = 〈X,Ω〉 be an operator domain. An O-equation is

a parallel pair of term vectors 〈I ′, s′〉
t,t′

−−⇁ 〈I, s〉. We represent an equation using
the traditional notation (t= t′). An equational presentation 〈X,Ω,E〉 consists
of an operator domain O = 〈X,Ω〉 and a set of O-equations E. A congru-
ence is any equational presentation closed under left and right term composi-
tion. Any equational presentation 〈X,Ω,E〉 generates a congruence 〈X,Ω,E•〉,
which defines a quotient mathematical context of terms Term〈X,Ω,E〉 with a

morphism 〈I ′, s′〉
[t]
−⇁ 〈I, s〉 being an equivalence class of terms. There is a canon-

ical passage Term〈X,Ω〉
[]
−→ Term〈X,Ω,E〉. A morphism of equational presenta-

tions 〈X2, Ω2, E2〉
〈f,ω〉
−−−→ 〈X1, Ω1, E1〉 is a morphism of functional languages

〈X2, Ω2〉
〈f,ω〉
−−−→ 〈X1, Ω1〉 that preserves equations: an O2-equation 〈I

′
2, s
′
2〉

t2,t
′
2−−−⇁

〈I2, s2〉 in E2 is mapped to an O1-equation
∑
f (I
′
2, s
′
2)

ω∗(t),ω∗(t′)
−−−−−−−−⇁

∑
f (I2, s2) in

the congruence E•
1 . Hence, there is a term passage Term〈X2,Ω2,E2〉

term〈f,ω〉
−−−−−−→

Term〈X1,Ω1,E1〉 that commutes with canons.

A.1.2 Semantics.

Base Semantics: Cls
typ
−−→ Set. For any entity classification E = 〈X,Y, |=E〉,

there is a tuple passage List(X)op
tupE−−−→ Set defined as the extent of the list

classification List(E). It maps a type list (signature) 〈I, s〉 ∈ List(X) to its
extent tupE(I, s) = extList(E)(I, s) ⊆ List(Y ). An entity infomorphism 〈f, g〉 :

E2 ⇄ E1 defines a bridge tupE2
τ〈f,g〉
⇐= (

∑
f )

op ◦ tupE1 between tuple passages.
For any source signature 〈I2, s2〉 ∈ (Set↓X2), the tuple function τ〈f,g〉(I2, s2) =
(-) · g : tupE1(

∑
f (I2, s2))→ tupE2(I2, s2) is define by composition.

Algebraic Semantics: Cls
cls
←−− Alg

oper
−−−→ Oper. A many-sorted algebra A =

〈E ,O, 〈A, δ〉〉 consists of an entity classification E = 〈X,Y, |=E〉, an operator do-
main O = 〈X,Ω〉, and an O-algebra 〈A, δ〉 compatible with E , where A = {Ax |
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Term
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op = Term
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Term
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Fig. 3. Functional Base Interpretation

x ∈ X} is an X-sorted set and δ assigns an 〈I, s〉-ary x-sorted function (opera-

tion) Ax
δe←− A〈I,s〉 to each function symbol x

e
−⇁ 〈I, s〉 with A〈I,s〉 =

∏
i∈I Asi

the product set. A many-sorted algebra A = 〈E ,O, 〈A, δ〉〉 defines (by induction)

an algebraic interpretation passageTermop
〈X,Ω〉

A∗

−−→ Set, which extends the tuple

passage tupE = incop ◦ A∗ by compatibility. An algebra A satisfies an equation
(t= t′), symbolized by A |= (t = t′), when the interpretation maps the terms
to the same function A∗(t) = A∗(t′). A many-sorted algebraic homomorphism

A2 = 〈E2,O2, 〈A2, δ2〉〉
〈f,g,ω,h〉
−−−−−−→ 〈E1,O1, 〈A1, δ1〉〉 = A1 consists of an entity

infomorphism 〈f, g〉 : E2 ⇄ E1, a morphism of many-sorted operator domains

〈f, ω〉 : O2 → O1, and an O2-algebra morphism 〈A2, δ2〉
h
←− alg 〈f,ω〉(A1, δ1) com-

patible with 〈f, g〉. A many-sorted algebraic homomorphism A2
〈f,g,ω,h〉
−−−−−−→ A1

defines an algebraic bridge A∗2
α
⇐= term〈f,ω〉

op ◦ A∗1 between algebraic inter-
pretations, which extends the tuple bridge τ〈f,g〉 = incop ◦ α by compatibility.
Let Alg denote the mathematical context of many-sorted algebras. (The base
semantics embeds into the functional semantics Fig. 3.)

A.2 Relational Superstructure.

A.2.1 Linguistics/Formalism.

Relational Linguistics: Sch.

Struc

Rel

rel�
�✠✞

✝ ✆✻
fmla

Lang

Sch

sch�
�✠✞

✝ ✆✻
fmla

❳❳❳❳❳❳③

❳❳❳❳❳❳③

lang

sch

relational
superstructure





Schemas. A relational language (schema) S = 〈R, σ,X〉 has two components: a
base and a superstructure built upon the base. The base consists of a set of entity
types (sorts) X , which defines the type list mathematical context List(X). The
superstructure consists of a set of relation types (symbols) R and a (discrete)

type list passage R
σ
−→ List(X) mapping a relation symbol r ∈ R to its type list

σ(r) = 〈I, s〉. A relational language (schema) morphism S2 = 〈R2, σ2, X2〉
〈r,f〉
=⇒

〈R1, σ1, X1〉 = S1 also has two components: a base and a superstructure built
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upon the base. The base consists of an entity type (sort) function f : X2 → X1,

which defines the type list passage List(X2)
∑

f
−−→ List(X1) mapping a type

list (. . . si2 . . .) to the type list (. . . f(si2) . . .). The superstructure consists of a
relation type function r : R2 → R1 which preserves type lists, satisfying the
condition r · σ1 = σ2 ·

∑
f . Let Sch symbolize the mathematical context of

relational languages (schemas) with type set projection passage Sch
set
−−→ Set.

