
Causality Checking for Complex System Models 

Florian Leitner-F ischer and Stefan Leue 

University of Konstanz, Germany 

Abstract. We present an approach for the algorithmic computation of 
causalities in system models that we refer to as causality checking. We 
base our notion of causality on counterfactual reasoning, in particular 
using the structural equation model approach by Halpern and Pearl that 
we recently have extended to reason about computational models. In 
this paper we present a search-based on-the-fly approach that nicely 
integrates into finite state verification techniques, such as explicit-state 
model checking. We demonstrate the applicability of our approach using 
an industrial case study. 

1 Introduction 

Model Checking [1] is an established technique for the automated analysis of sys­
tem properties. If a model of the system and a formalized property is given to the 
model checker, it automatically checks whether it can find property violations. 
In case some property is violated, the model checker returns a counterexample, 
which consists of a system execution trace leading to the property violation. 
While a counterexample helps in retracing the system execution leading to the 
property violation, it does not identify causes of the property violation. 

We present an approach based on explicit state space search towards the auto­
mated computation of causalities that we refer to as causality checking. Instead of 
returning just a single counterexample at the end of the model checking process, 
we compute causal events that lead to the violation of a desired system property. 
The notion of causality that we use is based on counterfactual reasoning [2,3]. 

In precursory work [4] causality computation was performed as a postprocess­
ing step on a set of probabilistic counterexamples. In addition we presented a 
mapping .of the computed causality relationships between events to fault trees. 
For the causality computation all possible execution traces need to be computed 
and stored on disk prior to the causality checking. The current paper focuses on a 
extension of our causality model and an integration of the causality computation 
into standard state-space search as used by explicit-state model checkers. Conse­
quently, it is no longer necessary to store all good and bad execution traces before 
performing the causality computation. We tailor the causality model from [4] so 
that it can be used for the analysis of concurrent system models described by 
transition systems. We also show how the causality checks can be mapped to 
sub- and superset comparisons of execution traces. The proposed algorithm for 
causality checking is an extension of the depth-first search and breadth-first 
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search algorithms used for state-space exploration in explicit-state model check­
ing. In keeping with standard practice in this domain we design our algorithms 
to work on-the-fly. To his end we propose a data-structure called subset graph 
that is used to store the counterexamples that are needed for causality checking. 
A further contribution of our current paper is an application of this approach 
to two case studies, one of them of industrial size, and a comparison of various 
search strategies. 

The remainder of this paper is structured as follows. In Section 2 we discuss 
how causality relationships can be formally established within system models. 
The on-the-fly algorithm for causality computation and its integration in state­
space exploration algorithms is presented in Section 3. In Section 4 we demon­
strate the causality checking approach using two case studies. Related work is 
discussed throughout the paper and in Section 5. We conclude in Section 6. 

2 Causality Reasoning in System Models 

Our goal is to identify the events that cause the violation of a non-reachablitiy 
requirement. Such a violation could, for instance, represent a hazard or a po­
tentially unsafe state of the system. We use the explicit state model checker 
SPIN [5] to check whether there are system executions that lead to such an 
undesired state. 

2.1 System Model 

The systems that we wish to apply causality checking to are concurrent systems. 
For the formalization of the system model we follow the formalization of a model 
for concurrent computing systems proposed in [6]. The system model is given by 
a Transition System which is defined as follows: 

Definition 1. Transition System. A transition system TS is a tuple (S, Act , 
~,I, AP, L) where S is a finite set of states, Act is a finite set of actions, 
~ ~ 3 x Act x 3 is a transition relation, I ~ 3 is a set of initial states, AP is a 
set of atomic propositions, and L : 3 ~ 2AP is a labeling function. 

A Transition System defines a Kripke structure. Each state s E S is labeled with 
the set L( s ) of all atomic state propositions that are true in this state. The set 
Act contains all actions that can trigger the system to transit from some state 
into a successor state. The execution semantics of a transition system is defined 
as follows: 

Definition 2. Execution Trace of a Transition System. Let T = (3, Act,~ , 
I , AP, L) be a transition system. A finite execution (J of T is an alternating se­
quence of states s E 3 and actions a E Act ending with a state. (J = So al S1 a2 

an Sn S.t. Si ~ Si+l for all 0 ~ i < n. 

The analysis aims at identifying the violation of functional safety requirements. 
Such a violation is also referred to as a hazard. We use linear time temporal 
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logic (LTL) using its standard syntax and semantics as defined in [7] in order to 
specify hazards. Hazards imply the reachability of unsafe states and they hence 
belong to the class of reachability properties. Hence we only need to consider 
finite execution fragments [6]. Hazards fall within the class of safety properties 
in the commonly used classification scheme of safety and liveness properties. We 
use T Fl <p to express that the LTL formula <p holds for the transition system T 
and a Fl <p respectively for execution traces. 

We will demonstrate the presented definitions on a running example of a 
railroad crossing system. In the running example a train can approach the cross­
ing (Ta), cross the crossing (Tc) and finally leave the crossing (TI). When­
ever a train is approaching, the gate should close (Gc) and will open when 
the train has left the crossing (Go). It might also be the case that the gate 
fails (Gf) . The car approaches the crossing (Ca) and crosses the crossing (Cc) 
if the gate is open and finally leaves the crossing (Cl). We are interested ' in 
finding those events that lead to a hazard state in which both the car and the 
train are in the crossing. This hazard can be characterized by the LTL formula 
<p = D~ ( ca:r _crossing /\ train_crossing). . 

In the following we will use short-hand notation a = "a"" ,a"'2' ... , a",,," for an 
execution trace a = So 01 Sl 02 .. . On Sn. The trace a = "Ta, Ca, Gf, Cc, Tc", 
for instance, is a trace of the railroad example where the train and the car are 
approaching the crossing (Ta, Ca), the gate fails to close (Gf), the car crosses 
the crossing (Cc) and finally the train crosses the crossing (Tc). 

