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Abstract. Production parallel systems are space-shared and hence em-
ploy batch queues in which the jobs submitted to the systems are made
to wait before execution. Thus, jobs submitted to parallel batch systems
incur queue waiting times in addition to the execution times. Prediction
of these queue waiting times is important to provide overall estimates to
the users and can also help metaschedulers make scheduling decisions.
Analyses of the job traces of supercomputers reveal that about 56 to
99% of the jobs incur queue waiting times of less than an hour. Hence,
identifying these quick starters or jobs with short queue waiting times
is essential for overall improvement on queue waiting time predictions.
Existing strategies provide high overestimates of upper bounds of queue
waiting times rendering the bounds less useful for jobs with short queue
waiting times. In this work, we have developed an integrated framework
that uses the job characteristics, and states of the queue and processor
occupancy to identify and predict quick starters, and use the existing
strategies to predict jobs with long queue waiting times. Our experiments
with different production supercomputer job traces show that our pre-
diction strategies can lead to correct identification of up to 20 times more
quick starters and provide tighter bounds for these jobs, and thus result
in up to 64% higher overall prediction accuracy than existing methods.

Keywords: Queue Wait Times, High Performance Computing, Batch
Systems, Prediction, Scheduling

1 Introduction

Production parallel systems in many supercomputing sites are batch systems
that provide space sharing of available processors among multiple parallel appli-
cations or jobs. Well known parallel job scheduling frameworks including IBM
Loadleveler [1], PBS [2], Platform LSF [3] and Maui scheduler [4] are used in
production supercomputers for management of jobs in the batch systems. These
frameworks employ batch queues in which the jobs submitted to the batch sys-
tems are queued before allocation by a batch scheduler to a set of available
processors for execution. Thus, in addition to the time taken for execution, a
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job submitted to a batch queue incurs time due to waiting in the queue before
allocation to a set of processors for execution.

Predicting queue waiting times of the jobs on the batch systems will be highly
beneficial for users. The predictions can be used by a user for various purposes
including planning management of his jobs and meeting deadlines, considering
migrating to other queues, systems or sites at his disposal for application ex-
ecution when informed of possible high queue waiting times on a queue, and
investigating alternate job parameters including different requested number of
processors and estimated execution times. Such predictions can also be efficiently
used by a metascheduler to make automatic scheduling decisions for selecting
the appropriate number of processors and queues for job execution to optimize
certain cost metrics, and help reduce the complexities associated with job sub-
missions for the users. The decisions by the user and metascheduler using the
predictions can in turn result in overall load balancing of jobs across multiple
queues and systems. Such predictions are also highly sought after in the produc-
tion batch systems. For example, predictions of queue waiting times are available
in production systems of TeraGrid [5]. These show the importance of accurate
queue wait time prediction mechanisms for the users submitting their jobs to
batch systems.

Analyses of widely used job traces in supercomputer sites reveal the presence
of large number of jobs that incur short queue waiting times. Table 1 shows
statistics for eight different supercomputer job traces we use in this work. All the
eight traces were cleaned versions obtained from Feitelson’s workload archive [6].
The last column of the table shows the percentages of the number of jobs with
queue waiting times of less than or equal to 1 hour. We find that most of the
jobs, particularly 56-99% of the total number of jobs, submitted to a system incur
queue waiting times of less than or equal to 1 hour. We refer to these jobs as
quick starters. Correct identification and good predictions of these quick starters
that form a majority are hence essential for overall accuracy of the prediction
system.

Table 1. Supercomputing Log Details

Trace Duration (in
months)

