
Causality Checking for Complex System Models

Florian Leitner-F ischer and Stefan Leue

University of Konstanz, Germany

Abstract. We present an approach for the algorithmic computation of
causalities in system models that we refer to as causality checking. We
base our notion of causality on counterfactual reasoning, in particular
using the structural equation model approach by Halpern and Pearl that
we recently have extended to reason about computational models. In
this paper we present a search-based on-the-fly approach that nicely
integrates into finite state verification techniques, such as explicit-state
model checking. We demonstrate the applicability of our approach using
an industrial case study.

1 Introduction

Model Checking [1] is an established technique for the automated analysis of sys­
tem properties. If a model of the system and a formalized property is given to the
model checker, it automatically checks whether it can find property violations.
In case some property is violated, the model checker returns a counterexample,
which consists of a system execution trace leading to the property violation.
While a counterexample helps in retracing the system execution leading to the
property violation, it does not identify causes of the property violation.

We present an approach based on explicit state space search towards the auto­
mated computation of causalities that we refer to as causality checking. Instead of
returning just a single counterexample at the end of the model checking process,
we compute causal events that lead to the violation of a desired system property.
The notion of causality that we use is based on counterfactual reasoning [2,3].

In precursory work [4] causality computation was performed as a postprocess­
ing step on a set of probabilistic counterexamples. In addition we presented a
mapping .of the computed causality relationships between events to fault trees.
For the causality computation all possible execution traces need to be computed
and stored on disk prior to the causality checking. The current paper focuses on a
extension of our causality model and an integration of the causality computation
into standard state-space search as used by explicit-state model checkers. Conse­
quently, it is no longer necessary to store all good and bad execution traces before
performing the causality computation. We tailor the causality model from [4] so
that it can be used for the analysis of concurrent system models described by
transition systems. We also show how the causality checks can be mapped to
sub- and superset comparisons of execution traces. The proposed algorithm for
causality checking is an extension of the depth-first search and breadth-first

http://dx.doi.org/10.1007/978-3-642-35873-9_16
http://nbn-resolving.de/urn:nbn:de:bsz:352-233165

249

search algorithms used for state-space exploration in explicit-state model check­
ing. In keeping with standard practice in this domain we design our algorithms
to work on-the-fly. To his end we propose a data-structure called subset graph
that is used to store the counterexamples that are needed for causality checking.
A further contribution of our current paper is an application of this approach
to two case studies, one of them of industrial size, and a comparison of various
search strategies.

The remainder of this paper is structured as follows. In Section 2 we discuss
how causality relationships can be formally established within system models.
The on-the-fly algorithm for causality computation and its integration in state­
space exploration algorithms is presented in Section 3. In Section 4 we demon­
strate the causality checking approach using two case studies. Related work is
discussed throughout the paper and in Section 5. We conclude in Section 6.

2 Causality Reasoning in System Models

Our goal is to identify the events that cause the violation of a non-reachablitiy
requirement. Such a violation could, for instance, represent a hazard or a po­
tentially unsafe state of the system. We use the explicit state model checker
SPIN [5] to check whether there are system executions that lead to such an
undesired state.

2.1 System Model

The systems that we wish to apply causality checking to are concurrent systems.
For the formalization of the system model we follow the formalization of a model
for concurrent computing systems proposed in [6]. The system model is given by
a Transition System which is defined as follows:

Definition 1. Transition System. A transition system TS is a tuple (S, Act ,
~,I, AP, L) where S is a finite set of states, Act is a finite set of actions,
~ ~ 3 x Act x 3 is a transition relation, I ~ 3 is a set of initial states, AP is a
set of atomic propositions, and L : 3 ~ 2AP is a labeling function.

A Transition System defines a Kripke structure. Each state s E S is labeled with
the set L(s) of all atomic state propositions that are true in this state. The set
Act contains all actions that can trigger the system to transit from some state
into a successor state. The execution semantics of a transition system is defined
as follows:

Definition 2. Execution Trace of a Transition System. Let T = (3, Act,~ ,
I , AP, L) be a transition system. A finite execution (J of T is an alternating se­
quence of states s E 3 and actions a E Act ending with a state. (J = So al S1 a2

an Sn S.t. Si ~ Si+l for all 0 ~ i < n.

The analysis aims at identifying the violation of functional safety requirements.
Such a violation is also referred to as a hazard. We use linear time temporal

250

logic (LTL) using its standard syntax and semantics as defined in [7] in order to
specify hazards. Hazards imply the reachability of unsafe states and they hence
belong to the class of reachability properties. Hence we only need to consider
finite execution fragments [6]. Hazards fall within the class of safety properties
in the commonly used classification scheme of safety and liveness properties. We
use T Fl <p to express that the LTL formula <p holds for the transition system T
and a Fl <p respectively for execution traces.

We will demonstrate the presented definitions on a running example of a
railroad crossing system. In the running example a train can approach the cross­
ing (Ta), cross the crossing (Tc) and finally leave the crossing (TI). When­
ever a train is approaching, the gate should close (Gc) and will open when
the train has left the crossing (Go). It might also be the case that the gate
fails (Gf) . The car approaches the crossing (Ca) and crosses the crossing (Cc)
if the gate is open and finally leaves the crossing (Cl). We are interested ' in
finding those events that lead to a hazard state in which both the car and the
train are in the crossing. This hazard can be characterized by the LTL formula
<p = D~ (ca:r _crossing /\ train_crossing). .

In the following we will use short-hand notation a = "a"" ,a"'2' ... , a",,," for an
execution trace a = So 01 Sl 02 .. . On Sn. The trace a = "Ta, Ca, Gf, Cc, Tc",
for instance, is a trace of the railroad example where the train and the car are
approaching the crossing (Ta, Ca), the gate fails to close (Gf), the car crosses
the crossing (Cc) and finally the train crosses the crossing (Tc).

We can partition the set of all possible execution traces E of a transition
system T into the set of "good" execution traces, denoted Ee, where the LTL
formula is not violated and thus the hazard does not occur, and the set of "bad"
execution traces, denoted EB, where the LTL formula is violated and thus the
hazard occurs. The elements of EB are also referred to as counterexamples in
model checking. The trace a = "Ta, Ca, Gf, Cc, Tc" we already discussed above
is a "bad" execution trace, since bot the car and the train are on the crossing at
the same time and thus the LTL property. is violated. An example for a "good"
trace is a' = "Ta, Ca, Gi, Cc, Cl, Tc" where the car leaves the crossing (CI) before
the train is crossing (Tc) and consequently the train and the car are not on the
crossing at the same time and the LTL formula is not violated.