We can partition the set of all possible execution traces E of a transition 
system T into the set of "good" execution traces, denoted Ee, where the LTL 
formula is not violated and thus the hazard does not occur, and the set of "bad" 
execution traces, denoted EB, where the LTL formula is violated and thus the 
hazard occurs. The elements of EB are also referred to as counterexamples in 
model checking. The trace a = "Ta, Ca, Gf, Cc, Tc" we already discussed above 
is a "bad" execution trace, since bot the car and the train are on the crossing at 
the same time and thus the LTL property. is violated. An example for a "good" 
trace is a' = "Ta, Ca, Gi, Cc, Cl, Tc" where the car leaves the crossing (CI) before 
the train is crossing (Tc) and consequently the train and the car are not on the 
crossing at the same time and the LTL formula is not violated. 

Definition 3. Good and Bad Execution Traces . Let T = (S,Act, -+,I,AP,L ) 
be a transition system, let <p an LTL formula over AP and E that set of all 
possible finite executions of T. The set E is divided into into the set of "good" 
execution traces Ee and in the set of "bad" execution traces En as follows: 
Ee = {a EE l a Fl <p}, En = {a EE l a til <p} and EeuEB = E and EenEB = 0. 

2.2 Causality Reasoning 

Our goal is to automatically identify those events that are causal for the violation 
of an LTL property. We assume that for a given execution trace a of a transition 
system T, Act contains the events that we wish to reason about. For an LTL 
formula <p specifying a safety requirement and an execution trace a, the hazard 
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described by the safety requirement occurs on a if and only if a ¥=l cp holds. 
Notice that since each transition is only labeled with one action, only one event 
can occur per transition. In order to be able to reason about the causality of 
events we have to formally capture the occurrence of events. We assume that 
there exists a set A of event variables that contains a boolean variable a for each 
action a E Act for some given transition system. The variable aTa for instance 
represents the event train approaching the crossing. If multiple instances of one 
event type occur on one execution trace, for example the two train approaching 
events on "Ta,Gc,Tc,Tl,Go,Ta", the variables representing them are numbered 
according to their occurrence, for our example aTal and aTa2' In other words, 
the i-th occurrence of some action of type a will be represented by the boolean 
variable ani ' In the following we also abbreviate the event variable aTa by Ta. 

Definition 4. Events, Event Types and Event Variables. Let T = (S, Act,->, 
I , AP, L) a transition system and a = so, a1 , Sl, a2, ... an , Sn a finite execution 
trace of T. We define the following: each a E Act defines an event type a . ai 
of a denotes the i-th occurrence of an event of the event type a . The variable 
representing the occurrence of the event ai is denoted by ani ' and the set A = 

{anl , ... , an,,} contains a boolean variable for each occurrence of an event. 

Event variables allow us to reason about the occurrence of single events, but since 
we want to reason about the combination of events, we need a formalism that 
allows us to express the occurrence of event combinations. In [4J we presented 
the event order logic (EOL) which allows one to connect event variables from A 
with the boolean connectives /\, v and ~. To express the ordering of events we 
introduced the ordered conjunction operator A. The formula a A b with a, b E A 
is satisfied if and only if events a and b occur in a trace and a occurs before b. 
We present here an amended version of the event order logic and further refine 
it in order to enable causality reasoning for concurrent system models specified 
by transition systems. In addition to the A operator we introduce the interval 
operators A[, Al, and A< ¢ A>, which define an interval in which an event has to 
hold in all states. As we will see later, these interval operators are necessary to 
express the causal non-occurrence of events. 

Definition 5. Syntax of Event Order Logic (EOL). Simple event order logic 
formulas over the set A of event variables are formed according to the following 
grammar: 

where a E A and ¢, ¢1 and ¢2 are simple event order logic formulas. Complex 
event or-der logic formulas are for-m ed according to the following grammar: 

where ¢ is a simple event order logic formula and 'l/J1 and 'l/J2 are complex event 
order logic formulas. Note that the ~ operator binds more tightly than the A, A[ , 

Al ' and A< ¢ A>, operators and those bind more tightly than the v and /\ operator. 
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The formal semantics of this logic is defined on execution traces. Notice that the 
A, 1\-[, AI' and A< ¢ A> operators are linear temporal logic operators and that the 
execution trace u is akin to a linearly ordered Kripke structure. 

Definition 6. Semantics of Event Order Logic (EOL) . Let T = (8, Act, ->, I , AP, 
L) a transition system, let ¢, ¢1, ¢2 simple event order logic formulas , let 1/J, 1/J1, 
1/J2 complex event order logic formulas, and let A a set of event variables, with 
a",;. E A, over which ¢, ¢1, ¢2 are built. Let u = so, aI, Sl, a2, ... an, Sn a finite 
execution trace of T and u [i .. r ] = S'i , a'i+1, S'i+1, mi+2, ... ar, s,. a partial trace. We 
define that an execution trace u satisfies a formula 1/J, written as u I=e 1/J, as 
follows: 

'ff' Cti - Sj I=e a"'i 1 Sj- 1 --> Sj 
- Sj I=e -.¢ iff not Sj I= e ¢ 
- u[ i .. r] I=e ¢ iff 3j : i :=; j :=; r . Sj I=e ¢ 
- U I=e 1/J iff u[O .. n] I=e 1/J, where n is the length of u. 
- u [i .. r] I=e ¢11\¢2 iffu[i .. r] I=e ¢1 and u[i .. r] I=e ¢2 
- U[i .. T] I=e ¢l V ¢2 iff U[i .. T] I=e ¢l OT u[i .. r] I= e ¢2 
- u [ i .. r ] I=e 1/J1 1\ 1/J2 i ff' u[ i .. r] I= e 1/J1 and u[ i .. r ] I=e 1/J2 
- u [i .. r ] I=e 1/Jl V 1/J2 iff u [i .. r] I= e 1/J1 or u [i .. r ] I=e 1/J2 
- u[i .. r] I=e 1/Jl A1/J2 iff3j,k: i:=;j < k:=; r. u [i .. j] I=e 1/Jl and u[k .. r] I=e 1/J2 
- u[i .. r ] I=e 1/J A[ ¢ iff (3j : i:=; j :=; T . u[i .. j ] I=e 1/1 and (Vk : j :=; k:=; T . u [k .. k] I=e 

¢) ) 
- U [ i .. T] 1= e ¢ A I 1/J iff (3 j : i :=; j :=; T . U [j .. 1'] 1= e 1/J and (V k : 0 :=; k :=; j . u [ k .. k] 1= e 

¢» 
- u [i .. r ] I=e 1/Jl A< ¢A> 1/J2 iff (3j,k: i:=; j < k:=; r. u [i .. j] I=e 1/Jl and u[k .. r ] I=e 

1/J2 and (VI : j :=; l :=; k . u [l .. l] I= e ¢» 

We define that the transition system T satisfies the formula 1/J, written as T I=e 1/J, 
iff 3u E T . u I=e 1/J . 

