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Abstract. In this article, we apply techniques from Abstract Interpreta-
tion (a general theory of semantic abstractions) to Constraint Program-
ming (which aims at solving hard combinatorial problems with a generic
framework based on first-order logics). We highlight some links and dif-
ferences between these fields: both compute fixpoints by iteration but
employ different extrapolation and refinement strategies; moreover, con-
sistencies in Constraint Programming can be mapped to non-relational
abstract domains. We then use these correspondences to build an ab-
stract constraint solver that leverages abstract interpretation techniques
(such as relational domains) to go beyond classic solvers. We present en-
couraging experimental results obtained with our prototype implemen-
tation.

1 Introduction

Abstract Interpretation is a method to design approximate semantics of pro-
grams and provide sound answers to questions about their run-time behaviors
[8,7]. Constraint Programming aims at solving, with reusable techniques, hard
combinatorial problems expressed declaratively. This article studies the applica-
tion of Abstract Interpretation techniques to Constraint Programming.

State of the art. First introduced by Montanari [19], Constraint Programming
(CP) relies on the idea that many problems can be expressed as conjunctions
of first-order logic formulas, called constraints, each one representing a specific
combinatorial feature of the problem [21]. Each constraint comes with ad hoc
operators exploiting its internal structure to reduce the combinatorics. The con-
straints are then combined into generic solving algorithms. Much of the research
effort in CP is focused on defining and improving constraints1 and fine-tuning
solving algorithms. CP now offers powerful techniques for combinatorial opti-
mization, with many practical applications to scheduling, packing, layout design,
frequency allocation, etc. Yet, solvers suffer from limitations. They are limited
to non-relational domains, such as boxes or Cartesian products of integer sets.
Moreover, two clearly separate family of solving algorithms exist: one handles

1 See http://www.emn.fr/z-info/sdemasse/gccat for a catalog of existing global
constraints.
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discrete variables and the other continuous variables. Several methods have been
proposed to handle mixed problems, such as discretizing continuous variables and
handling them in a discrete solver (as in Choco [23]). Unfortunately, the solver
remains a purely discrete one and does not benefit from heuristics developed
for continuous ones. Alternatively, one can add specific mixed constraints [6] or
generic integrity constraints [4] to a continuous solver, with similar drawbacks.

In another research area, Abstract Interpretation (AI) is used to design static
program analyzers that are sound and always terminate (such as Astrée [5]) by
developing computable approximations of essentially undecidable problems. The
(uncomputable) concrete collecting semantics expresses in fixpoint form the set
of observable behaviors of the program. It is approximated in an abstract domain
that restricts the expressiveness to a set of properties of interest, provides data-
structure representations, efficient algorithms to compute abstract versions of
concrete operators, and acceleration operators to approximate fixpoints in finite
time. Soundness guarantees that the analyzer observes a super-set of the program
behaviors. Numeric domains, focusing on numeric variables and properties, are
particularly well developed; major ones include intervals [7] and polyhedra [9],
and recent years have seen the development of new domains, such as octagons
[18], and libraries, such as Apron [15]. They can handle all kinds of numeric
variables, including mathematical integers, rationals, and reals, machine integers
and floating-point numbers, and even express relationships between variables
of different types [17,5]. Each domain corresponds to some trade-off between
cost and precision. Finally, domains can be modified and combined by generic
operators, such as disjunctive completions and reduced products.

Contribution. In this paper we seek to use AI techniques to build an abstract,
generic CP solver. Our contributions are as follows: we show the links between
AI and CP and recast the later as a fixpoint computation similar to local itera-
tions in a disjunctive completion of non-relational domains; we design a generic
abstract solver parametrized by abstract domains and prove its termination; we
show that, by using relational and mixed integer-real abstract domains, we can
go beyond some limitations of existing solvers. We do not study in this paper the
dual problem, i.e., exploiting CP techniques in AI; it is one of the perspectives
of this work.

The paper is organized as follows. Section 2 provides background information
on AI and CP, and some elements of comparison. Section 3 recasts CP as AI
and presents our abstract solver. Our prototype implementation and preliminary
experimental results are presented in Sec. 4. Section 5 concludes.