Total no of
jobs

% quick
starters

CTC SP2 11 77222 56

ANL Intrepid 8 68936 65

LANL CM5 24 122060 94

HPC2N 42 202876 57

SDSC Paragon 95 12 53970 88

SDSC Blue 32 243314 70

SDSC SP2 24 59725 66

DAS2 fs0 12 225710 99
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It is important to note that these quick starters do not necessarily corre-
spond to testing/debugging jobs that are associated with short execution times,
and whose predictions are relatively less important. Many systems have separate
debug queues for testing/debugging jobs. Our experiments were conducted on
general/production queues in which production runs are performed, and where
predictions of queue waiting times of the production jobs are required. A signif-
icant number of quick starters in these production queues have high execution
times. For example, in CTC and ANL production queues, about 30% of the quick
starters have runtimes greater than 1 hour and some of them have runtimes as
high as 120 hours. Prediction of queue waiting times is challenging due to vari-
ous factors including diverse scheduling algorithms followed by the job scheduling
frameworks, time-varying policies applied for a single queue, and priorities for
the jobs. High values of predictions will have more severe impact on the predic-
tions for quick starters than for jobs with long wait times. High overestimations
for quick starters can have detrimental effect even on the job submissions to
the system. For example, an upper bound of 8 hours for a job that executes for
15 minutes and whose actual waiting time will be 30 minutes can discourage
the user from submitting the job to the system that the user would have found
suitable for his job in the absence of such overestimation. Hence it is essential
to give tight upper bounds especially for these quick starters. In our work, we
fix this upper bound as 1 hour for all the quick starters. The assumption is that
even if a quick starter’s actual waiting time is 5 minutes, this upper bound of 1
hour will not severely discourage the user since the user typically expects waiting
times of at least few minutes to an hour in a multi-user system.

The objective for predictions of quick starters is two fold:
• Maximizing true positives, i.e., increasing the number of correct identifications
of quick starters
• Minimizing false positives, i.e., decreasing the number of incorrect identifica-
tion as quick starters of jobs with long queue waiting times.
The former objective is important for improving the overall accuracy of predic-
tions, while the latter is essential to avoid “misguiding” (or colloquially, “cheat-
ing”) the user into using the system with the promise of short queue waiting
times.

In this work, we have developed an integrated framework, PQStar (Predicting
Quick Starters), for identification and prediction of quick starters. An impor-
tant aspect of our prediction strategy for quick starters is that it considers the
processor occupancy state and the queue state at the time of the job submis-
sion in addition to the job characteristics including the requested number of
processors and the estimated runtime. The processor and queue states include
the current number of free nodes, number of jobs with large request sizes cur-
rently executing in the system, and relative difference between the current job
and other jobs in the queue in terms of request size and estimated run time.
These states are obtained by using a simulator that updates the states during
job arrivals and departures. For jobs identified as those with potential long queue
waiting times, our framework uses existing strategies [7, 8] for predictions. Our
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experiments with different production supercomputer job traces given in Table
1 show that our prediction strategies can lead to correct identification of up to
20 times more quick starters and provide tighter bounds for these jobs, and thus
result in up to 64% higher overall prediction accuracy than existing methods.
Our model was designed not to use dynamic and variable parameters including
scheduling algorithms and job priorities. In many cases, it is not practical to
obtain/infer job priorities and scheduling algorithms. Scheduling algorithms on
batch systems are usually not published, and are not easy to model. Our model
primarily uses the job traces, and the job submission states (queue and processor
occupancy states). This way, our system can be generic and can be applied to
different batch systems with different scheduling and priority policies.

Section 2 presents existing strategies for predictions of queue waiting times. In
Section 3, our prediction methodology is described in detail. Section 4 describes
the simulation experiments with the supercomputer job traces and presents re-
sults related to accuracy in identifying quick starters and overall predictions.
This section also compares the performance of our predictions with the existing
methods. Section 5 presents a summary of our work and plans for future work.

2 Related Work

There have been two primary efforts in prediction of queue waiting times. They
can be broadly classified into Non-Statistical and Statistical methods.
Non-statistical methods try to simulate the exact scheduling algorithm and de-
cisions which would be made by the scheduler in real time. However, in most
production systems, the scheduling algorithms are usually not published and are
also difficult to model.

In the works by Smith et al. [9] [10], runtime predictions are derived using
similar runs in the history, and these estimates are further used to simulate the
scheduling algorithms like FCFS, LWF (Least Work First) and Backfilling [11]
to obtain the queue wait times predictions. Another work by Li et al. [12] tries
to improve the runtime prediction and simulate the batch system for the Maui
scheduler [4]. These efforts consider specific scheduling algorithms for predic-
tions while our effort considers only job traces and hence can work with mul-
tiple scheduling algorithms. Moreover, their efforts use runtime estimates for
the prediction of queue wait times. The runtime estimates reported in these ef-
forts [9] [10] have high prediction errors from 33% to 74% in many cases, and
hence using these estimates to predict queue wait times will lead to large errors
in wait time predictions.