Formulas. For any type list 〈I, s〉, let R(I, s) ⊆ R denote the set of all relation
types with this type list. These are called 〈I, s〉-ary relation symbols. Formulas

form a schema fmla(S) = 〈R̂, σ̂, X〉 that extends S: with inductive definitions,

the set of relation types is extended to a set of logical formulas R̂ and the

relational type list function is extended to a type list function R̂
σ̂
−→ List(X).

For any type list 〈I, s〉, let R̂(I, s) ⊆ R̂ denote the set of all formulas with this
type list. These are called 〈I, s〉-ary formulas. Formulas are constructed by using
logical connectives within a fiber and logical flow between fibers.

fiber: Let 〈I, s〉 be any type list. Any 〈I, s〉-ary relation symbol is an (atomic) 〈I, s〉-ary

formula; that is, R(I, s) ⊆ R̂(I, s). For any pair of 〈I, s〉-ary formulas ϕ and ψ,
there are the following 〈I, s〉-ary formulas: meet (ϕ∧ψ), join (ϕ∨ψ), implication
(ϕ_ψ) and difference (ϕ \ψ). For any 〈I, s〉-ary formula ϕ, there is an 〈I, s〉-ary
negation formula (¬ϕ).

flow: Let 〈I ′, s′〉
h
−→ 〈I, s〉 be any type list morphism. For any 〈I, s〉-ary formula ϕ, there

are 〈I ′, s′〉-ary existentially/universally quantified formulas ∑
t(ϕ) and ∏

t(ϕ). For

any 〈I ′, s′〉-ary formula ϕ′, there is a 〈I, s〉-ary substitution formula t∗(ϕ′) = ϕ′(t).

Formula Fiber Passage. A schema morphism S2
〈r,f〉
=⇒ S1 can be extended to a

formula schema morphism fmla(r, f) = 〈r̂, f〉 : fmla(S2) = 〈R̂2, σ̂2, X2〉 =⇒

〈R̂1, σ̂1, X1〉 = fmla(S1). The formula function r̂ : R̂2 → R̂1, which satisfies the
condition incS2 · r̂ = r · incS1 , is recursively defined in Table 2.

Proposition 1. There is an idempotent formula passage fmla : Sch → Sch
that forms a monad 〈Sch, η, fmla〉 with embedding.

Relational Formalism: Fmla.

Constraints. Let S = 〈R, σ,X〉 be a relational schema. A (binary) S-sequent is a

pair of formulas ϕ, ψ ∈ R̂ with the same type list σ̂(ϕ) = 〈I, s〉 = σ̂(ψ). 7 We rep-
resent a sequent using the turnstyle notation ϕ ⊢ ψ, since we want a sequent to
assert logical entailment. A sequent expresses interpretation widening, with the
interpretation of ϕ required to be within the interpretation of ψ. We require en-
tailment to be a preorder, satisfying reflexivity and transitivity (Table 3). Hence,

7 We regard the formulas R̂ to be a set of types. Since conjunction and disjunction are
used in formulas, we can restrict attention to binary sequents.
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formula flow
logical aspect






term vector 〈I′, s′〉
t
−⇁ 〈I, s〉 in Term〈X,Ω〉

operation A∗(I′, s′)
A∗(t)
←−−−− A∗(I, s)

inverse image RelA(I′, s′)
t∗
−−−→ RelA(I, s)

quantification RelA(I′, s′)
∃t←−−−
∀t

RelA(I, s)

⇑
functional
aspect

formula flow
relational aspect






type list morphism 〈I′, s′〉
h
−→ 〈I, s〉 in List(X) = Term〈X,∅〉

tuple map tupE(I
′, s′)

tupE (h)
←−−−−− tupE (I, s)

inverse image RelE(I
′, s′)

h∗
−−−→ RelE (I, s)

quantification RelE(I
′, s′)

∃h←−−−
∀h

RelE (I, s)

When the relational aspect is lifted along the functional aspect to the first-order
aspect (Fig. 1 of Section 2), formula flow is lifted from being along type list mor-

phisms 〈I′, s′〉
h
−→ 〈I, s〉 to being along term vectors 〈I′, s′〉

t
−⇁ 〈I, s〉. This holds

for formula definition (above), formula function definition (Table 2), formula ax-
iomatization (Table 3), formula classification definition (Table 4), satisfaction
(Table 5), transformation to databases (Appendix A.5), etc.

Table 1. Lifting Flow

fiber: type list 〈I2, s2〉

operator

relation r̂(r2) = r(r2)

meet r̂(ϕ2 ∧〈I2,s2〉 ψ2) = (r̂(ϕ2)∧∑
f (I2,s2) r̂(ψ2))

join r̂(ϕ2 ∨〈I2,s2〉 ψ2) = (r̂(ϕ2)∨∑
f (I2,s2) r̂(ψ2))

negation r̂(¬〈I2,s2〉 ϕ) = ¬∑
f (I2,s2) r̂(ϕ)

implication r̂(ϕ_〈I2,s2〉 ψ) = r̂(ϕ)_
∑

f (I2,s2) r̂(ψ)

difference r̂(ϕ \〈I2,s2〉 ψ) = r̂(ϕ) \∑
f (I2,s2) r̂(ψ)

flow: type list morphism 〈I′2, s
′
2〉

h
−→ 〈I2, s2〉

operator

existential r̂(
∑

h(ϕ2)) =
∑

h(r̂(ϕ2))

universal r̂(
∏

h(ϕ2)) =
∏

h(r̂(ϕ2))

substitution r̂(h∗(ϕ′
2)) = h∗(r̂(ϕ′

2))