Related works. Some interactions between CP and verification techniques have
been explored in previous works. For instance, CP has been used to automati-
cally generate test configurations [13], or to verify CP models [16]. In another
direction, several recent works, such as [10,24], establish connections between AI
and SAT solving algorithms, holding promise for cross-pollination between these
fields. Our aim is similar, but linking AI to CP. While related, CP and SAT differ



significantly enough in the chosen models (numeric versus boolean) and solving
algorithms that previous results do not apply. Our work is in the continuity of
[25] that extends CP solving methods to use richer domain representations, such
as octagons. However, embedding a new domain required ad hoc techniques to
express its operations in the native language of the solver: boxes. In this paper,
we reverse that process: we redesign from the ground up the solver in an abstract
way so that it is not tied to boxes but can reuse as-is existing abstract operators
and domains from AI.

2 Preliminaries

In this section we present some notions of Abstract Interpretation and Constraint
Programming that will be needed later.

2.1 Bases of Abstract Interpretation

We first present some elements of Abstract Interpretation that will prove useful
in the design of our solver (see [8,7] for a more detailed presentation).

Fix-point abstractions. The concrete semantics of a program is given as
the least fixpoint lfp⊥ F of an operator F : D → D in some partially ordered
structure (D,v,⊥,t), such as a complete partial order or a lattice. With suitable
hypotheses [8] on F and D, the fixpoint can be expressed as the limit of a
(possibly transfinite) increasing iteration lfp⊥ F =

⊔
i∈Ord F

i(⊥) on ordinals.

Similarly, we denote by (D],v],⊥],t]) the abstract domain. A monotonic
concretization γ : D] → D associates a concrete meaning to each abstract el-
ement. An abstract operator F ] : D] → D] is a sound abstraction of F if
F ◦ γ v γ ◦ F ]. Sometimes, but not always, there exists an abstraction function
α : D → D] such that (α, γ) forms a Galois connection, which ensures that each
concrete element X has a best abstraction α(X), and the optimal abstract op-
erator F ] can be uniquely defined as F ] = α ◦ F ◦ γ. In all cases, lfp⊥ F can be

approximated as
⊔]
i∈Ord F

]i(⊥]). This limit may not be computable, even if F ]

is, or may require many iterations. It is thus often replaced with the limit of an
increasing sequence: X]

0 = ⊥], X]
i+1 = X]

i OF
](X]

i ) using a widening operator O
to accelerate convergence. The widening is designed to over-approximate t and
converge in finite time δ to a post-fixpoint X]

δ of F ]. Then, γ(X]
δ) w lfp⊥ F . The

limit is often refined by a decreasing iteration: Y ]0 = X]
δ , Y

]
i+1 = Y ]i M F ](Y ]i ),

using a narrowing operator M designed to stay above any fixpoint of F and con-
verge in finite time. As all the Y ]i are abstractions of lfp⊥ F , we can stop the
iteration at any time.

Local iterations. In addition to refining the results of least fixpoint computa-
tions, decreasing iterations have been used by Granger [11] locally, i.e., within
the computation of F ]. Granger observes that the concrete operator F often



involves lower closure operators, i.e., operators ρ that are monotonic, idempo-
tent (ρ ◦ ρ = ρ) and reductive (ρ(X) v X). Given any sound abstraction ρ] of

ρ, the limit Y ]δ of the sequence Y ]0 = X], Y ]i+1 = Y ]i M ρ](Y ]i ) is an abstrac-

tion of ρ(γ(X])). Whenever ρ] is not an optimal abstraction of ρ, Y ]δ may be
significantly more precise than ρ](X]). A relevant application is the analysis of
complex test conjunctions C1 ∧ · · · ∧ Cp where each atomic test Ci is modeled

in the abstract as ρ]i . Generally, ρ] = ρ]1 ◦ · · · ◦ ρ]p is not optimal, even when

each ρ]i is. A complementary application is the analysis of a single test Ci using
a sequence of relaxed, non-optimal test abstractions. For instance, non-linear
expression parts may be replaced with intervals computed based on variable
bounds [17]. As applying the relaxed test refines these bounds, the relaxation is
not idempotent and benefits from local iterations. The link between local itera-
tions and least fixpoint refinements lies in the observation that ρ(X) computes a
trivial fixpoint: the greatest fixpoint of ρ smaller than X: gfpX ρ. In both cases, a
decreasing iteration starts from an abstraction of a fixpoint (lfp⊥ F in one case,
gfpX ρ in the other) and computes a smaller abstraction of that fixpoint.