The statistical method by Downey [13] used the observation that the cumu-
lative distributions of the execution times of the jobs in the workload can be
modeled by using a logarithmic function. After the distribution functions are
calculated, two different methods are used to predict when a certain number of
nodes will become free and thus when the job waiting at the head of the queue
can start. This work considers FCFS Scheduling.
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Some statistical methods use time series analysis of queue waiting times for
jobs in the history to predict waiting times for submitted jobs. QBETS [14–16]
is a system that predicts the bounds on the queue wait times with a quantita-
tive confidence level. QBETS uses a quantile-based approach in which a given
quantile in the distribution of the queue waiting times of the jobs is used as an
upper bound for the target job’s queue waiting time. Since the distribution is not
known, a confidence level has to be provided. QBETS uses a predictor based on
non-parametric inference, an automated change-point detector, machine-learned,
model-based clustering of jobs having similar characteristics, and an automatic
downtime detector to identify systemic failures that affect job queuing delay.
Thus QBETS handles the effects of varying workloads and customized local
queuing discipline. However, QBETS gives conservative upper bound predic-
tions, which leads to large prediction errors especially for quick starters. Also
it does not consider the state of the system, and consider only the job char-
acteristics, which we show is insufficient for efficient predictions of queue wait
times.

The efforts by Li et al. [7, 8] consider the system states for the prediction
of queue waiting times. In their method known as Instance Based Learning
(IBL), they use weighted sum of Heterogeneous Euclidean-Overlap Distances
between different attributes of two jobs to find the similarities between the jobs.
They consider both job characteristics and system parameters for job attributes.
They then find such similarity values between the target job and all jobs in
the history and choose a subset of most similar jobs in the history, and use
their queue waiting times in methods like 1-NN (nearest neighbor) or the n-
WA (weighted average of n nearest neighbors) to predict the waiting time of
the target job. Their work assumes linear relationship between attribute values
and queue waiting times. They also assume fixed weights for predictions of all
target jobs. Our work explicitly considers quick starters for predictions. We show
that our method gives better predictions of quick starters. By providing tighter
estimated bounds for quick starters that form a majority of the jobs, our work
attempts to improve the overall accuracy of predictions.

3 Methodology

The basis of our method, PQStar, for identifying a quick starter job is to establish
boundaries in the history of prior job submissions, and to use the similar jobs
within the boundaries for prediction. Thus, the most relevant history is used for
predicting the target quick starter job. Specifically, PQStar splits the history for
a target job into near, mid and long term history based on processor occupancy
states. A processor occupancy state at a given instance denotes the allocation of
the processors to the jobs executing at that instance. It consists of the number
of processors used by each executing job.
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3.1 Predictions using Near-term History

For finding the near-term history, PQStar traverses the jobs starting from the
target job in the reverse chronological order of job submission times as long as
the processor occupancy state at the time of submission of the job in the history
is similar to the processor occupancy state at the time of submission of the
target job. The earliest job in the history having similar processor occupancy
state denotes the near-term boundary and the set of jobs between the target
job and the boundary forms the near-term history. For identifying if the target
job is a quick starter, PQStar finds jobs in the near-term history with similar
characteristics in terms of processor request sizes and estimated run time, and
which have started executions. It also checks if none of the jobs in the waiting
queue which have arrived after the near-term boundary and which have similar
characteristics to the target job, have waited for more than an hour in the queue.
If these two conditions are met, PQStar identifies the target job as a quick starter
and establishes an upper bound of 1 hour for the target job.

For the purpose of predictions using near-term history, two processor oc-
cupancy states are considered similar if the number of jobs with large request
sizes that are executing in the two states are the same. We use the executing
large jobs to define processor occupancy similarity since jobs that can be back-
filled in the remaining processor space and thus incur small queue waiting times
are candidate quick starters. Thus the basis of identifying quick starters using
near-term history is that by looking at jobs with similar characteristics in the
near-term history with similar processor occupancy states and checking if those
jobs have potentially been backfilled, it can be predicted if the target job can be
backfilled and hence marked as a quick starter. Note that by our definition, two
processor occupancy states are also considered similar if there are no large jobs
in both the states. For our work, we denote a job as a large job if the request
size of the job is at least the next power of two greater than or equal to the
square root of the total system size . We define job characteristics of two jobs
as similar if their processor request sizes are equal and if the difference between
their estimated run times are within an hour. As our experiments will show, this
method of using near-term history for predictions yields a large percentage of
identifications of quick starters.