Definition 3. Good and Bad Execution Traces . Let T = (S,Act, -+,I,AP,L)
be a transition system, let <p an LTL formula over AP and E that set of all
possible finite executions of T. The set E is divided into into the set of "good"
execution traces Ee and in the set of "bad" execution traces En as follows:
Ee = {a EE l a Fl <p}, En = {a EE l a til <p} and EeuEB = E and EenEB = 0.

2.2 Causality Reasoning

Our goal is to automatically identify those events that are causal for the violation
of an LTL property. We assume that for a given execution trace a of a transition
system T, Act contains the events that we wish to reason about. For an LTL
formula <p specifying a safety requirement and an execution trace a, the hazard

251

described by the safety requirement occurs on a if and only if a ¥=l cp holds.
Notice that since each transition is only labeled with one action, only one event
can occur per transition. In order to be able to reason about the causality of
events we have to formally capture the occurrence of events. We assume that
there exists a set A of event variables that contains a boolean variable a for each
action a E Act for some given transition system. The variable aTa for instance
represents the event train approaching the crossing. If multiple instances of one
event type occur on one execution trace, for example the two train approaching
events on "Ta,Gc,Tc,Tl,Go,Ta", the variables representing them are numbered
according to their occurrence, for our example aTal and aTa2' In other words,
the i-th occurrence of some action of type a will be represented by the boolean
variable ani ' In the following we also abbreviate the event variable aTa by Ta.

Definition 4. Events, Event Types and Event Variables. Let T = (S, Act,->,
I , AP, L) a transition system and a = so, a1 , Sl, a2, ... an , Sn a finite execution
trace of T. We define the following: each a E Act defines an event type a . ai
of a denotes the i-th occurrence of an event of the event type a . The variable
representing the occurrence of the event ai is denoted by ani ' and the set A =

{anl , ... , an,,} contains a boolean variable for each occurrence of an event.

Event variables allow us to reason about the occurrence of single events, but since
we want to reason about the combination of events, we need a formalism that
allows us to express the occurrence of event combinations. In [4J we presented
the event order logic (EOL) which allows one to connect event variables from A
with the boolean connectives /\, v and ~. To express the ordering of events we
introduced the ordered conjunction operator A. The formula a A b with a, b E A
is satisfied if and only if events a and b occur in a trace and a occurs before b.
We present here an amended version of the event order logic and further refine
it in order to enable causality reasoning for concurrent system models specified
by transition systems. In addition to the A operator we introduce the interval
operators A[, Al, and A< ¢ A>, which define an interval in which an event has to
hold in all states. As we will see later, these interval operators are necessary to
express the causal non-occurrence of events.

Definition 5. Syntax of Event Order Logic (EOL). Simple event order logic
formulas over the set A of event variables are formed according to the following
grammar:

where a E A and ¢, ¢1 and ¢2 are simple event order logic formulas. Complex
event or-der logic formulas are for-m ed according to the following grammar:

where ¢ is a simple event order logic formula and 'l/J1 and 'l/J2 are complex event
order logic formulas. Note that the ~ operator binds more tightly than the A, A[,

Al ' and A< ¢ A>, operators and those bind more tightly than the v and /\ operator.

252

The formal semantics of this logic is defined on execution traces. Notice that the
A, 1\-[, AI' and A< ¢ A> operators are linear temporal logic operators and that the
execution trace u is akin to a linearly ordered Kripke structure.

Definition 6. Semantics of Event Order Logic (EOL) . Let T = (8, Act, ->, I , AP,
L) a transition system, let ¢, ¢1, ¢2 simple event order logic formulas , let 1/J, 1/J1,
1/J2 complex event order logic formulas, and let A a set of event variables, with
a",;. E A, over which ¢, ¢1, ¢2 are built. Let u = so, aI, Sl, a2, ... an, Sn a finite
execution trace of T and u [i .. r] = S'i , a'i+1, S'i+1, mi+2, ... ar, s,. a partial trace. We
define that an execution trace u satisfies a formula 1/J, written as u I=e 1/J, as
follows:

'ff' Cti - Sj I=e a"'i 1 Sj- 1 --> Sj
- Sj I=e -.¢ iff not Sj I= e ¢
- u[i .. r] I=e ¢ iff 3j : i :=; j :=; r . Sj I=e ¢
- U I=e 1/J iff u[O .. n] I=e 1/J, where n is the length of u.
- u [i .. r] I=e ¢11\¢2 iffu[i .. r] I=e ¢1 and u[i .. r] I=e ¢2
- U[i .. T] I=e ¢l V ¢2 iff U[i .. T] I=e ¢l OT u[i .. r] I= e ¢2
- u [i .. r] I=e 1/J1 1\ 1/J2 i ff' u[i .. r] I= e 1/J1 and u[i .. r] I=e 1/J2
- u [i .. r] I=e 1/Jl V 1/J2 iff u [i .. r] I= e 1/J1 or u [i .. r] I=e 1/J2
- u[i .. r] I=e 1/Jl A1/J2 iff3j,k: i:=;j < k:=; r. u [i .. j] I=e 1/Jl and u[k .. r] I=e 1/J2
- u[i .. r] I=e 1/J A[¢ iff (3j : i:=; j :=; T . u[i .. j] I=e 1/1 and (Vk : j :=; k:=; T . u [k .. k] I=e

¢))
- U [i .. T] 1= e ¢ A I 1/J iff (3 j : i :=; j :=; T . U [j .. 1'] 1= e 1/J and (V k : 0 :=; k :=; j . u [k .. k] 1= e

¢»
- u [i .. r] I=e 1/Jl A< ¢A> 1/J2 iff (3j,k: i:=; j < k:=; r. u [i .. j] I=e 1/Jl and u[k .. r] I=e

1/J2 and (VI : j :=; l :=; k . u [l .. l] I= e ¢»

We define that the transition system T satisfies the formula 1/J, written as T I=e 1/J,
iff 3u E T . u I=e 1/J .

Each execution trace u specifies an assignment of the boolean values tr'Ue and
false to the variables in the set A. If an event ai occurs on u its value is set
to true. If the event does not occur on u its value is set to false . We define
a function val A (u) that represents the valuation of all variables in A for a
given u.

Definition 7 . . Valuation of the Set of Event Variables. Let T = (8, Act,->,
I , AP, L) a transition system, u = so, aI, Sl , a2, ... an, sn a finit e execution trace
of T and A the set of event variables then we define the function valA (u) as
follows:

I () () I {
true if u I= e a",;

va A u = a"'Jl ... , a"" ., aCti = false, else . .