Table 2. Formula Function
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for each type list 〈I, s〉 there is a fiber preorder FmlaS(I, s) = 〈R̂,⊢〉 consist-
ing of all S-formulas with this type list. In first-order logic, we further require
satisfaction of sufficient conditions (Table 3) to described the various logical
operations (connectives, quantifiers, etc.) used to build formulas. An indexed
S-formula 〈I, s, ϕ〉 consists of a type list 〈I, s〉 and a formula ϕ with signature

〈I, s〉. An S-constraint 〈I ′, s′, ϕ′〉
h
−→ 〈I, s, ϕ〉 consists of a type list morphism

〈I ′, s′〉
h
−→ 〈I, s〉 and a binary sequent (

∑
h(ϕ) ⊢ ϕ

′), or equivalently a binary se-
quent (ϕ ⊢ h∗(ϕ′)). The mathematical context Fmla(S) has indexed S-formula

as objects and S-constraints as morphisms. 8 Let S2
〈r,f〉
=⇒ S1 be a schema mor-

phism. We assume that the function map R̂2
r̂
−→ R̂1 is monotonic (Table 3).

Hence, there is a fibered formula passage Fmla(S2)
fmla〈r,f〉
−−−−−−→ Fmla(S1) that

commutes with the type list projections (Figure 4).

List(X2) List(X1)

Pre

∑
f

fmlaS2
fmlaS2

r̂
⇒

✲

❙
❙
❙❙✇

✓
✓

✓✓✴

Fmla(S2) Fmla(S1)

List(X2) List(X1)

fmla〈r,f〉

∑
f

listS2 listS1

✲

✲
❄ ❄

indexed fibered

Fig. 4. Indexed-Fibered

Specifications. A specification T = 〈S, T 〉 consists of a schema S = 〈R, σ,X〉
and a subset T ⊆ Fmla(S) of S-constraints. As a subgraph, T extends to its
consequence T • ⊆ Fmla(S), a mathematical subcontext, by using paths of con-

straints. A specification morphism T2 = 〈S2, T2〉
〈r,f〉
−−−→ 〈S1, T1〉 = T1 is a schema

morphism S2
〈r,f〉
=⇒ S1 that preserves constraints: if sequent ϕ′2 ⊢ h

∗(ϕ2) is as-
serted in T2, then sequent r̂(ϕ′2) ⊢ h

∗(r̂(ϕ2)) is asserted in T1.

First-order Linguistics: Lang
Sch×SetOper

sch
−−→ Sch. A first-order logic (FOL) language

L = 〈S,O〉 consists of a relational schema S = 〈R, σ,X〉 and an operator domain
O = 〈X,Ω〉 that share a common type set X . A first-order logic (FOL) language

morphism L2 = 〈S2,O2〉
〈r,f,ω〉
−−−−→ 〈S1,O1〉 = L1 consists of a relational schema

morphism S2
〈r,f〉
−−−→ S1 and a functional language morphism O2

〈f,ω〉
−−−→ O1 that

share a common type function X2
f
−→ X1.

8 In some sense, this formula/constraint approach to formalism turns the tuple calculus
upside down, with atoms in the tuple calculus becoming constraints here.
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schema: S

fiber: type list 〈I, s〉

reflexivity : ϕ ⊢ ϕ

transitivity : ϕ ⊢ ϕ′ and ϕ′ ⊢ ϕ′′ implies ϕ ⊢ ϕ′′

meet : ψ ⊢ (ϕ ∧ ϕ′) iff ψ ⊢ ϕ and ψ ⊢ ϕ′

(ϕ ∧ ϕ′) ⊢ ϕ, (ϕ ∧ ϕ′) ⊢ ϕ′

join : (ϕ ∨ ϕ′) ⊢ ψ iff ϕ ⊢ ψ and ϕ′ ⊢ ψ

ϕ′ ⊢ (ϕ ∨ ϕ), ϕ′ ⊢ (ϕ ∨ ϕ′)

implication : (ϕ ∧ ϕ′) ⊢ ψ iff ϕ ⊢ (ϕ′
_ψ)

negation : ¬ (¬ (ϕ)) ⊢ ϕ

flow: type list morphism 〈I′, s′〉
h
−→ 〈I, s〉

∑
h-monotonicity : ϕ′ ⊢′ ψ′ implies

∑
h(ϕ

′) ⊢
∑

h(ψ
′)

h∗-monotonicity : ϕ ⊢ ψ implies h∗(ϕ) ⊢′ h∗(ψ)
∏

h-monotonicity : ϕ′ ⊢′ ψ′ implies
∏

h(ϕ
′) ⊢

∏
h(ψ

′)

adjointness :
∑

h(ϕ
′) ⊢ ψ iff ϕ′ ⊢′ h∗(ψ)

ϕ′ ⊢′ h∗(
∑

h(ϕ
′)),

∑
h(h

∗(ϕ)) ⊢ ϕ

schema morphism: S2
〈r,f〉
=⇒ S1

r̂-monotonicity : (ϕ2 ⊢2 ψ2) implies (r̂(ϕ2) ⊢1 r̂(ψ2))

Table 3. Axioms

First-order Formalism. A first-order specification T = 〈S, T,O, E〉 is an FOL
language L = 〈S,O〉, where 〈S, T 〉 is a relational specification and 〈O, E〉 is an

equational presentation. A first-order specification morphism T2 = 〈S2, T2,O2, E2〉
〈r,f〉
−−−→

〈S1, T1,O1, E1〉 = T1 is an FOL language morphism L2 = 〈S2,O2〉
〈r,f,ω〉
−−−−→

〈S1,O1〉 = L1, where 〈S2, T2〉
〈r,f〉
−−−→ 〈S1, T1〉 is a relational specification mor-

phism and 〈O2, E2〉
〈f,ω〉
−−−→ 〈O1, E1〉 is a morphism of equational presentations. A

first-order specification morphism preserves constraints: if sequent ϕ′2 ⊢ [t]∗(ϕ2)
is asserted in T2, then sequent r̂(ϕ′2) ⊢ [t]

∗
(r̂(ϕ2)) is asserted in T1.