3.2 Predictions using Mid-term History

For those jobs for which near-term history cannot be used due to the above men-
tioned criteria not being met, PQStar traverses the jobs in the reverse chronolog-
ical order of job submissions from the near-term boundary until the processor
occupancy state becomes completely different in terms of executing jobs. In
other words, suppose A = {set of jobs in execution at the time of target job’s
submission} and B = {set of jobs in execution at the time of the history job’s
submission}, then we draw the mid term boundary at a point where (A∩B) = ∅

PQStar marks the mid-term boundary after the job when the states become
completely different and denotes the set of jobs between the mid and near-
term boundaries as mid-term history. For identifying if the target job is a quick
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starter, PQStar finds jobs in the mid-term history with similar characteristics in
terms of processor request sizes and estimated run time, and which have started
executions. It also checks if none of the jobs in the waiting queue which have
arrived after the mid-term boundary and which have similar characteristics to
the target job, have waited for more than an hour in the queue. However, unlike
for predictions with near-term history, these conditions alone are not sufficient
for predictions with mid-term history since the processor states in mid-term are
less similar to target job than those in near-term. We found that jobs satisfying
the conditions had widely varying queue waiting times. Hence we introduce
three extra criteria for predictions with mid-term history: request size criterion,
estimated run time (ERT) criterion, and free nodes criterion.

Request Size Criterion: One useful criterion we found is to rank the target
job in terms of its request size among the jobs in the queue at the time of the job
submission. Specifically, we calculate the metric jobrankreqsize using the position
of the target job in the list of jobs in the queue at the time of its entry sorted
in increasing order of request sizes. jobrankreqsize is calculated by normalizing
this position with respect to the total number of jobs in the queue.

Most of the existing strategies group jobs only in terms of request sizes,
and find jobs with similar request sizes for predictions of queue waiting times.
However, a single request size can correspond to widely varying queue waiting
times as shown in Figure 1(a) that shows statistics for 1000 sample jobs from
the CTC trace. For example, corresponding to the request size of 8 processors
in the figure, we find that queue waiting times can vary from 1 minute to 32
hours. Hence, in addition to finding the similar jobs for a target job in terms of
request sizes, we consider the rank of the job in the queue in terms of request
size, thereby implicitly considering both the request size and the queue state for
predictions. We consider target jobs with jobrankreqsize values less than a thresh-
old, thresholdreqsize, as candidate quick starters. For fixing thresholdreqsize, we
consider jobs in the near-term history, find two thresholds: thresholdreqsize1 as
the maximum of jobrankreqsize values of the jobs with queue waiting times less
than or equal to 1 hour, and thresholdreqsize2 as the minimum of jobrankreqsize
values of the jobs with queue waiting times greater than 1 hour, and use the
minimum of the two thresholds for thresholdreqsize. By using near-term history
to find thresholds, PQStar uses the most recent history and hence also takes into
consideration only those jobs having similar processor occupancy.

ERT Criterion: Similar to the request size criterion, we also use estimated
run time (ert) criterion for identification of the target job as a quick starter.
Specifically, PQStar finds a metric, jobrankert, using the list of jobs in the queue,
at the time of entry of the target job, sorted in the ascending order of estimated
run times, and finding the normalized position of the target job in the list with
respect to the total number of jobs in the queue. PQStar marks the target job as a
quick starter if its jobrankert is less than a threshold, thresholdert. thresholdert
is found similarly to thresholdreqsize by using the queue waiting times of jobs
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(a) Wait Time Ranges for Different Request Sizes

(b) Wait time ranges for different ERTs

Fig. 1. Wait Time Ranges of Jobs for different Request Sizes and ERTs (CTC Trace)
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in the near-term history. Figure 1(b) considers only the ERTs and their impact
on queue waiting times. Similar to considering only request sizes, we find that
a single ERT can correspond to wide variation of queue waiting times. Thus
the existing strategies that use only ERTs to find similar jobs for predictions
can give high upper bound values for predictions. By considering jobrankert,
PQStar defines similarity using both the job and the queue state characteristics.
The assumption behind the request size and the ERT criterion is that target
jobs with small request sizes or ERT relative to the other jobs in the queue have
higher chances of backfilling and hence can be quick starters.

Free Node Criterion The final criterion we use for mid-term history is based
on the number of free nodes available to accommodate the target job. Thus this
criterion explicitly takes into account the processor occupancy state in addition
to the queue waiting state for identifying quick starters. Specifically, at the time
of submission of the target job, PQStar finds the difference between the total
number of free nodes available and the number of nodes requested by the jobs
in the queue that have smaller request sizes or smaller estimated run times than
the target job. If this difference is larger than the number of nodes requested by
the target job, PQStar marks the target job as a quick starter. The assumption
behind this criterion is that jobs in the queue with smaller request sizes or
estimated run times have higher chances of backfilling and hence start earlier
than the target job, thereby consuming some subset of free nodes.