Further we define valA (u) = valA (u') if for all aCti E A the values assigned by
valA (u) and valA (u') are equal and valA (u) * valA (u') else.

253

In fact, we can represent an execution trace by an EOL formula. Suppose we want
to represent the execution trace (J = "Ta, Ca, Gf, Cc, Tc" by an EOL formula.
We partition the set A of event variables in the set Z containing all the event
variables of the events that occur on (J and the set W containing all the event
variables of the events that do not occur on (J. Consequently, Z contains Ta, Ca,
Gf, Cc, and Tc. The resulting EOL formula over Z is 1/J = Ta A Ca A Gf A Cc A Tc.

Definition 8. Event Order Logic (EOL) Formula over Executions. Let T =

(8, Act, ->,1, AP, L) a transition system, and (J = So a1 S l a2 ... an Sn an
execution trace of T. The EOL over the execution (J denoted by 1/Ja is defin ed
as follows : We partition the set of event variables A into sets Z and W in
such a way that Z contains all event variables of the events that occur on (J

and W contains all event variables of the events that do not occur on (J. 1/Ja is
the EOL fo rmula containing all events in Z in the order they occur on (J (e. g.
1/Ja = a"'l A a"'2 A .. . A a"'n) '

Now that we have established the formal basis to reason about t he occurrence
of events we have to formally define the notion of causality that we will use. A
commonly adopted notion of causality is that of counterfactual reasoning and the
related alternative world semantics of Lewis [2, 8]. The "naive" counterfactual
causality criterion according to Lewis is as follows : event A is causal for the
occurrence of event B if and only if, were A not to happen, B would not occur.
The testing of this condit ion hinges upon the availability of alternative worlds .
. A causality can be inferred if there is a world in which A and B occur, whereas
in an alternative world neither A nor B occurs. In our setting possible system
execution traces represent the alternative worlds.

The structural equation model (SEM) by Halpern and Pearl [3] extends the
counterfactual reasoning approach by Lewis. The SEM introduces the notion of
causes being logical combinations of events as well as a distinction of relevant
and irrelevant causes. In the SEM events are represented by variable values and
the minimal number of causal variable valuation combinations is determined. In
order to do so the counterfactual test is extended by contingencies. Contingencies
can be viewed as possible alternative worlds , where a variable value is changed.
A variable X is causal if there exists a contingency, that is a variable valuation
for other variables, that makes X counter factual. In our precursory work [4],
we extended the SEM by considering the order of the occurrences of events as
possible causal factors . We now present an adaption of the SEM that can be used
to decide whether a given EOL formula 1/J describes the causal process of the
violation of some LTL formula tp in a transition system. The causal process [3]
comprises the causal events for the property violation and all events that mediate
between the causal events and the property violation. Those events which are
not root causes, are needed to propagate the cause through the system until
the property violation is being triggered. If 1/J describes the causal process of a
property violation we also say 1/J is causal for the property violation.

In a naive causality checking algorithm we perform the tests defined in Def­
inition 9 for the induced EOL formula 1/Ja of each (J E E B . The disjunction of

254

all 'l/Jal' 'l/Ja2' ... , 'l/Jan that satisfy the conditions ACI-AC3 is the EOL formula
describing all possible causes of the hazard.

Definition 9. Cause for a Property Violation (Adapted SEM). Let T = (S , Act,
..... , I , AP, L) a tmnsition system, and a , a' and a" some execution tmces of T.
We partition the set of event variables A into sets Z and W. An EOL formula

'I/J consisting of the event variables in Z is considered a cause for- an effect rep­
r-esented by the violation of the LTL formula r.p, if the following conditions ar-e
satisfied:

- AC1: Ther-e exists an execution a, for which both a I= e 'I/J and a if-l r.p hold.
- AC2 {1}: 3a' s.t. a ' if-e 'I/J /\ (val z (a) * valz (a') vvalw(a) * valw(a')) and

a ' I=l r.p. In wor-ds, there exists an execution a i wher-e the or-der- and occurrence
of events is diffeTent from execution a and r.p is not violated on a ' .
AC2 {2}: Va" with a" I=e 'I/J /\ (valz (a) = valz(a") /\ valw(a) "* valw(a"))
it holds that a" if-l r.p for- all subsets of W . In wor-ds, fo r- all executions wher-e
the events in Z have the value defined by val z (a) and the order- defined by
'I/J, the value and or-der- of an aTbitmry subset of the events in W have no
effect on the violation of r.p.
AC3: The EOL for-mula 'I/J is minimal: no subset of 'I/J satisfies conditions
AC1 and AC2.

If we want, for instance, to show that 'I/J = Ta A Ca A Gf A Cc A Tc is causal, we
need to show that ACl , AC2(1) , AC2(2) and AC3 are fulfilled for 'I/J.

- ACI is fulfilled, since there exists an execution a = "Ta, Ca, Gf, Cc, Tc" for
which a I=e 'I/J, and both the train and the car are in the crossing at the same
time.

- AC2(1) is fulfilled since there exists an execution a ' = "Ta, Ca, Gc, Tc" for
which a ' if-e 'I/J /\ (val z (a) "* valz(a') /\ valw(a) "* valw(a')) holds and a '
does not violate the property.

- Now we need to check the condition AC2(2) . For the execution a" = "Ta,
Ca, Gf, Cc, Cl, Tc" and the partition Z , W ~ A, a" I=e 'lj; and valz (a) =
valz (a") /\ valw (a) "* valw (a") hold. The property is not violated since the
car leaves the crossing (Cl) before the train enters the crossing (Tc). As a
consequence, AC2(2) is not fulfilled by 'I/J because if Cl occurs between Cc
and Tc, the property violation is prevented.

The example showed that the non-occurrence of events can be causal as well,
and that this is not yet captured by the adapted SEM. The non-occurrence of
an event is causal when ever ACI and AC2(1) are fulfilled but AC2(2) fails for
a EOL formula 1/Ja. If AC2(2) fails there is at least one event a on a" which
did not occur on a and the occurrence of a prevents the property violation.
Consequently, the non-occurrence of a on a is causal. We need to reflect the
causal effect of the non-occurrence of a in 'l/Ja. For the models that we analyze
there are three possibilities for such a preventing event a to occur, namely,
at the beginning of the execution trace, at the end of the execution trace, or
between two other events al and a2. Furthermore, it is possible that the property

255

violation is prevented by more than one event, hence we need to find the minimal
set of events that are needed to prevent the property violation. This is achieved
by finding the minimal true subset Q c W of event variables that need to be
changed in order to prevent the property violation.