A.2.2 Semantics.

Relational Semantics: Rel
sch
−−→ Sch.

Structures. A (model-theoretic) relational structure (classification form) (IFF [12])
M = 〈R, 〈σ, τ 〉, E〉 is a hypergraph of classifications — a two dimensional con-
struction consisting of a relation classification R = 〈R,K, |=R〉, an entity clas-
sification E = 〈X,Y, |=E〉 and a list designation 〈σ, τ 〉 : R⇒ List(E). 9 Hence, a

9 List(E) = 〈List(X),List(Y ), |=List(E)〉 is the list construction of the entity classifica-
tion. A tuple 〈J, t〉 ∈ List(Y ) is classified by a signature 〈I, s〉 ∈ List(X), symbolized
by 〈J, t〉 |=List(E) 〈I, s〉, when J = I and ti |=E si for all i ∈ I .



14 Robert E. Kent

structure satisfies the following condition: k |=R r implies τ(k) |=List(E) σ(r). A
structureM has an associated schema sch(M) = 〈R, σ,X〉.

Formulas. Any structure M = 〈R, 〈σ, τ 〉, E〉 has an associated formula struc-

ture fmla(M) = 〈R̂, 〈σ̂, τ 〉, E〉 with schema sch(fmla(M)) = 〈R̂, σ̂, X〉. The

formula classification R̂ = 〈R̂,K, |=R̂〉, which extends the relation classification
ofM, is directly defined by induction in Table 4.

fiber: type list 〈I, s〉 with interpretation tupE (I, s)=
∏

i∈I
extE (si)

operator definiendum definiens

relation k |=R̂ r when k |=R r

meet k |=R̂ (ϕ∧ψ) when k |=R̂ ϕ and k |=R̂ ψ

join k |=R̂ (ϕ∨ψ) when k |=R̂ ϕ or k |=R̂ ψ

top k |=R̂ ⊤

bottom k�|=R̂ ⊥

negation k |=R̂ (¬ϕ) when k�|=R̂ ϕ

implication k |=R̂ (ϕ_ψ) when if k |=R̂ ϕ then k |=R̂ ψ

difference k |=R̂ (ϕ \ψ) when k |=R̂ ϕ but not k |=R̂ ψ

flow: type list morphism

σ̂(ϕ′)
︷ ︸︸ ︷
〈I′, s′〉

h
−→

σ̂(ϕ)
︷ ︸︸ ︷
〈I, s〉 with interpretation tupE(I

′, s′)
tupE (h)
←−−−−− tupE(I, s)

operator definiendum definiens

existential k |=R̂
∑

h(ϕ) when τ(k)∈∃h(RM̂(ϕ))

universal k |=R̂
∏

h(ϕ) when τ(k)∈∀h(RM̂(ϕ))

substitution k |=R̂ h∗(ϕ′) when τ(k)∈h−1(RM̂(ϕ′))

where RM̂(ϕ) = ℘τ(extR̂(ϕ))

Table 4. Formula Classification

Satisfaction. Satisfaction is defined in terms of the extent order of the formula
classification. For any S-structure M ∈ Rel(S), two formula ϕ, ψ ∈ R̂ with
the same type list σ(ϕ) = σ(ψ) satisfy the specialization-generalization order
ϕ ≤R̂ ψ when their extents satisfy the containment order extR̂(ϕ) ⊆ extR̂(ψ).
An S-structure M ∈ Rel(S) satisfies an S-sequent (ϕ ⊢ ψ) when ϕ ≤R̂ ψ.

An S-structure M ∈ Rel(S) satisfies an S-constraint ϕ′
h
−→ ϕ, symbolized by

M |=S (ϕ′
h
−→ ϕ), when M satisfies the sequent (

∑
h(ϕ) ⊢ ϕ

′); that is, when
∑
h(ϕ) ≤R̂ ϕ

′; equivalently, when ϕ ≤R̂ h
∗(ϕ′). This can be expressed in terms

of implication as (
∑
h(ϕ)_ϕ′) ≡ ⊤; equivalently, (ϕ_h∗(ϕ′)) ≡ ⊤. When con-

verting structures to databases, the satisfaction relationship M |=S (ϕ
h
−→ ϕ′)

determines the morphism of E-relations R
M̂
(ϕ)

h
←− R

M̂
(ϕ′) in Rel(E) and a

morphism of E-tables T
M̂
(ϕ)

〈h,k〉
←−−− T

M̂
(ϕ′) in Tbl(E). (The operators R

M̂
and T

M̂
are defined in Appendix A.5.1. Satisfaction is summarized in Table 5.)
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M |=S (ϕ′ h
−→ ϕ)

when
∑

h(ϕ) ≤R̂ ϕ′

iff ∀k∈K

(
k |=R̂ (

∑
h(ϕ)_ϕ′)

)

iff ∀k∈K

(
k |=R̂

∑
h(ϕ) implies k |=R̂ ϕ′

)

implies ∃h(RM̂(ϕ))≤RM̂(ϕ′) a

implies ∃k
(
∑

h(TM̂(ϕ))
k
−→TM̂(ϕ′)

)

a For relational structureM = 〈R, 〈σ, τ〉, E〉, the fibered mathematical context

Rel(E)op
list
−−→ List(X) of E-relations is determined by the indexed preorder

List(X)op
rel
−→ Pre, which maps a type list 〈I, s〉 to the fiber relational order

RelE(I, s) = 〈℘tupE(I, s),⊆〉 and maps a type list morphism 〈I ′, s′〉
h
−⇁ 〈I, s〉

to the fiber monotonic function ∃h = ∃tupE (h) : RelE(I
′, s′) ← RelE(I, s).