For predictions with mid-term history, PQStar marks a target job as a quick
starter if it meets any one of the three criteria, namely, request size, ert, or free
node criteria.

3.3 Predictions using Far-term History

For those jobs for which mid-term history also cannot be used due to the above
mentioned criteria not being met, we use the far-term history, which is the rest
of the jobs in the history beyond the mid-term boundary. Among these far-term
history jobs, PQStar extracts a subset of jobs with similar characteristics in
terms of processor request sizes and estimated run time, and which have started
executions. If all the jobs in this subset have queue waiting times of less than
one hour, then it indicates that the target job will most likely have a wait time
of less than or equal to one hour. Hence PQStar marks the target job as a quick
starter.

3.4 Overall Predictions and Using IBL

In summary, PQStar tries to find similar jobs in the near, mid or far-term his-
tory, and uses a set of criteria to mark a job as a quick starter. In addition to
considering only the job characteristics of request sizes and estimated run times,
PQStar explicitly or implicitly considers the system states, namely processor oc-
cupancy and queue states, for defining similarity and for obtaining predictions.
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In our evaluations we found that the near-term history typically consisted of
about 50 jobs spanning around 1-3 hours and the mid-term history typically
consisted of more than 500 jobs spanning around 10-25 hours. For target jobs
that are either not marked as quick starters or for which similar jobs cannot
be found in the near, mid or far-term history, PQStar uses an existing strategy
for predicting queue waiting times. We use the IBL method by Li et al. [7] for
these predictions, since we found in our experiments that IBL gives better pre-
dictions than QBETS [14]. IBL (Instance Based Learning) uses weighted sum of
Heterogeneous Euclidean-Overlap Distances between job attributes to calculate
similarities of jobs, and use similar jobs in the history to give point predictions
for the target jobs based on 1-nearest neighbor or weighted average of k-nearest
neighbors methods.

The entire algorithm followed in PQStar is illustrated in the flowchart shown
in Figure 2.

Fig. 2. PQStar Methodology
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4 Experiments and Results

4.1 Experimental Setup

The experiments were conducted using a discrete event simulator that we have
developed. It creates a simulated environment of the jobs waiting in the queue
and running on the system at different points of time. It is important to note
that the simulator will only be keeping track of the jobs submitted to the system,
and maintain their attributes including arrival times, wait times, actual runtimes
and request sizes. It will not be simulating the actual scheduling algorithm used,
thus avoiding assumptions about the underlying scheduling algorithm.

The simulator can be operated in two modes. In the first mode, the user
can invoke the simulator with a supercomputing job trace/log in the Standard
Workload Format (SWF) [17] as input, and obtain predicted queue waiting time
of a new job. This mode is followed in the QBETS prediction system [14]. In
this mode, the simulator creates the simulated environment of jobs in the sys-
tem using the statistics available in the log. In the second mode, the simulator
can be executed on the front end node of a batch system for which predictions
are required. It will then track the arrivals, executions and exit of the real jobs
submitted to the system, and will create the simulated environment using these
real jobs. In this second mode, the job attributes maintained and used by the
simulator can be obtained by queue and job management commands. For ex-
ample on PBS based batch systems, the qstat command (with −f option) will
give all of the job parameters required by PQStar. Thus in the second mode, the
predictions are obtained “live” at real time. The simulator is triggered by three
primary events corresponding to job arrival, job beginning to execute and job
termination. Whenever a job arrives, it is added to a waiting queue maintained
by the simulator. As soon as a job’s wait time is over and it starts executing, it
is removed from the waiting queue and added to a running list in the simulator.
Also at this time, the free nodes available in the system is decremented by the
value equal to the job’s request size. Once a job which is running completes its
execution, it is removed from the running list and the free nodes available in the
system is incremented by the value equal to the job’s request size. This process
is repeated for each job and thus a simulated system state is created using which
we extract the processor state and the queue properties that are needed for our
algorithm.