On narrowings. While a lot of work has been devoted to designing smart
widenings, narrowings have gathered far less attention. Some major domains,
such as polyhedra [9], do not feature any. This may be explained by three facts:
firstly, narrowings (unlike widenings) are not necessary to achieve soundness;
secondly, performing a bounded number of decreasing iterations without nar-
rowing is sometimes sufficient to recover enough precision after widening [5];
thirdly, when this simple technique is not sufficient, narrowings do not actually
help further in practice and solutions beyond decreasing iterations must be con-
sidered [12]. In the following, we argue that Constraint Programming can be
seen as a form of decreasing iteration, but uses different techniques that are,
in some respects, more advanced than the corresponding ones used in Abstract
Interpretation.

2.2 Constraint Programming

We now present the basic definitions of Constraint Programming (see [21] for
a more detailed presentation). In this section, we employ CP terminology, and
take special care to point out terms with a different meaning in AI and CP.

Problems are modeled in a specific format, called Constraint Satisfaction Prob-
lem (CSP), and defined as follows:

Definition 1 (Constraint Satisfaction Problem). A CSP is defined by a
set of variables (v1, . . . , vn) taking their value in domains (D̂1, . . . , D̂n) and a
set of constraints (C1, . . . , Cp) that are relations on the variables.

A domain Di in CP denotes the set of possible values for a variable vi and
D = D1×· · ·×Dn is called the search space. As the search space evolves during
the solving process, we distinguish the initial search space of the CSP and note



it D̂ = D̂1 × · · · × D̂n as in Def. 1. Problems may be discrete (D̂ ⊆ Zn) or
continuous (D̂ ⊆ Rn). Domains are, however, always bounded.

Given a constraint C on variables v1, . . . , vn in domains D1, . . . , Dn, and
given values xi ∈ Di, we denote by C(x1, . . . , xn) the fact that the constraint
is satified when each variable vi takes the value xi. The set of solutions is S =
{(s1, . . . , sn) ∈ D̂ | ∀i ∈ J1, pK, Ci(s1, . . . , sn)}, with p the number of constraints
and where Ja, bK = {x ∈ Z | a ≤ x ≤ b} denotes the interval of integers between
a and b.

For discrete problems, two domain representations are traditionally used:
subsets and intervals.

Definition 2 (Integer Cartesian Product). Let v1, . . . , vn be variables over
finite discrete domains D̂1, . . . , D̂n. We call integer Cartesian product any Carte-
sian product of integer sets in D̂. Integer Cartesian products form a finite lattice:

S] = {
∏
i

Xi | ∀i, Xi ⊆ D̂i }

Definition 3 (Integer Box). Let v1, . . . , vn be variables over finite discrete
domains D̂1, . . . , D̂n. We call integer box a Cartesian product of integer intervals
in D̂. Integer boxes form a finite lattice:

I] = {
∏
i

Jai, biK | ∀i, Jai, biK ⊆ D̂i, ai ≤ bi } ∪ {∅}

For continuous problems, domains are represented as intervals with floating-
point bounds. Let F be the set of floating-point machine numbers. Given a, b ∈ F,
we note [a, b] = {x ∈ R | a ≤ x ≤ b} the interval of reals bounded by a and b,
and I = {[a, b] | a, b ∈ F} the set of such intervals.

Definition 4 (Box). Let v1, . . . , vn be variables over bounded continuous do-
mains D̂1, . . . , D̂n ∈ I. A box is a Cartesian product of intervals in D̂. Boxes
form a finite lattice:

B] = {
∏
i

Ii | ∀i, Ii ∈ I, Ii ⊆ D̂i} ∪ {∅}

Solving a CSP means computing exactly or approximating its solution set S.

Definition 5 (Approximation). A complete (resp. sound) approximation of
the solution S is a collection A of domain sequences such that ∀(D1, . . . , Dn) ∈
A, ∀i, Di ⊆ D̂i and S ⊆

⋃
(D1,...,Dn)∈A D1×· · ·×Dn (resp.