Similarly, for the fibered context Tbl(E)op
pr
−→ Term(X) of E-tables.

Table 5. Satisfaction

Structure Morphisms. A (model-theoretic) structure morphism (IFF [12])

〈r, k, f, g〉 :M2 = 〈R2, 〈σ2, τ2〉, E2〉⇄ 〈R1, 〈σ1, τ1〉, E1〉 =M1

is a two dimensional construction consisting of a relation infomorphism 〈r, k〉 :
R2 = 〈R2,K2, |=R2〉 ⇄ 〈R1,K1, |=R1〉 = R1, an entity infomorphism 〈f, g〉 :
E2 = 〈X2, Y2, |=E2〉⇄ 〈X1, Y1, |=E1〉 = E1, and a list classification square

〈〈r, k〉,List〈f,g〉〉 : 〈R2

〈σ2,τ2〉

⇒ List(E2)〉⇄ 〈R1

〈σ1,τ1〉

⇒ List(E1)〉,

where the list infomorphism of the entity infomorphism is the vertical target of
the list square. Hence, a structure morphism satisfies the following conditions.

infomorphisms

k1 |=R1 r(r2) iff k(k1) |=R2 r2
y1 |=E1 f(x2) iff g(y1) |=E2 x2

t1 · g =
∑

g(J, t1) |=List(E2) 〈I, s2〉 = s2 iff t1 = 〈J, t1〉 |=List(E1)
∑

f (I, s2) = s2 · f

list preservation

r · σ1 = σ2 ·
∑

f

k · τ2 = τ1 ·
∑

g

Structure morphisms compose component-wise. Let Rel denote the mathemat-
ical context of relational structures and structure morphisms. A structure mor-
phism 〈r, k, f, g〉 :M2 ⇄M1 has an associated schema morphism sch(r, k, f, g) =
〈r, f〉 : sch(M2) = 〈R2, σ2, X2〉 =⇒ 〈R1, σ1, X1〉 = sch(M1). Hence, there is a
schema passage sch : Rel→ Sch.

Formula. Any structure morphism 〈r, k, f, g〉 : 〈R2, 〈σ2, τ2〉, E2〉⇄ 〈R1, 〈σ1, τ1〉, E1〉
has an associated formula structure morphism

fmla(r, k, f, g) = 〈r̂, k, f, g〉 : fmla(M2) = 〈R̂2, 〈σ2, τ2〉, E2〉⇄ 〈R̂1, 〈σ1, τ1〉, E1〉 = fmla(M1)
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with schemamorphism sch(fmla(r, k, f, g)) = 〈r̂, f〉 : 〈R̂2, σ̂2, X2〉 ⇒ 〈R̂1, σ̂1, X1〉.
Hence, there is a formula passage fmla : Rel → Rel. 10 Between any struc-
ture and its formula extension is an embedding structure morphism ηM =
〈incM, 1K , 1E〉 : M =⇒ fmla(M). The formula operator commutes with em-
bedding: ηM2 ◦ fmla(r, k, f, g) = 〈r, k, f, g〉 ◦ ηM1 . There is an embedding bridge
η : idRel ⇒ fmla .

Proposition 2. There is an idempotent formula passage fmla : Rel → Rel
that forms a monad 〈Rel, η, fmla〉 with embedding.

Structure Fiber Passage. Let S2 = 〈R2, σ2, X2〉
〈r,f〉
===⇒ 〈R1, σ1, X1〉 = S1 be

a schema morphism. There is a structure passage Rel(S2)
rel〈r,f〉
←−−−− Rel(S2)

defined as follows. Let M1 = 〈R1, 〈σ1, τ1〉, E1〉 ∈ Rel(S1) be an S1-structure
with a relation classification R1 = 〈R1,K1, |=R1〉, an entity classification E1 =
〈X1, Y1, |=E1〉 and a list designation 〈σ1, τ1〉 : R1 ⇒ List(E1). Define the in-
verse image S2-structure rel 〈r,f〉(M1) = 〈r

−1(R1), 〈σ2, τ1〉, f
−1(E1)〉 ∈ Rel(S2)

with r−1(R1) = 〈R2,K1, |=r〉, f
−1(E1) = 〈X2, Y1, |=f 〉 and a list designation

〈σ2, τ1〉 : r−1(R1) ⇒ f−1(E1). From the definitions of inverse image classifi-
cations, we have the two logical equivalences (1) k1 |=r r2 iff k1 |=E1 r(r2)
and (2) 〈J1, t1〉 |=∑

f
〈I2, s2〉 iff 〈J1, t1〉 |=List(E1)

∑
f (I2, s2). Hence, k1 |=r

r2 implies τ1(k1) |=∑
f
σ2(r2). There is a bridging structure morphism

rel 〈r,f〉(M1) = 〈r
−1(R1), 〈σ2, τ1〉, f

−1(E1)〉
〈r,1K ,f,1Y 〉

⇄ 〈R1, 〈σ1, τ1〉, E1〉 =M1

with relation and entity infomorphisms r−1(R1)
〈r,1K〉

⇄ R1 and f−1(E1)
〈f,1Y 〉

⇄ E1.