For each supercomputing trace in our experiments, we performed predictions
for all the jobs starting from the 10001th job up to a maximum of 50000 jobs or
the end of the log. Each of the jobs in this set constitutes the evaluation data for
which predictions were made. For a given target job for which waiting time is
predicted, all the jobs submitted prior to it constitute the history. Out of these
history jobs, we use a subset of jobs and use their waiting times for predicting
for the target job. The subset is formed based on similarity to the target job and
using near, mid and far term boundaries as described earlier. Once the target
jobs start their execution and their wait times are known, they are added to the
set of history jobs. We compared the predictions of our PQStar method with
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the results of IBL, QBETS and a parametric model, namely, using log-uniform
distribution of the waiting times for predictions. We used the log-uniform model
since it was found to give competitive results with QBETS in some cases [14].

4.2 Results

Predictions for Quick Starters We first show the effectiveness of using near-
term history in PQStar for predicting quick starters. Table 2 shows the per-
centage of quick starters identified using near-term history and also the average
number of Jobs in the Near Boundary. The results show that predictions based
on near-term history contribute significantly to the identification of large number
of quick starters.

Table 2. Percent of Quick starters marked using Near Boundaries in PQStar

Logs % Quick starters
marked using Near
Boundary

Average number of
Jobs in the Near
Boundary

CTC 53 53

ANL 17 48

LANL 39 39

HPC2N 62 54

SDSC Paragon 61 43

SDSC Blue 51 46

SDSC SP2 50 45

DAS 66 59

Table 3 shows the percentage of the quick starters, that are successfully
identified by log-uniform, QBETS, IBL and our method, PQStar. Successful
identification corresponds to estimating the upper bound of the quick starters as
less than or equal to one hour. We can see that our method, PQStar, performs
better than the next best strategy, IBL, by successfully identifying up to 1.95
times more quick starters. It also successfully identifies up to 20 times more
quick starters than QBETS. Our method is also more consistent and identifies
more than about 80% of the quick starters irrespective of the log.

Misguiding Predictions These results show that our PQstar prediction sys-
tem is highly successful in obtaining large number of true positives, i.e., iden-
tifying large number of quick starters. Our other objective is to minimize the
number of false positives, i.e., number of jobs with long queue waiting times
falsely identified as quick starters. We refer to these predictions as misguiding
predictions. Table 4 shows that for the supercomputing traces used in our exper-
iments, PQStar incurs such misguiding predictions for only 1-10% of the total
number of jobs. The last column of the table also shows that 32-72% of the
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Table 3. % of the QuickStarters Successfully Marked

Logs Log-
Uniform

QBETS IBL PQStar

CTC 2 5 43 84

ANL 11 42 61 78

LANL 8 67 85 88

HPC2N 3 19 49 80

SDSC Paragon 6 48 81 89

SDSC Blue 8 45 63 89

SDSC SP2 1 4 49 79

DAS 71 95 96 98

those misguided jobs have actual wait times of less than 4 hours. This indicates
that for half of the misguiding predictions, the amount of misguidance is within
reasonable limits.

Table 4. Misguiding Predictions

Logs % of Total Jobs Corre-
sponding to Misguiding
Predictions

% of Misguiding Pre-
dictions with Actual
Wait Times of Less
than 4 Hours

CTC 9 59

ANL 4 72

LANL 1 61

HPC2N 10 46

SDSC Paragon 1 45

SDSC Blue 6 57

SDSC SP2 6 57

DAS 0.25 32

Overall Predictions Since IBL was found to be a better strategy than QBETS
as shown in Table 3, our PQStar system uses IBL for predictions of non quick
starters. We illustrate the comparisons of predictions of QBETS, IBL and PQS-
tar in Figure 3, for 5000 jobs of CTC trace. Figure 3(a) shows the mean prediction
error (absolute difference in predicted and actual wait times) for the different
ranges of the actual wait times. From this, we can see that PQStar gives the
least prediction error for the quick starters, and gives the same prediction error
as IBL for the rest of the jobs, since PQStar uses IBL for jobs predicted as
non-quick starters. In order to further elaborate the advantage of PQStar over
IBL,we show a scatter plot of actual v/s predicted wait times for quick starters,
as shown in Figures 3(b) and 3(c). We can clearly see that PQStar provides
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tight upper bounds, while IBL provides high upper bounds for a large number
of quick starters.