Each execution trace u specifies an assignment of the boolean values tr'Ue and 
false to the variables in the set A. If an event ai occurs on u its value is set 
to true. If the event does not occur on u its value is set to false . We define 
a function val A (u) that represents the valuation of all variables in A for a 
given u. 

Definition 7 . . Valuation of the Set of Event Variables. Let T = (8, Act,->, 
I , AP, L) a transition system, u = so, aI, Sl , a2, ... an, sn a finit e execution trace 
of T and A the set of event variables then we define the function valA (u) as 
follows: 

I () ( ) I {
true if u I= e a",; 

va A u = a"'Jl ... , a"" ., aCti = false, else . . 

Further we define valA (u) = valA (u') if for all aCti E A the values assigned by 
valA (u) and valA (u') are equal and valA (u) * valA (u') else. 
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In fact, we can represent an execution trace by an EOL formula. Suppose we want 
to represent the execution trace (J = "Ta, Ca, Gf, Cc, Tc" by an EOL formula. 
We partition the set A of event variables in the set Z containing all the event 
variables of the events that occur on (J and the set W containing all the event 
variables of the events that do not occur on (J. Consequently, Z contains Ta, Ca, 
Gf, Cc, and Tc. The resulting EOL formula over Z is 1/J = Ta A Ca A Gf A Cc A Tc. 

Definition 8. Event Order Logic (EOL) Formula over Executions. Let T = 

(8, Act, ->,1, AP, L) a transition system, and (J = So a1 S l a2 ... an Sn an 
execution trace of T. The EOL over the execution (J denoted by 1/Ja is defin ed 
as follows : We partition the set of event variables A into sets Z and W in 
such a way that Z contains all event variables of the events that occur on (J 

and W contains all event variables of the events that do not occur on (J. 1/Ja is 
the EOL fo rmula containing all events in Z in the order they occur on (J (e. g. 
1/Ja = a"'l A a"'2 A .. . A a"'n) ' 

Now that we have established the formal basis to reason about t he occurrence 
of events we have to formally define the notion of causality that we will use. A 
commonly adopted notion of causality is that of counterfactual reasoning and the 
related alternative world semantics of Lewis [2, 8]. The "naive" counterfactual 
causality criterion according to Lewis is as follows : event A is causal for the 
occurrence of event B if and only if, were A not to happen, B would not occur. 
The testing of this condit ion hinges upon the availability of alternative worlds . 
. A causality can be inferred if there is a world in which A and B occur, whereas 
in an alternative world neither A nor B occurs. In our setting possible system 
execution traces represent the alternative worlds. 

The structural equation model (SEM) by Halpern and Pearl [3] extends the 
counterfactual reasoning approach by Lewis. The SEM introduces the notion of 
causes being logical combinations of events as well as a distinction of relevant 
and irrelevant causes. In the SEM events are represented by variable values and 
the minimal number of causal variable valuation combinations is determined. In 
order to do so the counterfactual test is extended by contingencies. Contingencies 
can be viewed as possible alternative worlds , where a variable value is changed. 
A variable X is causal if there exists a contingency, that is a variable valuation 
for other variables, that makes X counter factual. In our precursory work [4], 
we extended the SEM by considering the order of the occurrences of events as 
possible causal factors . We now present an adaption of the SEM that can be used 
to decide whether a given EOL formula 1/J describes the causal process of the 
violation of some LTL formula tp in a transition system. The causal process [3] 
comprises the causal events for the property violation and all events that mediate 
between the causal events and the property violation. Those events which are 
not root causes, are needed to propagate the cause through the system until 
the property violation is being triggered. If 1/J describes the causal process of a 
property violation we also say 1/J is causal for the property violation. 

In a naive causality checking algorithm we perform the tests defined in Def­
inition 9 for the induced EOL formula 1/Ja of each (J E E B . The disjunction of 
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all 'l/Jal' 'l/Ja2' ... , 'l/Jan that satisfy the conditions ACI-AC3 is the EOL formula 
describing all possible causes of the hazard. 

Definition 9. Cause for a Property Violation (Adapted SEM). Let T = (S , Act, 
..... , I , AP, L) a tmnsition system, and a , a' and a" some execution tmces of T. 
We partition the set of event variables A into sets Z and W. An EOL formula 

'I/J consisting of the event variables in Z is considered a cause for- an effect rep­
r-esented by the violation of the LTL formula r.p, if the following conditions ar-e 
satisfied: 

- AC1: Ther-e exists an execution a, for which both a I= e 'I/J and a if-l r.p hold. 
- AC2 {1}: 3a' s.t. a ' if-e 'I/J /\ (val z (a) * valz (a' ) vvalw(a) * valw(a')) and 

a ' I=l r.p. In wor-ds, there exists an execution a i wher-e the or-der- and occurrence 
of events is diffeTent from execution a and r.p is not violated on a ' . 
AC2 {2}: Va" with a" I=e 'I/J /\ (valz (a ) = valz(a") /\ valw(a) "* valw(a")) 
it holds that a" if-l r.p for- all subsets of W . In wor-ds, fo r- all executions wher-e 
the events in Z have the value defined by val z (a) and the order- defined by 
'I/J, the value and or-der- of an aTbitmry subset of the events in W have no 
effect on the violation of r.p. 
AC3: The EOL for-mula 'I/J is minimal: no subset of 'I/J satisfies conditions 
AC1 and AC2. 

If we want, for instance, to show that 'I/J = Ta A Ca A Gf A Cc A Tc is causal, we 
need to show that ACl , AC2(1) , AC2(2) and AC3 are fulfilled for 'I/J. 

- ACI is fulfilled, since there exists an execution a = "Ta, Ca, Gf, Cc, Tc" for 
which a I=e 'I/J, and both the train and the car are in the crossing at the same 
time. 