Definition 10. Non-Occurrence of Events. LetT = (S,Act, ~,I,AP,L) a tran­
sition system, and (5 and (51/ execution traces of T. W e partition the set of event
variables A into sets Z and W. Let 'I/J an EOL formula consisting of the event
variables in Z. The non-occurrence of the events which are represented by the
event variables ao E Q with Q ~ W on execution (5 is causal fOT the viola­
tion of the LTL formula <p if'I/J satisfies ACl and AC2(l) but violates AC2(2),
and if Q is minimal, which means that there is no true subset of Q for which
(5/1 I=e 'I/J A ValZ ((5) = vatZ((51/) A valQ((5) '* valQ ((5/1) A vaIW,Q((5) = valw'Q ((5/1)

and (5/1 ~l <p holds.

For each event variable ao E Q we determine the location of the event in 'I/J/I and
prohibit the occurrence of a in the same location in 'I/J. We add ~aoAl at the
beginning of'I/J if the event occurred at the beginning of (5/1 and A[~ao at the
end of 1/J if the event occurred at the end of (5/1. If a occurred between the two
events al and a2 we insert A<~aoA> between the two event variables aOI and
a02 in 1/J. Additionally, each event variable in Q is added to Z. In our example,
Cl is the only event that can prevent the property violation on (5 and occurs
between the events Cc and T c. Consequently ~Cl is added to Z and 'I/J and we
get 1/J = Ta A Ca A Gf A Cc A< ~Cl A> Tc.

If a formula 1/J meets conditions ACI through AC3 , the occurrence of the
events included in 'I/J is causal for the violation of <po However, condition AC2
does not imply that the order of the occurring events is causal. For instance, we
do not know whether Ta occurring before Ca is causal in our example or not . If
the order of the events is not causal, then t here has to exists an execution for
each ordering of the events that is possible in the system, and these executions
all violate the property. Whether the order of events is causal is checked by the
following Order Condition (OC1). Note that the outcome of OC1 has no effect
on 1/J being causal, but merely indicates whether in addition the order of events
in '1/) is causal.

Definition 11. Order Condition (OC1). Let T = (S ,Act, ~, J ,AP,L) a tran­
sition system, and (5, (5' execution traces of T. Let 1/J an EOL formula over Z
that holds for (5 and let 'l/JA the EOL formula that is created by replacing all
A-operatoTs in 1/J by A-operators. The A[, Al' and A< ¢ A> are not replaced in 'l/JA'

OC1: The oTder of a subset of events Y ~ Z represented by the EOL fOTmula
X is not causal if the following holds: (5 I=e X A :1(5' E EB : (5' ~e X A (5' I=e XA '

In our example, the order of the events Gf, Cc, ~Cl, Tc is causal since only if
the gate fails before thecal' and the train are entering the crossing, and the car
does not leave the crossing before the train is entering the crossing an accident
happens. Consequently after OC1 we obtain the EOL formula 'I/J = Gf A ((Ta A

(CaA Cc)) A< ~Cl A> Tc).

256

3 On-The-Fly Causality Checking

3.1 Preliminaries

In order to compute causality relationships, it is necessary to compute good
and bad execution traces. If depth-first search or breadth-first search is used
for model checking, good and bad executions can easily be retrieved by the
counterexample reporting capabilities of the model checker in use.

The key idea of the proposed algorithm is that the conditions ACl, AC2(1),
AC2(2) and AC3 defined in Section 2 can be mapped to computing sub- and
superset relationships between good and bad execution traces. In the following
we also use the terms sub-execution and super-execution to refer to sub- or
superset relationships between execution traces. We define a number of execution
trace comparison operators as follows.

Definition 12. Execution Trace Comparison Operators. Let T = (S, Act, -+,
I , AP, L) a transition system, and al and a2 execution traces of T.

- . al = a2 iff Va E A . al Fe a = a2 F e a.
==: al==a2 iffVal,a2EA.alFe alAa2=a2FealAa2.

S : al S a2 iff Va E A . al F e a=> a2 F e a.
c: al C a2 iff al S a2 and not al = a2 .
~: al~a2 iff Val,a2 E A . al F e al A a2 => a2 F e al A a2·
c: al ca2 iff al~a2 and not al == a2 .

In the following let <.p a safety property specification given in LTL, a, a', a", a"'
execut ion traces and 'l/Ja, 'l/Ja l , 'l/Ja" , 'l/Ja'" the event order logic formulas representing
these execut ion traces, respectively.

Theorem 1. ACl is fulfill ed for all 'l/Ja where a E E B .

Proof. For each a E EB we can partition the set A of event variables into the
sets Z and W such that Z consists of the variables of the events that occur on a
and 'l/Ja consists of the variables in Z . Consequently, a F e 'l/Ja and a Ffl <.p because
a is a bad execution. Therefore, ACI is fulfilled for all 'l/Ja where a E EB. 0

Theorem 2. AC2(1) holds for 'l/Ja if there is an execution a' E Ec with at c a.

Proof. To show AC2(1) for a execut ion a we need to show that there exists an
execut ion at for which a' Ffe 'l/Ja /\ (vala (Z) * valal(Z) v vala(W) * valal(W))
and a' F l <.p holds. For each a' E Ec with at c a there is at least one event
on a that does not occur on at. Because that missing event is part of 'l/Ja and
Z it follows a' Ffe 'tPa and (vala(Z) * valal (Z) v vala(W) * valal (W)) follows,
since the value of the event variable representing the missing event assigned by
val a (Z) is true and the value assigned by valal (Z) is false. Therefore, we can
show AC2(1) for 'l/Ja by finding an execution at E Ec for which a' c a holds. 0

Theorem 3. A C2(2) holds fo r 'l/Ja if there is no execution a" E Ec with aca".

257

Proof. AC2(2) requires that Vu" with u" F e 1/;"I\ (val,, (Z) = val ,," (Z) l\val,, (W)
"* val,,11 (W)) it holds that u" ~l t.p for all subsets of W. Suppose there exists a
u" for which ucu" holds. For a u" to satisfy the condition u" F e 1/; 1\ val" (Z) =
val,,11 (Z) all events that occur on u have to occur in the same order on u", which
is the case if u~u" holds. The set W contains the event variables of the events
that did not occur on u and val,, (W) assigns false to all event variables in W.
For val,,11 (W) to be different from val" (W) there has to be at least one event
variable that is set to true by val ,," (W) . This is only the case if an event that
does not occur on u occurs on u". Consequently, u" consists of all events that
did occur on u and at least one event that did not occur on u, which is true if
ucu" holds. U" ~l t.p holds if u" E ED and is false if u" E Ec. Hence, AC2(2)
holds for u if there is no u" E Ec for which ucu" holds. D

Theorem 4. If AC1 and AC2(1) hold for 1/;" and 1/;" is modified according to
Def. 10 in order to fulfill AC2(2), then ACl and AC2(l) hold for the modified
1/;" .