⋃
(D1,...,Dn)∈A D1×

· · · ×Dn ⊆ S).



Soundness guarantees that we find only solutions, while completeness guar-
antees that no solution is lost. On discrete domains, constraint solvers are ex-
pected to be sound and complete, i.e., compute the exact set of solutions. This
is generally impossible on continuous domains, and we usually withdraw either
soundness (most of the time) or completeness. Note that the terms sound and
complete have opposing definitions in AI and CP so, to avoid confusion, we
will use the term over-approximations (resp. under-approximations) to denote
CP-complete AI-sound (resp. CP-sound AI-complete) approximations.

In this article, we consider solving methods that over-approximate the solu-
tions of continuous problems and compute the exact solutions of discrete ones.
These methods alternate two steps: propagation and search.

Propagation. The goal of a propagation algorithm is to use the constraints
to reduce the domains. Intuitively, we remove inconsistent values from domains,
i.e., values that cannot appear in any solution. Several definitions of consistency
have been proposed in the literature. We present the most common ones.

Definition 6 (Generalized Arc-Consistency). Given variables v1, . . . , vn
over finite discrete domains D1, . . . , Dn, Di ⊆ D̂i, the domains are said gen-
eralized arc-consistent (GAC) for a constraint C iff ∀i ∈ J1, nK,∀xi ∈ Di,∀j 6=
i,∃xj ∈ Dj such that C(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) holds.

Definition 7 (Bound-Consistency). Given variables v1, . . . , vn over finite
discrete domains D1, . . . , Dn, Di ⊆ D̂i, the domains are said bound-consistent
(BC) for a constraint C iff ∀i ∈ J1, nK, Di is an integer interval Jai, biK, and
the condition of Def. 6 holds for xi = ai and xi = bi (but not necessarily other
values of xi in Jai, biK).

Definition 8 (Hull-Consistency). Given variables v1, . . . , vn over continuous
interval domains D1, . . . , Dn ∈ I, Di ⊆ D̂i, the domains are said Hull-consistent
for a constraint C iff D1× · · · ×Dn is the smallest floating-point box containing
all the solutions for C in D1 × · · · ×Dn.

Each constraint kind and consistency comes with an algorithm, called propa-
gator, that tries to achieve consistency. When considering several constraints, a
propagation loop iterates the constraint propagators until a fixpoint is reached.
As shown in [2], the order of propagator applications does not matter, as the set
of domains lives in a finite lattice (B], I] or S]) and the consistent fixpoint is its
unique least element. When consistency is too costly to achieve, the propagators
and propagator loops settle instead for an over-approximation (e.g., removing
only some inconsistent values). In addition to providing a tighter search space,
the propagation is sometimes able to discover that it contains no solution at all,
or that all its points are solutions.

Search. Generally, propagation alone cannot compute the exact solution (in the
discrete case) or a precise enough over-approximation (in the continuous case).



list of boxes sols ← ∅ /*stores the solutions*/
queue of boxes toExplore ← ∅ /*stores the boxes to explore*/
push D̂ in toExplore /*initialization with CSP search space*/

while toExplore 6= ∅ do
b← pop(toExplore)
b← Hull-consistency(b)
if b 6= ∅ then

if b contains only solutions or b is small enough then
sols ← sols ∪ b

else
split b into b1 and b2 by cutting in half along the largest box dimension
push b1 and b2 in toExplore

Fig. 1. A classic continuous solver.

Thus, in a second step, a search engine is employed to try various assumptions
on variable values. In the discrete case, a chosen variable is instantiated to each
value in its domain. In the continuous case, its domain is split into two smaller
subdomains. The solving algorithm continues by selecting a new search space and
applying a propagation step (as it may no longer be consistent), and possibly
making further choices. This interleaving of propagations and choices terminates
when the search space can be proved to contain no solution, only solutions
or, in the continuous case, when its size is below a user-specified threshold. In
the discrete case, at worst, all the variables are instantiated. After exploring a
branch, in case of failure or if all the solutions should be computed, the algorithm
returns to a choice point (instantiation or split) by backtracking and tries another
assumption.