- AC2(1) is fulfilled since there exists an execution a ' = "Ta, Ca, Gc, Tc" for 
which a ' if-e 'I/J /\ (val z (a) "* valz(a' ) /\ valw(a) "* valw(a')) holds and a ' 
does not violate the property. 

- Now we need to check the condition AC2(2) . For the execution a" = "Ta, 
Ca, Gf, Cc, Cl, Tc" and the partition Z , W ~ A, a" I=e 'lj; and valz (a) = 
valz (a") /\ valw (a) "* valw (a") hold. The property is not violated since the 
car leaves the crossing (Cl) before the train enters the crossing (Tc). As a 
consequence, AC2(2) is not fulfilled by 'I/J because if Cl occurs between Cc 
and Tc, the property violation is prevented. 

The example showed that the non-occurrence of events can be causal as well, 
and that this is not yet captured by the adapted SEM. The non-occurrence of 
an event is causal when ever ACI and AC2(1) are fulfilled but AC2(2) fails for 
a EOL formula 1/Ja. If AC2(2) fails there is at least one event a on a" which 
did not occur on a and the occurrence of a prevents the property violation. 
Consequently, the non-occurrence of a on a is causal. We need to reflect the 
causal effect of the non-occurrence of a in 'l/Ja. For the models that we analyze 
there are three possibilities for such a preventing event a to occur, namely, 
at the beginning of the execution trace, at the end of the execution trace, or 
between two other events al and a2. Furthermore, it is possible that the property 
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violation is prevented by more than one event, hence we need to find the minimal 
set of events that are needed to prevent the property violation. This is achieved 
by finding the minimal true subset Q c W of event variables that need to be 
changed in order to prevent the property violation. 

Definition 10. Non-Occurrence of Events. LetT = (S,Act, ~,I,AP,L) a tran­
sition system, and (5 and (51/ execution traces of T. W e partition the set of event 
variables A into sets Z and W. Let 'I/J an EOL formula consisting of the event 
variables in Z. The non-occurrence of the events which are represented by the 
event variables ao E Q with Q ~ W on execution (5 is causal fOT the viola­
tion of the LTL formula <p if'I/J satisfies ACl and AC2(l) but violates AC2(2), 
and if Q is minimal, which means that there is no true subset of Q for which 
(5/1 I=e 'I/J A ValZ ((5) = vatZ( (51/) A valQ( (5) '* valQ ((5/1) A vaIW,Q( (5) = valw'Q ((5/1) 

and (5/1 ~l <p holds. 

For each event variable ao E Q we determine the location of the event in 'I/J/I and 
prohibit the occurrence of a in the same location in 'I/J. We add ~aoAl at the 
beginning of'I/J if the event occurred at the beginning of (5/1 and A[~ao at the 
end of 1/J if the event occurred at the end of (5/1. If a occurred between the two 
events al and a2 we insert A<~aoA> between the two event variables aOI and 
a02 in 1/J. Additionally, each event variable in Q is added to Z. In our example, 
Cl is the only event that can prevent the property violation on (5 and occurs 
between the events Cc and T c. Consequently ~Cl is added to Z and 'I/J and we 
get 1/J = Ta A Ca A Gf A Cc A< ~Cl A> Tc. 

If a formula 1/J meets conditions ACI through AC3 , the occurrence of the 
events included in 'I/J is causal for the violation of <po However, condition AC2 
does not imply that the order of the occurring events is causal. For instance, we 
do not know whether Ta occurring before Ca is causal in our example or not . If 
the order of the events is not causal, then t here has to exists an execution for 
each ordering of the events that is possible in the system, and these executions 
all violate the property. Whether the order of events is causal is checked by the 
following Order Condition (OC1). Note that the outcome of OC1 has no effect 
on 1/J being causal, but merely indicates whether in addition the order of events 
in '1/) is causal. 

Definition 11. Order Condition (OC1). Let T = (S ,Act, ~, J ,AP,L) a tran­
sition system, and (5, (5' execution traces of T. Let 1/J an EOL formula over Z 
that holds for (5 and let 'l/JA the EOL formula that is created by replacing all 
A-operatoTs in 1/J by A-operators. The A[, Al' and A< ¢ A> are not replaced in 'l/JA' 

OC1: The oTder of a subset of events Y ~ Z represented by the EOL fOTmula 
X is not causal if the following holds: (5 I=e X A :1(5' E EB : (5' ~e X A (5' I=e XA ' 

In our example, the order of the events Gf, Cc, ~Cl, Tc is causal since only if 
the gate fails before thecal' and the train are entering the crossing, and the car 
does not leave the crossing before the train is entering the crossing an accident 
happens. Consequently after OC1 we obtain the EOL formula 'I/J = Gf A ((Ta A 

(CaA Cc)) A< ~Cl A> Tc). 
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3 On-The-Fly Causality Checking 

3.1 Preliminaries 

In order to compute causality relationships, it is necessary to compute good 
and bad execution traces. If depth-first search or breadth-first search is used 
for model checking, good and bad executions can easily be retrieved by the 
counterexample reporting capabilities of the model checker in use. 

The key idea of the proposed algorithm is that the conditions ACl, AC2(1), 
AC2(2) and AC3 defined in Section 2 can be mapped to computing sub- and 
superset relationships between good and bad execution traces. In the following 
we also use the terms sub-execution and super-execution to refer to sub- or 
superset relationships between execution traces. We define a number of execution 
trace comparison operators as follows. 

Definition 12. Execution Trace Comparison Operators. Let T = (S, Act, -+, 
I , AP, L) a transition system, and al and a2 execution traces of T. 

- . al = a2 iff Va E A . al Fe a = a2 F e a. 
==: al==a2 iffVal,a2EA.alFe alAa2=a2FealAa2. 

S : al S a2 iff Va E A . al F e a=> a2 F e a. 
c: al C a2 iff al S a2 and not al = a2 . 
~: al~a2 iff Val,a2 E A . al F e al A a2 => a2 F e al A a2· 
c: al ca2 iff al~a2 and not al == a2 . 

In the following let <.p a safety property specification given in LTL, a, a', a", a"' 
execut ion traces and 'l/Ja, 'l/Ja l , 'l/Ja" , 'l/Ja'" the event order logic formulas representing 
these execut ion traces, respectively. 

Theorem 1. ACl is fulfill ed for all 'l/Ja where a E E B . 