First-order Semantics: Rel
rel
←−− Struc

Rel×ClsAlg

lang
−−−→ Lang. The mathematical context

of first-order structures Struc is the product of the context Rel of relational
structures and the context Alg of algebras modulo the context Cls of classifica-
tions. A first-order logic (FOL) structure is a “pair”M = 〈R, 〈σ, τ 〉, E , 〈Ω,A, δ〉〉
consisting of a relational structure 〈R, 〈σ, τ 〉, E〉 and an algebra 〈E , 〈Ω,A, δ〉〉
that share a common entity classification E . The algebra is the semantic base
and the relational structure is the superstructure. Given a FOL language
L = 〈S,O〉 and an L-structure M with relational S-structure rel(M) and

O-algebra alg(M). M satisfies an L-equation 〈I ′, s′〉
(t=t′)
−−−−⇁ 〈I, s〉, symbolized

by M |=L (t = t′), when alg(M) |=L (t = t′); and M satisfies an L-constraint

ϕ′
[t]
−→ ϕ, symbolized by M |=L (ϕ′

[t]
−→ ϕ), when rel(M) |=S (ϕ′

t
−→ ϕ) for any

representative term vector σ̂(ϕ′) = 〈I ′, s′〉
t
−⇁ 〈I, s〉 = σ̂(ϕ). A first-order logic

(FOL) structure morphism 〈R2, 〈σ2, τ2〉, E2, 〈Ω2, A2, δ2〉〉
〈〈r,k〉,〈f,g〉,〈ω,h〉〉
−−−−−−−−−−−→

〈R1, 〈σ1, τ1〉, E1, 〈Ω1, A1, δ1〉〉 consists a relational structure morphism

10 The schema and formula passages commute: fmla ◦ sch = sch ◦ fmla (Fig. 1).
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〈R2, 〈σ2, τ2〉, E2〉
〈〈r,k〉,〈f,g〉〉
−−−−−−−−→ 〈R1, 〈σ1, τ1〉, E1〉 and an many-sorted alge-

braic homomorphism 〈E2,O2, 〈A2, δ2〉〉
〈f,g,ω,h〉
−−−−−−→ 〈E1,O1, 〈A1, δ1〉〉 that share a

common entity infomorphism 〈f, g〉 : E2 ⇄ E1.

A.3 Examples

Conceptual Graphs: Consider the English sentence “John is going to Boston
by bus” [9]. We describe its representation in a FOLE logic language L =
〈R, σ,X,Ω〉. By representing the verb as a ternary relation, a graphical rep-
resentation is

[Person : John]
agnt
←−−− (Go)

dest
−−−→ [City : Boston]

↓ inst

[Bus]

Formally, we have the following elements: three entity types Person, City, Bus∈X ;
a relation type Go∈R with signature σ(Go) = 〈I, s〉 having valence 3, arity

I = {agnt, dest, inst} and signature function I
s
−→ X mapping agnt 7→

Person, dest 7→ City, inst 7→ Bus; a constant symbol John∈ΩPerson,〈∅,0X〉

of sort Person and a constant symbol Boston∈ΩCity,〈∅,0X〉 of sort City.
11

In a conceptual graph representation, the logic language L = 〈R, σ,X,Ω〉
corresponds to a CG module 〈X,R,C〉 with type hierarchy X , relation hi-
erarchy R and catalog of individuals C ⊆Ω. A CG representation is

[Go]-

(agnt)->[Person: John]
(dest)->[City: Boston]
(inst)->[Bus].

Formally (compare this linear form to 11), we have the following elements:
four entity types Go, Person, City, Bus∈X ; three relation types agnt, dest, inst∈R
with signatures σ(agnt) = 〈2, sagnt〉, σ(dest) = 〈2, sdest〉, σ(inst) = 〈2, sinst〉
having valence 2, arity 2 = {0, 1} and signatures sagnt, sdest, sinst : 2 → X ,
where sagnt(0) = sdest(0) = sinst(0) = Go, sagnt(1) = Person, sdest(1) =
City, and sinst(1) = Bus; and two constants as above.

Quantification: The universal quantification ‘∀x∈XP (x:X, y:Y, z:Z)’ is tradi-
tionally viewed as formula flow along the type list inclusion {y, z} ⊆ {x, y, z}.
FOLE handles existential/universal quantification and substitution in terms
of formula flow (Table 1) along type list morphisms in the relational as-
pect or along term vectors in the logical aspect. Given a morphism of type

11 According to (Sowa [9]), every participant of a process is an entity that
plays some role in that process. There is a “linearization” procedure that con-
verts a binary/relational logical representation (FOLE, conceptual graphs) to a
unary/functional logical representation (Sketches [5], Ologs [11]). In this example,
linearization would define functional roles, changing the ternary relation type (pro-
cess) to an entity type Go∈X and converting its arity elements (participent roles)
to function types agnt∈ΩPerson,〈1,Go〉, dest∈ΩCity,〈1,Go〉 and inst∈ΩBus,〈1,Go〉.
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lists 〈I ′, s′〉
h
−→ 〈I, s〉, for any table 〈K, t〉 ∈ TblE(I, s), you can get two

tables
∑
h(K, t),

∏
h(K, t) ∈ TblE(I

′, s′) as follows. Given any possible row
(or better, tuple) t′ ∈ tupE(I

′, s′), you can ask either an existential or a
universal question about it: for example, “Does there exist a key k ∈ K in
T with image t′?” (tuph(tk) = t′) or “Is it the case that all possible tuples
t ∈ tupE(I, s) with image t′ are present in T ?” ([8])

Relation/Database Joins: The joins of E-relations (or E-tables) are repre-
sented in FOLE in terms of fibered products — products modulo some refer-

ence. If an S-span of constraints 〈I1, s1, ϕ1〉
h1←− 〈I, s, ϕ〉

h2−→ 〈I2, s2, ϕ〉 holds
in a relational structureM = 〈R, 〈σ, τ 〉, E〉, it is interpreted as an opspan of
E-relations (or E-tables). Then the join of E-relations (or E-tables) is repre-

sent by the formula ι1
∗(ϕ1)∧〈Î,ŝ〉 ι2

∗(ϕ2), where 〈I1, s1〉
ι1−→ 〈Î , ŝ〉

ι2←− 〈I2, s2〉

is the fibered sum of type lists. In general, the join of an arbitrary diagram of
E-relations (or E-tables) is obtained by substitution followed by conjunction.