Figure 4 shows the distribution of predicted waiting times for different ranges
of actual waiting times for all the jobs in the ANL (Figure 4(a)) and CTC (Figure
4(b)) traces for QBETS, IBL and PQStar. The graphs show that for jobs with
actual waiting times of less than or equal to 1 hour, i.e., quick starters, PQStar is
able to identify most of them as quick starters. For the other quick starters, the
predictions by PQStar correspond to low ranges of queue waiting times. With
QBETS and IBL, high predicted ranges are provided for a large number of these
quick starters. For jobs with actual quick waiting times of 1 to 12 hours, PQStar
gives smaller ranges of predicted queue waiting time for more jobs than QBETS
and IBL.

The prediction time per job in our PQStar method is under a second and the
total time take for the simulation to run for entire datasets was almost similar
to that of both IBL and QBETS. Hence, there is minimal or no overhead added
in terms of prediction time by PQStar to the existing IBL method.

RMS Error and Response Time Predictions In order to evaluate the effect
of the predictions of quick starters by PQStar on the overall accuracy of pre-
dictions, we calculate the RMS (Root Mean Square) value between the actual
and predicted queue waiting times for all the jobs. We compute the percentage
decrease in RMS error for PQStar from the RMS errors of the other methods.
For example, for comparison of RMS errors of PQStar and QBETS we compute
rmserrorqbets−rmserrorpqstar

rmserrorqbets
.

We denote the percentage decrease as rmsdecfromlu, rmsdecfromqbets and
rmsdecfromibl, for comparisons with log-uniform, QBETS and IBL, respectively.
Positive values for the percentage decrease indicate better predictions by PQStar.
Table 5 shows the decrease in RMS error due to PQStar for all predictions.
We find that PQStar gives better prediction accuracy than the other methods.
Our method results in up to 90% average improvement in overall prediction
accuracy of all the jobs over log-uniform and up to 64% average improvement
over QBETS predictions. The average improvement due to PQStar is only about
2% when compared to IBL since PQStar uses IBL for predictions of non quick-
starters. The actual waiting times and the prediction errors for these non quick-
starters have large values, and these large prediction errors dominate the overall
RMS error considering all the jobs. Hence the difference in RMS error between
PQStar and IBL is small. The last column of the table shows nrmsdecfromibl,
the percentage decrease in normalized RMS error due to PQStar when compared
to IBL. The normalized RMS errors are calculated by normalizing the individual
prediction errors using the actual waiting times. As the results in this column
show, PQStar results in significant gain up to 42% in overall prediction accuracy
when compared to IBL.

We also compute the percentage difference in predicted and actual response
times for each job, where response time is the sum of queue waiting time and
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(a) Prediction Error for Different Actual Queue Waiting Time for QBETS,
IBL and PQStar

(b) Actual Wait Time v/s Predicted Wait Time for IBL

(c) Actual Wait Time v/s Predicted Wait Time for PQStar

Fig. 3. Prediction Comparison for QBETS, IBL and PQStar using 5000 jobs of CTC
trace
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(a) ANL Trace

(b) CTC Trace

Fig. 4. Distributions of Predicted Queue Waiting Times for Different Actual Queue
Waiting Time for QBETS, IBL and PQStar using ANL and CTC Traces
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Table 5. Prediction Accuracy: RMS Errors

Logs rmsdecfromlu rmsdecfromqbets rmsdecfromibl nrmsdecfromibl

CTC 80 58 2 42

ANL 75 61 2 22

LANL 90 57 1 5

HPC2N 84 59 2.25 42

SDSC
Paragon

79 64 1.5 6

SDSC Blue 77 58 2 33

SDSC SP2 71 56 1.75 38

DAS 19 7 0 0

execution time. For the execution time, we consider the predicted execution time
to be equal to the actual execution time. Hence the percentage predicted error

in response time is calculated as PPErt = |predictedwaitingtime−actualwaitingtime|
actualresponsetime .

This metric determines the amount of impact of the prediction errors on jobs
of different lengths or execution times. A prediction in queue waiting time with
an error of 1 hour will have higher impact on a job whose execution time is 15
minutes than for a job whose execution time is 2 days.

Further, to define good predictions, we divide the waiting and run times into
different bins. Each slab represents a range of wait/run times and is associated
with an interval. The wait/run time of a job is rounded off to the nearest interval
values associated with the slab to which the wait/run time belongs. Table 6 refers
to the bins and interval size for each slab used for our experiments. For example,
if the wait time of a job is 37 minutes, the interval size that will be used is 15
minutes (first row). Hence the wait time is rounded off to 45 minutes, which is
the nearest next 15 minute interval. As can be seen, the idea of using bins is
to give different tolerance limits in prediction errors for different predicted and
actual wait times. Prediction error of 15 minutes is large for a job whose actual
waiting time is 20 minutes, while it is small for a job whose actual waiting time
is 2.5 days.