Proof. For each a E EB we can partition the set A of event variables into the 
sets Z and W such that Z consists of the variables of the events that occur on a 
and 'l/Ja consists of the variables in Z . Consequently, a F e 'l/Ja and a Ffl <.p because 
a is a bad execution. Therefore, ACI is fulfilled for all 'l/Ja where a E EB. 0 

Theorem 2. AC2(1) holds for 'l/Ja if there is an execution a' E Ec with at c a. 

Proof. To show AC2(1) for a execut ion a we need to show that there exists an 
execut ion at for which a' Ffe 'l/Ja /\ (vala (Z ) * valal( Z ) v vala(W) * valal(W)) 
and a' F l <.p holds. For each a' E Ec with at c a there is at least one event 
on a that does not occur on at. Because that missing event is part of 'l/Ja and 
Z it follows a' Ffe 'tPa and (vala(Z ) * valal (Z ) v vala(W) * valal (W)) follows, 
since the value of the event variable representing the missing event assigned by 
val a (Z ) is true and the value assigned by valal (Z ) is false. Therefore, we can 
show AC2(1) for 'l/Ja by finding an execution at E Ec for which a' c a holds. 0 

Theorem 3. A C2(2) holds fo r 'l/Ja if there is no execution a" E Ec with aca". 
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Proof. AC2(2) requires that Vu" with u" F e 1/;"I\ (val,, (Z ) = val ,," (Z) l\val,, (W) 
"* val,,11 (W)) it holds that u" ~l t.p for all subsets of W. Suppose there exists a 
u" for which ucu" holds. For a u" to satisfy the condition u" F e 1/; 1\ val" (Z) = 
val,,11 (Z) all events that occur on u have to occur in the same order on u", which 
is the case if u~u" holds. The set W contains the event variables of the events 
that did not occur on u and val,, (W) assigns false to all event variables in W. 
For val,,11 (W) to be different from val" (W) there has to be at least one event 
variable that is set to true by val ,," (W) . This is only the case if an event that 
does not occur on u occurs on u". Consequently, u" consists of all events that 
did occur on u and at least one event that did not occur on u, which is true if 
ucu" holds. U" ~l t.p holds if u" E ED and is false if u" E Ec. Hence, AC2(2) 
holds for u if there is no u" E Ec for which ucu" holds. D 

Theorem 4. If AC1 and AC2(1) hold for 1/;" and 1/;" is modified according to 
Def. 10 in order to fulfill AC2(2), then ACl and AC2(l) hold for the modified 
1/;" . 

Proof. The modification defined in Def. 10 prohibits the occurrence of events 
that did not occur on u but occur on u" by adding their corresponding negated 
event variables to 1/;". Since the prohibited events did not occur on u, the mod­
ified 1/;" holds for u and AC1 holds. AC2(1) holds for the modified 1/;" because 
for AC2(1) to hold in the first place there has to be an execution u' E Ec with 
u' cu. For the modification of 1/;" to be necessary an executiqn u" E Ec with 
ucu" has to exist. If ucu" holds, u c u" holds and u' c u" holds as well. Conse­
quently, AC2(1) holds for the modified 1/;". D 

Theorem 5. AC(3) holds for 1/;" if there does not exists an execution U 'll E ED 
for which u'" c u holds. 

Proof. In AC(3) we have to show that no subset of the event order logic formula 
1/; satisfies AC1, AC2(1) and AC2(2). Suppose there exists a u'" E ED with 
u'" c u. We can partition A in Z,,1f! and W,,1f! such that Z"III consists of the 
variables of the events that occur on u'" and 1/;,,1f! consists of the variables in 
Z"III. For u we partition A in Z" and W" such that Z" consists of the variables of 
the events that occur on u and 1/;" consists of the variables in Z". Consequently, 
Z,,1f! c Z" and 1/;" ,11 c 1/;". If 1/;,, 111 satisfies AC1 , AC2(1), AC2(2), then AC3 would 
be violated. If we can not find a u'''with u'" c u, then no subset of 1/;" satisfies 
AC1, AC2(1) and AC2(2), and consequently AC3 holds. D 

We use these theorems in order to devise an algorithm and a corresponding data­
structure called subset graph for on-the-fly causality checking. The pseudo-code 
for the proposed algorithms can be found in [9] . 

3.2 Subset Graph Data-Structure 

In order to store the execution traces we have devised a data-structure called 
subset graph. This data-structure enables us to make causality decisions on-the­
fly which means that we can decide whether an execution trace is causal as soon 
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as we add it to the subset graph. The subset graph is structured into levels where 
each level corresponds to the length of the execution traces on that level. Each 
node represents exactly one execution trace. Figure 1 shows a part of the subset 
graph for the railroad crossing example. The execution traces on adjoining levels 
are connected by edges indicating subset relationships between the respective 
execution traces. In order to improve readability the edges between executions 
on the same level are not displayed in the figure. The nodes representing the 

Levell: Ca 

Level 2: 

Level 3: 

Level 4: 

LevelS : 

Level 6: 

Fig. 1. Subset-graph of the railroad crossing example 

execution traces are colored in green, red, black or orange in order to indicate 
their potential causality relation according to the following rules: 

- Green: a node is colored green if it represents a good execution trace and all 
nodes on the level below that are connected with it are also colored green. 
An example of such a trace is "Ca,Ta,Gc,Tc,TI" in the railroad crossing 
example. Green traces can not be causal because they are good traces. The 
green traces can be prefixes of either bad or good execution traces. 