A.4 Logical Environment

Let S2 = 〈R2, σ2, X2〉
〈r,f〉
===⇒ 〈R1, σ1, X1〉 = S1 be a schema morphism, with

structure fiber passage Struc(S2)
struc〈r,f〉
←−−−−−− Struc(S2) and bridging structure

morphism

struc〈r,f〉(M1) = 〈r
−1(R1), 〈σ2, τ1〉, f

−1(E1)〉
〈r,1K ,f,1Y 〉

⇄ 〈R1, 〈σ1, τ1〉, E1〉 =M1

with relation and entity infomorphisms r−1(R1)
〈r,1K〉

⇄ R1 and f−1(E1)
〈f,1Y 〉

⇄ E1.

Proposition 3. The (formula) interpretation of the inverse image structure is
the inverse image of the (formula) interpretation.

Fact 1 The formula classification of the inverse image relation classfication is
the inverse image classfication of the formula relation classification:

̂r−1(R1) = ̂〈R2, K1, |=r〉 = 〈R̂2,K1, |=r̂〉 = r̂−1(R̂1).

Proof. The proof is by induction on formulas ϕ2 ∈ R̂2.

Fact 2 The formula structure morphism of the bridging structure morphism is:

〈r̂, 1K , f, 1Y 〉 : 〈 ̂r−1(R1), 〈σ2, τ1〉, f
−1(E1)〉⇄ 〈R̂1, 〈σ1, τ1〉, E1〉.

Its (inst-vertical) relation infomorphism

〈r̂, 1K〉 : ̂r−1(R1) = ̂〈R2,K1, |=r〉 = 〈R̂2,K1, |=r̂〉⇄ 〈R̂1,K1, |=R̂1
〉 = R̂1

is the bridging infomorphism of the formula relation classification, with the in-
fomorphism condition k1 |= ̂r−1(R1)

ϕ2 iff k1 |=R̂1
r̂(ϕ2). The extent monotonic

function r̂ : ext( ̂r−1(R1))→ ext(R̂1) is an isometry: ϕ ≤ ̂r−1(R1)
ψ iff r̂(ϕ) ≤R̂1

r̂(ψ).
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Proposition 4. Satisfaction is invariant under change of notation; that is, for

any schema morphism S2 = 〈R2, σ2, X2〉
〈r,f〉
===⇒ 〈R1, σ1, X1〉 = S1 the following

satisfaction condition holds:

struc〈r,f〉(M1) |=S2 (ϕ2
h
−→ ϕ′

2) iff M1 |=S1 (r̂(ϕ2)
h
−→ r̂(ϕ′

2)) = fmla〈r,f〉(ϕ2 ⊢ ϕ
′
2).

Proof. But this holds, since ̂r−1(R1) = r̂−1(R̂1). In more detail,

struc〈r,f〉(M1) |=S2 (ϕ2
h
−→ ϕ′2) iff

∑
h(ϕ
′
2) ≤ ̂r−1(R1)

ϕ2

iff r̂(
∑
h(ϕ
′
2)) ≤R̂1

r̂(ϕ2) iff
∑
h(r̂(ϕ

′
2)) ≤R̂1

r̂(ϕ2)

iffM1 |=S1 (r̂(ϕ2)
h
−→ r̂(ϕ′2)) = fmla〈r,f〉(ϕ2 ⊢ ϕ

′
2).

Proposition 5. The institution 〈Sch, fmla , struc〉 is a logical environment,
since it satisfies the bimodular principle “satisfaction respects structure mor-
phisms”: given any schema S = 〈R, σ,X〉, if 〈1R, k, 1X , g〉 :M2 ⇄M1 is a sch-
vertical structure morphism over S, then we have the intent order M2 ≥S M1;
that is,M2 |=S (ϕ ⊢ ψ) implies M1 |=S (ϕ ⊢ ψ) for any S-sequent (ϕ ⊢ ψ). 12

Proof. The typ-vertical formula morphism 〈1
R̂
, k, 1X , g〉 : M̂2 ⇄ M̂1 over Ŝ

has the typ-vertical relation infomorphism 〈1
R̂
, k〉 : R̂2 ⇄ R̂1 over R̂.

M2 |=S (ϕ ⊢ ψ) iff ϕ ≤R̂2
ψ implies ϕ ≤R̂1

ψ iffM1 |=S (ϕ ⊢ ψ)
for any S-sequent (ϕ ⊢ ψ).

A.5 Transformation to Databases

A.5.1 Relational Interpretation. Let M = 〈R, 〈σ, τ 〉, E〉 be a (model-
theoretic) relational structure. The relation classification R is equivalent to the
extent function extR : R → ℘K, which maps a relational symbol r ∈ R to its
R-extent extR(r) ⊆ K. The list classification List(E) is equivalent to the ex-
tent function extList(E) : List(X)→ ℘List(Y ), a restriction of the tuple passage
tupE : List(X)op → Set, which maps a type list 〈I, s〉 ∈ List(X) to its List(E)-
extent tupE(I, s) ⊆ List(Y ). The list designation satisfies the condition k |=R r
implies τ(k) |=List(E) σ(r) for all k ∈ K and r ∈ R; so that k ∈ extR(r) implies
τ(k) ∈ extList(E)(σ(r)) = tupE(σ(r)). Hence, ℘τ(extR(r)) ⊆ tupE(σ(r)) for all
r ∈ R. Thus, we have the function order extR · ℘τ ⊆ σ · extList(E).