Table 6. Bins and the corresponding Intervals

Bins Intervals

less than or equal to 1 hour 15 min

1 hour to 3 hours 30 min

3 to 6 hours 1 hour

6 to 12 hours 3 hours

12 to 24 hours 6 hours

1 day to 2 days 12 hours

greater than 2 days 24 hours
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We consider a prediction for a job as a good prediction if the rounded values
of actual and predicted queue waiting times lie in the same slab or if its PPErt

value is within 10%. Tables 7 shows the average PPErt values and percentage
good predictions obtained by the various methods. The table shows that the
average PPErt is up to 35 times less and the number of good predictions is up
to 58% more with PQStar when compared to the other methods.

Table 7. Prediction Accuracy: % difference in Predicted and Actual Response Times
of Different Prediction Methods

Log-Uniform QBETS IBL PQStar
Logs Average

PPErt

%
Good
predic-
tions

Average
PPErt

%
Good
predic-
tions

Average
PPErt

%
Good
predic-
tions

Average
PPErt

%
Good
predic-
tions

CTC 41.1 3 19.6 6 1.4 39 0.5 60

ANL 20.7 5 17.5 32 2.21 36 1.4 57

LANL 35.2 9 22.4 61 0.12 91 0.06 94

HPC2N 44.7 5 16.5 17 1.96 46 0.68 66

SDSC
Paragon

45.7 6 18.3 45 0.45 79 0.24 85

SDSC
Blue

31.7 8 13.1 35 2.01 53 0.75 70

SDSC
SP2

55.2 3 32.3 6 2.86 45 1.2 64

DAS 2.6 73 0.25 96 0.01 98 0.007 99

Thresholds for Quick Starters For all the above results, we have used a
queue waiting time threshold of 1 hour for the definition of quick starters. Jobs
with actual queue waiting times less than this threshold are marked as quick
starters. This threshold is based on the assumption that waiting time of less
than one hour may be short and prediction errors up to that limit may be
acceptable for the user. We used the value of one hour as a threshold to target
jobs with queue waiting times less than this threshold to improve/tighten the
bounds of these jobs, since this class of jobs form a majority of the jobs as
we had shown in Table 1. However, there have been a series of works [18] [19]
which show that the response time of a job should be less than 20 minutes to
consider a job submission session as interactive. In this experiment, we analyse
the effect of the changing thresholds for the quick starters by using different
thresholds in PQStar for predicting quick starters. Table 8 shows the impact
of changing the thresholds for quick starters from 10 minutes to 1 hour on the
PQStar predictions of quick starters for the CTC trace. We find that PQStar
consistently identifies more than 80% quick starters for all the thresholds, and
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the variation in threshold does not have an impact on the predictions of quick
starters.

Table 8. Impact of changing the thresholds for quick starters (CTC Trace)

Quick Starter Thresh-
old (in minutes)

% of Quick Starters
correctly identified

10 84.22

20 83.99

30 83.74

40 83.69

50 83.62

60 84.28

In summary, PQStar performs better than both IBL and QBETS, and it
also outperforms the parametric model, using log-uniform distribution, in all
the above shown aspects. From these results, we can clearly see that our method
is providing much more aggressive bounds for the quick starters compared to
rest of the methods, and also the under predictions is kept to limited amounts.

5 Conclusions and Future Work

In this work, we had developed a prediction system called PQStar for identifica-
tion of quick starters or jobs whose actual queue waiting times are less than or
equal to 1 hour. These quick starters form a majority of the job submissions in
many supercomputer traces. In this work we consider both job characteristics,
namely, request size and estimated runtime time, and the state of the system,
namely the queue and processor occupancy states, for predictions. By means of
experiments with different supercomputer traces, we showed that that our pre-
diction strategies can lead to correct identification of up to 20 times more quick
starters and provide tighter bounds for these jobs, and thus result in up to 64%
higher overall prediction accuracy than existing methods.

We currently use the IBL method for predictions of jobs with potential long
queue waiting times. We plan to explore alternate strategies for predictions of
such jobs. We also plan to develop techniques for predictions of execution time
in order to predict total response times. Predicting execution times for jobs
submitted to batch systems is challenging due to limited history. We finally
plan to build scheduling and metascheduling strategies that use these stochastic
predictions to select the appropriate resources for job executions.
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