Proof. The modification defined in Def. 10 prohibits the occurrence of events
that did not occur on u but occur on u" by adding their corresponding negated
event variables to 1/;". Since the prohibited events did not occur on u, the mod­
ified 1/;" holds for u and AC1 holds. AC2(1) holds for the modified 1/;" because
for AC2(1) to hold in the first place there has to be an execution u' E Ec with
u' cu. For the modification of 1/;" to be necessary an executiqn u" E Ec with
ucu" has to exist. If ucu" holds, u c u" holds and u' c u" holds as well. Conse­
quently, AC2(1) holds for the modified 1/;". D

Theorem 5. AC(3) holds for 1/;" if there does not exists an execution U 'll E ED
for which u'" c u holds.

Proof. In AC(3) we have to show that no subset of the event order logic formula
1/; satisfies AC1, AC2(1) and AC2(2). Suppose there exists a u'" E ED with
u'" c u. We can partition A in Z,,1f! and W,,1f! such that Z"III consists of the
variables of the events that occur on u'" and 1/;,,1f! consists of the variables in
Z"III. For u we partition A in Z" and W" such that Z" consists of the variables of
the events that occur on u and 1/;" consists of the variables in Z". Consequently,
Z,,1f! c Z" and 1/;" ,11 c 1/;". If 1/;,, 111 satisfies AC1 , AC2(1), AC2(2), then AC3 would
be violated. If we can not find a u'''with u'" c u, then no subset of 1/;" satisfies
AC1, AC2(1) and AC2(2), and consequently AC3 holds. D

We use these theorems in order to devise an algorithm and a corresponding data­
structure called subset graph for on-the-fly causality checking. The pseudo-code
for the proposed algorithms can be found in [9] .

3.2 Subset Graph Data-Structure

In order to store the execution traces we have devised a data-structure called
subset graph. This data-structure enables us to make causality decisions on-the­
fly which means that we can decide whether an execution trace is causal as soon

258

as we add it to the subset graph. The subset graph is structured into levels where
each level corresponds to the length of the execution traces on that level. Each
node represents exactly one execution trace. Figure 1 shows a part of the subset
graph for the railroad crossing example. The execution traces on adjoining levels
are connected by edges indicating subset relationships between the respective
execution traces. In order to improve readability the edges between executions
on the same level are not displayed in the figure. The nodes representing the

Levell: Ca

Level 2:

Level 3:

Level 4:

LevelS :

Level 6:

Fig. 1. Subset-graph of the railroad crossing example

execution traces are colored in green, red, black or orange in order to indicate
their potential causality relation according to the following rules:

- Green: a node is colored green if it represents a good execution trace and all
nodes on the level below that are connected with it are also colored green.
An example of such a trace is "Ca,Ta,Gc,Tc,TI" in the railroad crossing
example. Green traces can not be causal because they are good traces. The
green traces can be prefixes of either bad or good execution traces.

- Red: a node is colored red if it represents a bad execution trace and all nodes
on the level below that are connected with it are colored green. Red nodes
correspond to the shortest bad traces found at any point of the state-space
exploration. They are considered to be causal. As an example consider the
trace "Ta,Ca,Gf,Cc,Tc" in the railroad crossing example.
Black: a node is colored black if it represents a good execut ion trace, but at
least one node on the level below that it is connected with is colored red.
Black traces cannot be causal themselves, since they are good traces, but
since a sub-trace of t hem with one less element is a minimal bad trace, the
transition in the subset graph from red to black ident ifies an event that turns

259

a bad execution into a good one. We hence take advantage of black traces
when checking condition AC2(2) . As an example for a black node consider
the the trace "Ta,Ca,Gf,Cc,Cl,Tc" of the railroad crossing example, which
is connected with the red execution "Ta,Ca,Gf,Cc,Tc" on the level below,
the introduced "Cl" event turns the bad execution into a good one.
Orange: A node is colored orange if it represents a bad execution trace and
at least one node on the level below that is connected to the orange node
is colored red. If a trace is colored orange, there exists a shorter red trace
on a level below and hence a orange trace does not fulfill the minimality
constraint AC3 for being causal. An example for an orange colored trace is
the trace "Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc" which, due to space restrictions,
is not depicted in Figure 1. The trace "Ca,Ta,Gf,Cc,Tc" is a shorter red trace
and a subset of the trace "Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc", hence the trace
does not fulfill the minimality constraint.

3.3 Causality Checking

The causality checking that we propose is embedded into both of the standard
state-space exploration algorithms used in explicit state model checking, namely
depth-first and breadth-first search. Whenever a bad or a good execution is
found by the search algorithm it is added to the subset graph. After adding a
trace the algorithm first checks whether there are executions at the same level
that consist of the same events but in a different order. If we find such an
execution, then all subset relationships of the execution already in the subset
graph hold a lso for the newly added execution. For instance in our example all
subset relationships that hold for the execution "Ta,Ca,Gf,Cc,Tc" also hold for
the execution "Ta,Gf,Ca,Cc,Tc". If we don't find such a trace on the same level,
we have to check the subset relationships with the execution traces on the level
below (level-I) and, if depth-first search is used, on the level above (level+l)
as well. It is not necessary to check the subset relationships on the level above
(level+l) if breadth-first search is used, because breadth-first search adds the
traces by increasing length.

Once all subset relationships are established, the nodes representing the ex­
ecutions are colored according to the above described coloring rules. If a trace
is colored red, we additionally need to check whether we have already found a
shorter red trace which is a sub-set of the new red-trace. If such a shorter red
trace is found, the current trace is colored orange. In our example the execution
traces Ta, Ga, Gf, Gc, Tc and Ta, Gf, Ga, Gc, Tc and Ga, Ta, Gf, Gc, Tc are colored red
and hence considered to be causal.

The following theorems show that for an execution (J that is colored red, 1/JrI
is a candidate for being causal and fulfills ACI, AC2(1) and AC3.

Theorem 6. A Gl is fulfilled for 1/JrI of each execution trace (J that is colored
red.

Proof. By definition an execution trace is only colored red if it is a bad trace
and according to Theorem I ACI is fulfilled for all (J E E B . 0

260

Theorem 7. AC2(1) is fulfilled for 'l/Ja of each execution trace a that is colored
red.