The relational interpretation function RM : R → |Rel(E)| maps a rela-
tional symbol r ∈ R with type list σ(r) = 〈I, s〉 to the set of tuples RM(r) =
℘τ(extR(r)) ∈ ℘tupE(I, s) = RelE(I, s). The tabular interpretation function
TM : R → |Tbl(E)| = |(Set↓tupE)| maps a relational symbol r ∈ R with
type list σ(r) = 〈I, s〉 to the pair TM(r) = 〈K(r), tr〉 consisting of the key set

K(r) = extR(r) ⊆ K and the tuple function K(r)
tr−→ tupE(I, s), a restriction

of the tuple function τ : K → List(Y ), which maps a key k ∈ Kr to the tuple

12 For any classification A = 〈X,Y, |=A〉, the intent order int(A) = 〈Y,≤A〉 is defined
as follows: for two instances y, y′ ∈Y , y ≤A y′ when intA(y) ⊇ intA(y′); that is,
when y′ |=A x implies y |=A x for each x∈X.
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tr(k) = τ(k) ∈ tupE(I, s). Applying the image passage imE(I, s) : TblE(I, s)→
RelE(I, s), the image of the table interpretation is the relation interpretation
imE(I, s)(TM(r)) = RM(r) for any relation symbol r ∈ R. Using the com-
bined image passage imE : Tbl(E) → Rel(E), we get the composition RM =

R
TM−−→ |Tbl(E)|

|imE |
−−−→ |Rel(E)|. Note that tr : Kr → RM(r)→ tupE(I, s), is a

surjection-injection factorization of the tuple function. 13

A.5.2 Relational Logics. A relational logic L = 〈S,M, T 〉 consists of a re-
lational structure M = 〈R, 〈σ, τ 〉, E〉 and a relational specification T = 〈S, T 〉
that share a common relational schema sch(M) = S. The logic is sound when
the structureM satisfies every constraint in the specification T . A sound rela-
tional logic enriches a relational structure with a specification. For any sound

logic L = 〈S,M, T 〉, there is an interpretation functor R̂op TL−−→ Tbl(E) =

(Set↓tupE), where R̂ ⊆ Fmla(S) is the consequence of T . Sound logics are
important in the transformation of structures to databases (below). A relational

logic morphism L2 = 〈S2,M2, T2〉
〈〈r,k〉,〈f,g〉〉
−−−−−−−−→ 〈S2,M2, T2〉 = L2 consists of a

relational structure morphism M2
〈〈r,k〉,〈f,g〉〉
−−−−−−−−→ M1 and a relational specifica-

tion morphism T2 = 〈S2, T2〉
〈r,f〉
−−−→ 〈S1, T1〉 = T1 that share a common relational

schema morphism sch(〈r, k〉, 〈f, g〉) = S2
〈r,f〉
=⇒ S1.

Any sound relational logic L = 〈S,M, T 〉 with structureM = 〈R, 〈σ, τ 〉, E〉
and specification T = 〈S, T 〉 has an associated logical/relational database db(L) =

〈S, E ,K , τ 〉 with category of formulas R̂ ⊆ Fmla(S) (the consequence of T ),

signature passage S : R̂ → List(X), entity classification E , key passage K :

R̂op → Set, tuple bridge τ : K ⇒ Sop ◦ tupE , and table interpretation pas-

sage R̂op T
−→ Tbl(E) = (Set↓tupE), where τ = T τE . Any sound relational

logic morphism L2 = 〈S2,M2, T2〉
〈〈r,k〉,〈f,g〉〉
−−−−−−−−→ 〈S2,M2, T2〉 = L2 with structure

morphismM2
〈〈r,k〉,〈f,g〉〉
−−−−−−−−→ M1 and specification morphism T2 = 〈S2, T2〉

〈r,f〉
−−−→

〈S1, T1〉 = T1 has an associated (strict) logical/relational database morphism
db(〈r, k〉, 〈f, g〉) = 〈F , f, g, κ〉 : db(L2) = 〈S2, E2,K2, τ2〉 → 〈S1, E1,K1, τ1〉 =
db(L1) with (strict) database schema morphism 〈F , f〉 : S2 → S1, entity info-
morphism 〈f, g〉 : E2 ⇄ E1, and key natural transformation κ : F op ◦K1 ⇒ K2,

which satisfy the condition κ • τ2 = F opτ1 • S
op
2 τ〈f,g〉. The passage R̂2

F
−→

R̂1 from formula subcontext R̂2 ⊆ Fmla(S2) to formula subcontext R̂1 ⊆

Fmla(S1) is a restriction of the fibered formula passage Fmla(S2)
fmla〈r,f〉
−−−−−−→

Fmla(S1). (Kent [7] has more details on relational database semantics.)

13 Two tables are informationally equivalent when they contain the same information;
that is, when their image relations are equivalent in RelE(I, s) = ℘tupE(I, s). In
particular, the table TM(r) and relation RM(r) of a relational symbol are informa-
tionally equivalent.
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L2 = 〈S2,M2, T2〉
〈〈r,k〉,〈f,g〉〉
−−−−−−−−→ 〈S2,M2, T2〉 = L2

⇓ db

R̂
op
2 R̂

op
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Fop ✲

❄
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❩
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❄

❩
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✚
✚✚❂
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=

κ

⇐=
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τE
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τE1
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✲
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db(L2) = 〈S2, E2,K2, τ2〉
〈F ,f,g,κ〉
−−−−−−→ 〈S1, E1,K1, τ1〉 = db(L1)

κ • τ2 = F opτ1 • S
op
2 τ〈f,g〉

Fig. 5. From Sound Logics to Logical/Relational Databases
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