- Red: a node is colored red if it represents a bad execution trace and all nodes 
on the level below that are connected with it are colored green. Red nodes 
correspond to the shortest bad traces found at any point of the state-space 
exploration. They are considered to be causal. As an example consider the 
trace "Ta,Ca,Gf,Cc,Tc" in the railroad crossing example. 
Black: a node is colored black if it represents a good execut ion trace, but at 
least one node on the level below that it is connected with is colored red. 
Black traces cannot be causal themselves, since they are good traces, but 
since a sub-trace of t hem with one less element is a minimal bad trace, the 
transition in the subset graph from red to black ident ifies an event that turns 
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a bad execution into a good one. We hence take advantage of black traces 
when checking condition AC2(2) . As an example for a black node consider 
the the trace "Ta,Ca,Gf,Cc,Cl,Tc" of the railroad crossing example, which 
is connected with the red execution "Ta,Ca,Gf,Cc,Tc" on the level below, 
the introduced "Cl" event turns the bad execution into a good one. 
Orange: A node is colored orange if it represents a bad execution trace and 
at least one node on the level below that is connected to the orange node 
is colored red. If a trace is colored orange, there exists a shorter red trace 
on a level below and hence a orange trace does not fulfill the minimality 
constraint AC3 for being causal. An example for an orange colored trace is 
the trace "Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc" which, due to space restrictions, 
is not depicted in Figure 1. The trace "Ca,Ta,Gf,Cc,Tc" is a shorter red trace 
and a subset of the trace "Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc", hence the trace 
does not fulfill the minimality constraint. 

3.3 Causality Checking 

The causality checking that we propose is embedded into both of the standard 
state-space exploration algorithms used in explicit state model checking, namely 
depth-first and breadth-first search. Whenever a bad or a good execution is 
found by the search algorithm it is added to the subset graph. After adding a 
trace the algorithm first checks whether there are executions at the same level 
that consist of the same events but in a different order. If we find such an 
execution, then all subset relationships of the execution already in the subset 
graph hold a lso for the newly added execution. For instance in our example all 
subset relationships that hold for the execution "Ta,Ca,Gf,Cc,Tc" also hold for 
the execution "Ta,Gf,Ca,Cc,Tc". If we don't find such a trace on the same level, 
we have to check the subset relationships with the execution traces on the level 
below (level-I) and, if depth-first search is used, on the level above (level+l) 
as well. It is not necessary to check the subset relationships on the level above 
(level+l) if breadth-first search is used, because breadth-first search adds the 
traces by increasing length. 

Once all subset relationships are established, the nodes representing the ex­
ecutions are colored according to the above described coloring rules. If a trace 
is colored red, we additionally need to check whether we have already found a 
shorter red trace which is a sub-set of the new red-trace. If such a shorter red 
trace is found, the current trace is colored orange. In our example the execution 
traces Ta, Ga, Gf, Gc, Tc and Ta, Gf, Ga, Gc, Tc and Ga, Ta, Gf, Gc, Tc are colored red 
and hence considered to be causal. 

The following theorems show that for an execution (J that is colored red, 1/JrI 
is a candidate for being causal and fulfills ACI, AC2(1) and AC3. 

Theorem 6. A Gl is fulfilled for 1/JrI of each execution trace (J that is colored 
red. 

Proof. By definition an execution trace is only colored red if it is a bad trace 
and according to Theorem I ACI is fulfilled for all (J E E B . 0 
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Theorem 7. AC2(1) is fulfilled for 'l/Ja of each execution trace a that is colored 
red. 

Proof. According to Theorem 2 we can show AC2(1) by finding an execution 
a' E Ec for which a' c a holds. For an execution a to be colored red, all sub 
execution traces on the level below have to be colored green. Consequently, for 
each execution a' for which a' c a holds also a' E Ec holds because it is colored 
green and hence needs to be a good trace. Therefore, AC2(1) is fulfilled according 
to Theorem 2. 0 

Theorem 8. If breadth-first search is used, AC3 is fulfilled for 'l/Ja of each ex­
ecution trace a that is colored red. If depth-first search is used, A C3 is fulfilled 
for 'l/Ja of each execution trace a that is colored red as soon as the state-space 
exploration has terminated. 

Proof. According to Theorem 5, 'I/J fulfills AC3 if there does not exists a trace 
a'" E EB for which a'" c a holds. This is due to the fact that by definition 
an execution trace is only colored red if all its subsets are colored green, which 
means there is no bad sub-execution a'" of a. If breadth-first search is used the 
shortest paths are added first, hence all sub-executions are known at the time 
where a is inserted and colored. Consequently, if breadth-first search is used, 
AC3 is fulfilled for 'l/Ja of each execution trace a that is colored red. If depth-first 
search is used it is possible that new sub-executions are found as long as the 
state-space exploration is not complete. As a result, AC3 is fulfilled for 'l/Ja of 
each execution trace a that is colored red as soon as the state-space exploration 
with depth-first search has terminated. 0 

Once the state space search is completed we have to perform the tests for AC2(2) 
and OCI for all red execution traces. 

According to Theorem 3, AC2(2) holds for 'l/Ja if there is no a" E Ec for 
which aca" holds. If such a a" exists, it is a black superset of a because a c a" 
holds for each black superset of a. a" is only colored black if it is a good trace. 
Consequently, we need to check for each black superset a" of a whether aca" 
holds. If there is no a" for which aca" holds, then 'l/Ja fulfills AC2(2). If aca" 
holds for a black superset, then we need to modify 'l/Ja as specified by Definition 
10. Hence, we have shown that ACl , AC2(1), AC2(2) and AC3 are fulfilled for 
'l/Ja of each red execution a and, consequently, that 'l/Ja is causal for the property 
violation. 

Notice that the AC2(2) test is needed in order to detect whether the non­
occurrence of an event is causal. It is necessary to store all traces that are colored 
black only to test AC2(2) . We have added a runtime switch in the implementation 
of the causality checking method that allows the user to turn the AC2(2) test 
off in order to save memory at the expense of not being able to take the possible 
causality of the non-occurrence of an event into account. If the AC2(2) test is 
fulfilled by 1Pa, then the OCI test is performed. Due to the structure of the subset 
graph, it is sufficient to check for each red execution trace whether there exists 
a red execution trace on the same level for which the unordered £: relationship 
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holds. For all those execution traces, we check for each pair of events whether 
they appear on all execution traces in the same order or not. If a pair of events 
does not occur in the same order, then the order of this pair is marked as having 
no influence on causality. 

Causality Checking with Breadth-First Search (BFS). When using bread­
th-first search, the execution trace leading from the initial state to a property 
violating state can be generated by iterating backwards through the predecessor 
links until an initial state is reached. Whenever a bad or a good execution is 
found, it is added to the subset graph. If BFS encounters a' state that is already 
in the state-space and hence all successors of this state have already been ex­
plored, the successors are not explored for a second time. Since BFS explores the 
state-space following an exploration order that leads to a monotonically increas­
ing length of the execution traces, this new execution trace reaching the state 
either has the same length as the already known execution trace containing the 
same state, or the new execution is longer than the already known execution 
trace. If the new execution trace has the same length, the events on the trace 
have an order that is different from the one in the already known execution trace. 
Hence the new execution trace needs to be added to the subset graph since a 
later OC1 test needs to be performed on it. 