Proof. According to Theorem 2 we can show AC2(1) by finding an execution
a' E Ec for which a' c a holds. For an execution a to be colored red, all sub
execution traces on the level below have to be colored green. Consequently, for
each execution a' for which a' c a holds also a' E Ec holds because it is colored
green and hence needs to be a good trace. Therefore, AC2(1) is fulfilled according
to Theorem 2. 0

Theorem 8. If breadth-first search is used, AC3 is fulfilled for 'l/Ja of each ex­
ecution trace a that is colored red. If depth-first search is used, A C3 is fulfilled
for 'l/Ja of each execution trace a that is colored red as soon as the state-space
exploration has terminated.

Proof. According to Theorem 5, 'I/J fulfills AC3 if there does not exists a trace
a'" E EB for which a'" c a holds. This is due to the fact that by definition
an execution trace is only colored red if all its subsets are colored green, which
means there is no bad sub-execution a'" of a. If breadth-first search is used the
shortest paths are added first, hence all sub-executions are known at the time
where a is inserted and colored. Consequently, if breadth-first search is used,
AC3 is fulfilled for 'l/Ja of each execution trace a that is colored red. If depth-first
search is used it is possible that new sub-executions are found as long as the
state-space exploration is not complete. As a result, AC3 is fulfilled for 'l/Ja of
each execution trace a that is colored red as soon as the state-space exploration
with depth-first search has terminated. 0

Once the state space search is completed we have to perform the tests for AC2(2)
and OCI for all red execution traces.

According to Theorem 3, AC2(2) holds for 'l/Ja if there is no a" E Ec for
which aca" holds. If such a a" exists, it is a black superset of a because a c a"
holds for each black superset of a. a" is only colored black if it is a good trace.
Consequently, we need to check for each black superset a" of a whether aca"
holds. If there is no a" for which aca" holds, then 'l/Ja fulfills AC2(2). If aca"
holds for a black superset, then we need to modify 'l/Ja as specified by Definition
10. Hence, we have shown that ACl , AC2(1), AC2(2) and AC3 are fulfilled for
'l/Ja of each red execution a and, consequently, that 'l/Ja is causal for the property
violation.

Notice that the AC2(2) test is needed in order to detect whether the non­
occurrence of an event is causal. It is necessary to store all traces that are colored
black only to test AC2(2) . We have added a runtime switch in the implementation
of the causality checking method that allows the user to turn the AC2(2) test
off in order to save memory at the expense of not being able to take the possible
causality of the non-occurrence of an event into account. If the AC2(2) test is
fulfilled by 1Pa, then the OCI test is performed. Due to the structure of the subset
graph, it is sufficient to check for each red execution trace whether there exists
a red execution trace on the same level for which the unordered £: relationship

261

holds. For all those execution traces, we check for each pair of events whether
they appear on all execution traces in the same order or not. If a pair of events
does not occur in the same order, then the order of this pair is marked as having
no influence on causality.

Causality Checking with Breadth-First Search (BFS). When using bread­
th-first search, the execution trace leading from the initial state to a property
violating state can be generated by iterating backwards through the predecessor
links until an initial state is reached. Whenever a bad or a good execution is
found, it is added to the subset graph. If BFS encounters a' state that is already
in the state-space and hence all successors of this state have already been ex­
plored, the successors are not explored for a second time. Since BFS explores the
state-space following an exploration order that leads to a monotonically increas­
ing length of the execution traces, this new execution trace reaching the state
either has the same length as the already known execution trace containing the
same state, or the new execution is longer than the already known execution
trace. If the new execution trace has the same length, the events on the trace
have an order that is different from the one in the already known execution trace.
Hence the new execution trace needs to be added to the subset graph since a
later OC1 test needs to be performed on it.

Causality Checking with Depth-First Search (DFS). We adapted the
depth-first search algorithm to add an execution trace to the subset graph data
structure whenever either a bad state is reached or a good execution trace has
been found. If depth-first search is used it is sufficient to print the search stack
in order to retrieve the execution trace. Similarly to BFS, if DFS encounters a
duplicate, which is a state that is already in the state-space, and hence all succes­
sors of the duplicate have already been explored, the successors are not explored
a second time. It is possible that this new trace to the duplicate is shorter or has
a different event order than the already known execution traces that contain the
duplicate. Hence we store this new execution trace on a match list in the subset
graph and generate all execution traces starting from the duplicate state with
the new trace as a prefix.

Complexity. [10] contains a careful analysis of the complexity of computing
causality in the SEM. Most notable is the result that even for an SEM with only
binary variables, in the general case computing causal relationships between vari­
ables is NP-complete. Results in [11] show that causality can be computed in poly­
nomial time if the causal graph over the events forms a directed causal tree. A
directed causal tree consists of directed paths, where the nodes represent events,
and the edges represent the causality ' relationships and the root node represents
the hazard or effect. Each bad execution trace in the counterexample is a directed
path containing the variables representing the events leading to the hazard or ef­
fect. Consequently, a set of counterexamples resembles a directed causal tree and
our algorithm can compute the causal process in polynomial time. A more com­
prehensive discussion of the complexity of our approach can be found in [9].

262

4 Case Studies

In order to evaluate the proposed approach, we have implemented our causality
checking algorithms within the SpinJa toolset [12], a Java re-implementation
of the explicit state model checker Spin [5]. Our SpinCause tool1 computes the
causality relationships for a Promela model and a given LTL property. In order to
compute all interleavings and all executions partial-order reduction was disabled
during the state-space exploration. The Promela models used for the case studies
have been created manually, in practical usage scenarios the Promela models can
also be automatically synthesized from higher-level design models, as for instance
by the QuantUM tool [13]. The following experiments were performed on a PC
with an Intel Xeon Processor (3.60 Ghz) and 144 GBs of RAM.

4.1 Railway Crossing

The Promela model of the railway crossing that we constructed as a running
example for the purpose of this paper comprises 133 states and 237 transitions.
A total of 47 bad execution traces are found. The causality checking algorithm
identified two event order logic formulas describing the causal factors for a train
and a car being on the crossing at the same time.

- First, if the gate fails at some point of the execution and a train (Ta) and
a car (Ca) are approaching this results in a hazardous situation if the car
is on the crossing (Cc) and does not leave the crossing (Cl) before the train
(Tc) enters the crossing (Gf 1\ ((Ta 1\ (Ca A Cc)) A< ..,Cl A> Tc)).