Causality Checking with Depth-First Search (DFS). We adapted the 
depth-first search algorithm to add an execution trace to the subset graph data 
structure whenever either a bad state is reached or a good execution trace has 
been found. If depth-first search is used it is sufficient to print the search stack 
in order to retrieve the execution trace. Similarly to BFS, if DFS encounters a 
duplicate, which is a state that is already in the state-space, and hence all succes­
sors of the duplicate have already been explored, the successors are not explored 
a second time. It is possible that this new trace to the duplicate is shorter or has 
a different event order than the already known execution traces that contain the 
duplicate. Hence we store this new execution trace on a match list in the subset 
graph and generate all execution traces starting from the duplicate state with 
the new trace as a prefix. 

Complexity. [10] contains a careful analysis of the complexity of computing 
causality in the SEM. Most notable is the result that even for an SEM with only 
binary variables, in the general case computing causal relationships between vari­
ables is NP-complete. Results in [11] show that causality can be computed in poly­
nomial time if the causal graph over the events forms a directed causal tree. A 
directed causal tree consists of directed paths, where the nodes represent events, 
and the edges represent the causality ' relationships and the root node represents 
the hazard or effect. Each bad execution trace in the counterexample is a directed 
path containing the variables representing the events leading to the hazard or ef­
fect. Consequently, a set of counterexamples resembles a directed causal tree and 
our algorithm can compute the causal process in polynomial time. A more com­
prehensive discussion of the complexity of our approach can be found in [9]. 
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4 Case Studies 

In order to evaluate the proposed approach, we have implemented our causality 
checking algorithms within the SpinJa toolset [12], a Java re-implementation 
of the explicit state model checker Spin [5]. Our SpinCause tool1 computes the 
causality relationships for a Promela model and a given LTL property. In order to 
compute all interleavings and all executions partial-order reduction was disabled 
during the state-space exploration. The Promela models used for the case studies 
have been created manually, in practical usage scenarios the Promela models can 
also be automatically synthesized from higher-level design models, as for instance 
by the QuantUM tool [13]. The following experiments were performed on a PC 
with an Intel Xeon Processor (3.60 Ghz) and 144 GBs of RAM. 

4.1 Railway Crossing 

The Promela model of the railway crossing that we constructed as a running 
example for the purpose of this paper comprises 133 states and 237 transitions. 
A total of 47 bad execution traces are found. The causality checking algorithm 
identified two event order logic formulas describing the causal factors for a train 
and a car being on the crossing at the same time. 

- First, if the gate fails at some point of the execution and a train (Ta) and 
a car (Ca) are approaching this results in a hazardous situation if the car 
is on the crossing (Cc) and does not leave the crossing (Cl) before the train 
(Tc) enters the crossing (Gf 1\ ((Ta 1\ (Ca A Cc)) A< ..,Cl A> Tc)). 

- Second, if a train (Ta) and a car (Ca) are approaching but the gate closes 
(Gc) when the car (Cc) is already on the railway crossing and is not able to 
leave (Cl) before the gate is closing and the train is crossing (Tc), this also 
corresponds to a hazardous situation ((Ta 1\ (Ca A Cc)) A< ..,Cl A> (Gc 1\ Tc)). 

4.2 Airbag Control Unit 

The industrial size model of an airbag system that we use in this case study is 
taken from [14]. The architecture of this system was provided by our industrial 
partner TRW Automotive GmbH. The architecture of this system consists of two 
acceleration sensors, one micro controller to perform the crash evaluation, and 
an actuator that controls the deployment of the airbag. Although airbags save 
lifes in crash situations, they may cause fatal accidents if they are inadvertelltly 
deployed. This is because the driver may lose control of the car when this deploy­
ment occurs. It is a pivotal safety requirement that an airbag is never deployed if 
there is no crash situation. We are interested in computing the causal events for 
the hazard corresponding to an inadvertent ignition of the air bag. The Promela 
model of the airbag system consists of 155,464 states and 697,081 transitions. 

Figure 2 shows the fault tree generated by the SpinCause tool. All execution 
traces that are colored red are part of the fault tree representation. The fault 

1 http : / /se.uni-konstanz.de / researchl/tools/spincause 
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Fig. 2. Fault tree of the airbag system 

trees generated by our approach all have a normal form, that is they start with 
an intermediate gate representing the top level event, that is connected to an 
OR gate. The execution traces that are colored red are represented by Priority­
AND (PAND) gates if the order of some events is causal and by AND gates 
if the order is not causal. The events of the execution traces are connected 
to the corresponding AND or PAND gates, respectively. Since fault trees are 
not sufficiently expressive to completely represent an event odeI' logic formula, 
we display for each PAND gate the event order logic formula constraining the 
order of the events connected to the PAND-gate (omitted in Figure 2 for better 
readability) . 

While there are a total of 20,300 bad execution traces, the fault tree com­
prises only 5 paths. Obviously, a manual analysis of this large number of traces 
in order to determine causal factors would be impossible. It is easy to see in 
the fault tree which basic events cause an inadvertent deployment of the airbag. 
For instance, there is only one single fault that can lead to an inadvertent de­
ployment, namely FASICShortage, which is represented by the event order logic 
formula FASICShortage. It is also obvious that the combination of the basic 
events FETStuckHigh and FASICStuckHigh only leads to an inadvertent de­
ployment of the airbag if the basic event FETStuckHigh occurs prior to the 
basic event FASICStuckHigh, which is represented by the event order logic for­
mula FETStuckHighAFASICStuckHigh. The basic event MicroContTOllerFailure 
can lead to an inadvertent deployment if it is followed by the following sequence 
of basic events: enableFET, armFASIC, and fireFASIG. This sequence is repre­
sented by the event order logic formula MicroControllerFailure A enableFET A 
armFASIC A fireFASIC. If the basic event FETStuckHigh occurs prior to the 
MicroContTOllerFailure the sequence in which armFASIC and fire.F'ASIC occur 
after the MicTOControllerFailure event suffices to lead to the top level event. 
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This sequence is represented by the event order logic formula FETStuckHigh A 

MicroControllerFailure A armFASIC A fireFASIC. If the basic event FASICStuck­
High occurs after MicroControllerFailure and enableFET this also leads to a 
sequence leading to an inadvertent deployment. It is represented by the event 
order logic formula MicroControllerFailure A enableFET A FASICStuckHigh. 