- Second, if a train (Ta) and a car (Ca) are approaching but the gate closes
(Gc) when the car (Cc) is already on the railway crossing and is not able to
leave (Cl) before the gate is closing and the train is crossing (Tc), this also
corresponds to a hazardous situation ((Ta 1\ (Ca A Cc)) A< ..,Cl A> (Gc 1\ Tc)).

4.2 Airbag Control Unit

The industrial size model of an airbag system that we use in this case study is
taken from [14]. The architecture of this system was provided by our industrial
partner TRW Automotive GmbH. The architecture of this system consists of two
acceleration sensors, one micro controller to perform the crash evaluation, and
an actuator that controls the deployment of the airbag. Although airbags save
lifes in crash situations, they may cause fatal accidents if they are inadvertelltly
deployed. This is because the driver may lose control of the car when this deploy­
ment occurs. It is a pivotal safety requirement that an airbag is never deployed if
there is no crash situation. We are interested in computing the causal events for
the hazard corresponding to an inadvertent ignition of the air bag. The Promela
model of the airbag system consists of 155,464 states and 697,081 transitions.

Figure 2 shows the fault tree generated by the SpinCause tool. All execution
traces that are colored red are part of the fault tree representation. The fault

1 http : / /se.uni-konstanz.de / researchl/tools/spincause

263

Fig. 2. Fault tree of the airbag system

trees generated by our approach all have a normal form, that is they start with
an intermediate gate representing the top level event, that is connected to an
OR gate. The execution traces that are colored red are represented by Priority­
AND (PAND) gates if the order of some events is causal and by AND gates
if the order is not causal. The events of the execution traces are connected
to the corresponding AND or PAND gates, respectively. Since fault trees are
not sufficiently expressive to completely represent an event odeI' logic formula,
we display for each PAND gate the event order logic formula constraining the
order of the events connected to the PAND-gate (omitted in Figure 2 for better
readability) .

While there are a total of 20,300 bad execution traces, the fault tree com­
prises only 5 paths. Obviously, a manual analysis of this large number of traces
in order to determine causal factors would be impossible. It is easy to see in
the fault tree which basic events cause an inadvertent deployment of the airbag.
For instance, there is only one single fault that can lead to an inadvertent de­
ployment, namely FASICShortage, which is represented by the event order logic
formula FASICShortage. It is also obvious that the combination of the basic
events FETStuckHigh and FASICStuckHigh only leads to an inadvertent de­
ployment of the airbag if the basic event FETStuckHigh occurs prior to the
basic event FASICStuckHigh, which is represented by the event order logic for­
mula FETStuckHighAFASICStuckHigh. The basic event MicroContTOllerFailure
can lead to an inadvertent deployment if it is followed by the following sequence
of basic events: enableFET, armFASIC, and fireFASIG. This sequence is repre­
sented by the event order logic formula MicroControllerFailure A enableFET A
armFASIC A fireFASIC. If the basic event FETStuckHigh occurs prior to the
MicroContTOllerFailure the sequence in which armFASIC and fire.F'ASIC occur
after the MicTOControllerFailure event suffices to lead to the top level event.

264

This sequence is represented by the event order logic formula FETStuckHigh A

MicroControllerFailure A armFASIC A fireFASIC. If the basic event FASICStuck­
High occurs after MicroControllerFailure and enableFET this also leads to a
sequence leading to an inadvertent deployment. It is represented by the event
order logic formula MicroControllerFailure A enableFET A FASICStuckHigh.

The case study shows that the fault tree is a compact and concise visualization
of the counterexample which allows for an easy identification of the basic events
that cause the inadvertent deployment of the airbag. If the order of the events
is important for the events causing the effect, this can be seen in the fault tree
by the PAND gate and the corresponding EOL formula. In the counterexamples
computed by SpinJa one would have to manually compare the order of the events
in all execution traces.

4 .3 Discussion

Table 1 shows the memory and run time consumption of the on-the-fly causality
checking approach presented in this paper for both case studies and the memory
and rnn time consumption of the in off-line approach presented in [4], where all
execution traces are stored on disk during model checking (Run. MC., Mem. MC)
and the causality checking is performed as a post-processing step (Run. Caus.,
Mem. Caus.) , for the airbag case study. The following trends can be identified:

Table 1. This table shows the experiment results with the on-the-fly approach for the
railway crossing and airbag case studies . Run. MC and Mem. MC show the runtime
and memory consumption for model checking only. Run . CCI and Mem. CCI show the
runtime and memory needed to perform model checking and causality checking with
the AC2(2) test disabled and Run. CC2 and Mem. CC2 with the AC2(2) test enabled .
Additionally, the experiment results for off-line causality checking of the airbag case
study are given.

Off-line Approach
Run time I Memory (MB)
MCI Caus. 1 MC I Caus.

- If no causality checking is done, DFS and BFS have approximately the same
runtime and memory consumption. The causality checking adds a run-time
and memory penalty, but the experiments show that causality checking is
applicable to industrial size Promela models. In addition causality checking
provides valuable insight as to why the hazard occurred, which is very tedious

265

or even impossible to determine if standard model checking and manual
counterexample analysis is used.

- When performing causality checking, BFS outperforms DFS in terms of both
runtime and memory consumption. BFS outperforms DFS because if BFS is
used, we can safely rely on the assumption that when a bad trace is found all
shorter bad traces already have been found. This assumption assures that
the minimality condition holds for each bad trace which was found using
BFS and colored red by the causality checking algorithm. If DFS is used, no
assumptions on the length of the bad trace can be made. The main reason
why the assumption on the bad trace length is important and has such a
high impact on the memory consumption when using DFS compared to BFS
is that all good traces which are supersets of a red trace have to be taken
into account for the AC2(2) test. When BFS is used only the traces which
are supersets of red traces need to be stored, whereas when DFS is used all
good traces need to be stored. Because the good traces are needed in case
a shorter red trace is found later in the search for which we need the good
super-traces for the AC2(2) test.
The on-the-fly approach proposed in this paper outperforms the off-line ap­
proach both in terms of runtime and memory consumption. The main rea­
son for this observation is that when using the on-the-fly approach only the
execution traces needed for causality checking, namely the red and black
execution traces, need to be stored, whereas all execution traces have to be
stored for the off-line approach.

5 Related Work

The application of counterfactual reasoning to software debugging has been pro­
posed by Zeller in [15]. However, [15] does not support complex logical rela­
tionships as causes and is mainly applicable to sequential software programs,
whereas our approach is also applicable to concurrent software and hardware
systems. Work documented in [16] uses the Halpern and Pearl approach to
explain counterexamples in CTL model checking by determining causality. How­
ever, this approach considers only single counterexamples. Furthermore, it fo­
cuses on the causality of variable value-changes for the violation of CTL
sub-formulas, whereas our approach identifies the events that lead to the variable
value-changes. Consider the railway crossing example in which the CTL formula
consists of the two boolean variables train_on_crossing and caLon_crossing. Ob­
viously, both variables changing to true is causal for a crash. Consequently the
approach from [16] will indicate the variable value-change of train_on_crossing
and caLon_crossing from false to true as being causal. But this obvious answer
does not give any insight on why the train and the car are on the crossing at the
same time. In [17] a formal framework for reasoning about contract violations is
presented. In order to derive causality the notion of precedence established by
Lamport clocks [18] is used. While this captures a partial order of the observed
contract violations it is not clear to what extent this order information also

266

expresses causality. Work described in [19] establishes causality based on coun­
terfactual reasoning by computing distance metrics between execution traces.
The delta between the counterexample and the most similar good execution is
identified as causal for the bad behavior. For all the above mentioned approaches
it is necessary to compute the counterexamples prior to the causality analysis
whereas our approach works on-the-fly. To the best of our knowledge we are
not aware of any other causality checking algorithm that can be integrated with
explicit state-space exploration algorithms and which works on-the-fly. As an al­
ternative to the event order logic that we defined we also investigated the usage
of the interval logics [20] and [21]. We felt that in light of the relatively simple
ordering constraints that we need to describe those logics are overly expressive,
and we hence decided to define our own tailored, relatively simple event order
logic.

6 Conclusions

We have discussed how causality relationships can be established in system ex­
ecutions and have shown how the causality checks can be mapped to finding
sub- and super-sets of execution traces. Furthermore we have proposed an ap­
proach for causality computation that works on-the-fly and can be integrated
into explicit state-space model checking algorithms. We have evaluated our ap­
proach on two case studies, one of which is of industrial size. The experimental
evaluation indicates that breadth-first search outperforms depth-first search in
terms of memory and runtime, and that the on-line approach presented here
outperforms the precurosy off-line approach. Furthermore, we have shown that
causality checking is applicable to industrial size Promela models.

In future work we plan to give a soundness and completeness argument for
causality checking and embed causality checking into a symbolic reasoning en­
vironment in order to avoid the explicit storing of traces. In addition we plan
to combine our work on causality checking for probabilistic models with the
approach presented here.

Acknowledgment. We wish to thank Stefan Heindorf for a careful review of
an earlier version of this work.

References

1. Clarke, E.M., Grumberg, 0. , Peled, D.A.: Model Checking, 3rd edn. The MIT
Press (2001)

2. Lewis, D.: Counterfactuals. Wiley-Blackwell (2001)
3. Halpern , J.Y. , Pearl , J.: Causes and explanations: A structural-model approach.

Part I: Causes. The British Journal for the Phil. of Science (2005)
4. Kuntz, M., Leitner-Fischer, F., Leue, S.: From Probabilistic Counterexamples

via Causality to Fault Trees. In: Flammini , F., Bologna, S., Vittorini , V. (eds .)
SAFECOMP 2011. LNCS, vol. 6894, pp. 71- 84. Springer, Heidelberg (2011)

267

5. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addision- Wesley (2003)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
7. Manna, Z., Pnueli , A.: The temporal logic of reactive and concurrent systems .

Springer-Verlag New York, Inc. (1992)
8. Collins, J. (ed.): Causation and Counterfactuals. MIT Press (2004)
9. Leitner-Fischer , F., Leue, S. : Causality checking for complex system models.

Chair for Software Engineering, University of Konstanz, Technical Report soft-
12-02 (2012), http://www.inf.uni-·konstanz.de/soft/research/publications/
pdf/soft-12-02 .pdf

10. Eiter, T ., Lukasiewicz, T.: Complexity results for structure-based causality. Artifi­
cial Intelligence (2002)

11. Eiter, T ., Lukasiewicz, T .: Causes and explanations in the structural-model ap­
proach: Tractable cases. Artificial Intelligence (2006)

12. de Jonge, M., Ruys, T.C.: The SPINJA Model Checker. In: van de Pol, J ., We­
ber, M. (eds .) Model Checking Software. LNCS, vol. 6349, pp. 124- 128. Springer ,
Heidelberg (2010)

13. Leitner-Fischer, F., Leue, S.: QuantUM: Quantitative safety analysis of UML mod­
els. In: Proc. of the 9th Workshop on Quantitative Aspects of Programming Lan­
guages, QAPL 2011 (2011)

14. Aljazzar, H. , Fischer, M. , Grunske, L., Kuntz, M., Leitner-Fischer, F., Leue, S.:
Safety Analysis of an Airbag System Using Probabilistic FMEA and Probabilistic
Counterexamples. In: Proc. of QEST 2009. IEEE Computer Society (2009)

15. Zeller, A.: Why Programs Fail : A Guide to Systematic Debugging. Elsevier (2009)
16. Beer, I. , Ben-David, S. , Chockler , H. , Orni , A., Trefier, R.: Explaining Counterex­

amples Using Causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 94- 108. Springer, Heidelberg (2009)

17. Gossler, G., Le Metayer, D., Raclet, J.-B .: Causality Analysis in Contract Violation.
In: Barringer, H. , Falcone, Y., Finkbeiner, B., Havelund, K., Lee, 1., Pace, G., Ro§u,
G. , Sokolsky, 0 ., Tillmann, N. (eds .) RV 2010. LNCS , vol. 6418, pp. 270- 284.
Springer, Heidelberg (2010)

18. Lamport , L:: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21, 558- 565 (1978)

19. Groce, A. , Chaki, S., Kroening, D., Strichman, 0 .: Error explanation with dis­
tance metrics. International Journal on Software Tools for Technology Transfer
(STTT) 8(3) (2006)

20. Schwartz, R.L., Melliar-Smith, P.M., Vogt, F.H.: An interval logic for higher-level
t emporal reasoning. In: Proc. of the 2nd Annual ACM Symposium on Principles
of Distributed Computing. ACM (1983)

21. Dillon, L. , Kutty, G., Moser, L., Melliar-Smith, P., Ramakrishna, Y.: A graphical
interval logic for specifying concurrent systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 3(2), 131- 165 (1994)

	Text1: First publ. in: Verification, Model Checking, and Abstract Interpretation : 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013, Proceedings / ed. by Roberto Giacobazzi ... - Berlin : Springer, 2013. - S. 248-267. - (Lecture Notes in Computer Science ; 7737). - ISBN 978-3-642-35872-2
http://dx.doi.org/10.1007/978-3-642-35873-9_16
	Text2: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-233165