The case study shows that the fault tree is a compact and concise visualization 
of the counterexample which allows for an easy identification of the basic events 
that cause the inadvertent deployment of the airbag. If the order of the events 
is important for the events causing the effect, this can be seen in the fault tree 
by the PAND gate and the corresponding EOL formula. In the counterexamples 
computed by SpinJa one would have to manually compare the order of the events 
in all execution traces. 

4 .3 Discussion 

Table 1 shows the memory and run time consumption of the on-the-fly causality 
checking approach presented in this paper for both case studies and the memory 
and rnn time consumption of the in off-line approach presented in [4], where all 
execution traces are stored on disk during model checking (Run. MC., Mem. MC) 
and the causality checking is performed as a post-processing step (Run. Caus., 
Mem. Caus.) , for the airbag case study. The following trends can be identified: 

Table 1. This table shows the experiment results with the on-the-fly approach for the 
railway crossing and airbag case studies . Run. MC and Mem. MC show the runtime 
and memory consumption for model checking only. Run . CCI and Mem. CCI show the 
runtime and memory needed to perform model checking and causality checking with 
the AC2(2) test disabled and Run. CC2 and Mem. CC2 with the AC2(2) test enabled . 
Additionally, the experiment results for off-line causality checking of the airbag case 
study are given. 

Off-line Approach 
Run time I Memory (MB) 
MCI Caus. 1 MC I Caus. 

- If no causality checking is done, DFS and BFS have approximately the same 
runtime and memory consumption. The causality checking adds a run-time 
and memory penalty, but the experiments show that causality checking is 
applicable to industrial size Promela models. In addition causality checking 
provides valuable insight as to why the hazard occurred, which is very tedious 
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or even impossible to determine if standard model checking and manual 
counterexample analysis is used. 

- When performing causality checking, BFS outperforms DFS in terms of both 
runtime and memory consumption. BFS outperforms DFS because if BFS is 
used, we can safely rely on the assumption that when a bad trace is found all 
shorter bad traces already have been found. This assumption assures that 
the minimality condition holds for each bad trace which was found using 
BFS and colored red by the causality checking algorithm. If DFS is used, no 
assumptions on the length of the bad trace can be made. The main reason 
why the assumption on the bad trace length is important and has such a 
high impact on the memory consumption when using DFS compared to BFS 
is that all good traces which are supersets of a red trace have to be taken 
into account for the AC2(2) test. When BFS is used only the traces which 
are supersets of red traces need to be stored, whereas when DFS is used all 
good traces need to be stored. Because the good traces are needed in case 
a shorter red trace is found later in the search for which we need the good 
super-traces for the AC2(2) test. 
The on-the-fly approach proposed in this paper outperforms the off-line ap­
proach both in terms of runtime and memory consumption. The main rea­
son for this observation is that when using the on-the-fly approach only the 
execution traces needed for causality checking, namely the red and black 
execution traces, need to be stored, whereas all execution traces have to be 
stored for the off-line approach. 

5 Related Work 

The application of counterfactual reasoning to software debugging has been pro­
posed by Zeller in [15]. However, [15] does not support complex logical rela­
tionships as causes and is mainly applicable to sequential software programs, 
whereas our approach is also applicable to concurrent software and hardware 
systems. Work documented in [16] uses the Halpern and Pearl approach to 
explain counterexamples in CTL model checking by determining causality. How­
ever, this approach considers only single counterexamples. Furthermore, it fo­
cuses on the causality of variable value-changes for the violation of CTL 
sub-formulas, whereas our approach identifies the events that lead to the variable 
value-changes. Consider the railway crossing example in which the CTL formula 
consists of the two boolean variables train_on_crossing and caLon_crossing. Ob­
viously, both variables changing to true is causal for a crash. Consequently the 
approach from [16] will indicate the variable value-change of train_on_crossing 
and caLon_crossing from false to true as being causal. But this obvious answer 
does not give any insight on why the train and the car are on the crossing at the 
same time. In [17] a formal framework for reasoning about contract violations is 
presented. In order to derive causality the notion of precedence established by 
Lamport clocks [18] is used. While this captures a partial order of the observed 
contract violations it is not clear to what extent this order information also 
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expresses causality. Work described in [19] establishes causality based on coun­
terfactual reasoning by computing distance metrics between execution traces. 
The delta between the counterexample and the most similar good execution is 
identified as causal for the bad behavior. For all the above mentioned approaches 
it is necessary to compute the counterexamples prior to the causality analysis 
whereas our approach works on-the-fly. To the best of our knowledge we are 
not aware of any other causality checking algorithm that can be integrated with 
explicit state-space exploration algorithms and which works on-the-fly. As an al­
ternative to the event order logic that we defined we also investigated the usage 
of the interval logics [20] and [21]. We felt that in light of the relatively simple 
ordering constraints that we need to describe those logics are overly expressive, 
and we hence decided to define our own tailored, relatively simple event order 
logic. 

6 Conclusions 

We have discussed how causality relationships can be established in system ex­
ecutions and have shown how the causality checks can be mapped to finding 
sub- and super-sets of execution traces. Furthermore we have proposed an ap­
proach for causality computation that works on-the-fly and can be integrated 
into explicit state-space model checking algorithms. We have evaluated our ap­
proach on two case studies, one of which is of industrial size. The experimental 
evaluation indicates that breadth-first search outperforms depth-first search in 
terms of memory and runtime, and that the on-line approach presented here 
outperforms the precurosy off-line approach. Furthermore, we have shown that 
causality checking is applicable to industrial size Promela models. 

In future work we plan to give a soundness and completeness argument for 
causality checking and embed causality checking into a symbolic reasoning en­
vironment in order to avoid the explicit storing of traces. In addition we plan 
to combine our work on causality checking for probabilistic models with the 
approach presented here. 
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