We illustrate the search algorithm by an example solver in Fig. 1 corre-
sponding to a continuous solver based on Hull-Consistency (Def. 8) computing
an over-approximation of all the solutions. As explained above, a discrete solver
would differ significantly. Existing solutions to embed discrete variables in con-
tinuous solvers consist in adding constraints expressing integerness and their
propagators [6,4], while keeping a search engine based on continuous domains.

2.3 Comparing Abstract Interpretation and Constraint
Programming

We now present informally some connections between Abstract Interpretation
and Constraint Programming. The next section will make these connections
formal by expression CP in the AI framework.

Both techniques are grounded in the theory of fixpoints in lattices. They
pursue similar goals and means: computing or over-approximating solutions to
complex equations by manipulating abstracted views of potential solution sets,
such as boxes (called domains in CP, and abstract domain elements in AI). Their
goals, however, do not coincide. Solvers aim at completeness and thus always



allow refinement up to an arbitrary precision. On the contrary, the precision of
abstract interpreters is fixed by their choice of abstract domains; they can seldom
represent arbitrary precise over-approximations. AI embraces incompleteness.
The choice of abstract domains sets the cost and precision of an interpreter,
while the choice of domains sets the cost of a solver to reach a given precision.

Although they aim at completeness, solvers nevertheless employ simple, non-
relational domains. They rely on collections of simple domains (similar to dis-
junctive completions) to reach the desired precision. The domains are homoge-
neous and cannot mix variables of different type. On the contrary, AI enjoys a
rich collection of abstract domains, including relational and heterogeneous ones.

On the algorithmic side, AI and CP share common ideas. Iterated propaga-
tions in CP are similar to local iterations in AI. In fact, approximating consis-
tency in CP is similar to approximating the effect of a complex test in AI. How-
ever, search engines in CP use features, such as choice points and backtracking,
that have no equivalent in AI. Dually, the widening from AI has no equivalent
in CP, as CP does not employ increasing iterations but only decreasing ones.

Finally, while abstract interpreters are usually defined in a very generic way
and parametrized by arbitrary abstract domains, solvers are far less flexible and
embed choices of abstractions (such as domains and consistencies) as well as
concrete semantics (the type of variables) in their design. In the following, we
will design an abstract solver that avoids these pitfalls and can benefit from the
large library of abstract domains designed for AI.

3 An Abstract Constraint Solver

We now present our main contribution: expressing constraint solving as an ab-
stract interpreter, which involves defining concrete and abstract domains, ab-
stract operators for split and consistency, and an iteration scheme.

3.1 Concrete Solving

A CSP is similar to the analysis of a conjunction of tests and can be formalized
in terms of local iterations. We consider as concrete domain D the subsets of
the CSP search space D̂ = D̂1 × · · · × D̂n (Def. 1), i.e., (P(D̂),⊆, ∅,∪). Each
constraint Ci corresponds to a concrete lower closure operator ρi : P(D̂) →
P(D̂), such that ρi(X) keeps only the points in X satisfying Ci. The concrete
solution of the problem is simply S = ρ(D̂), where ρ = ρ1◦· · ·◦ρp. It is expressed
in fixpoint form as gfpD̂ ρ.

3.2 Abstract Domains

Solvers do not manipulate individual points in D̂, but rather collections of points
of certain forms, such as boxes, called domains in CP. We now show that CP-
domains are elements of an abstract domain (D],v],⊥],t]) in AI, which depends
on the chosen consistency. In addition to standard AI operators, we require a



monotonic size function τ : D] → R+ that we will use later as a termination
criterion (Def. 10).

Example 1. Generalized arc-consistency (Def. 6) corresponds to the abstract do-
main of integer Cartesian products S] (Def. 2), ordered by element-wise set in-
clusion. It is linked with the concrete domain D by the standard Cartesian Galois
connection:

D −−−→←−−−
αa

γa S]

γa(S1, . . . , Sn) = S1 × · · · × Sn
αa(X) = λi.{x | ∃(x1, . . . , xn) ∈ X, xi = x}

The size function τa uses the size of the largest component, minus one, so that
singletons have size 0:

τa(S1, . . . , Sn) = maxi(|Si| − 1)

Example 2. Bound consistency (Def. 7) corresponds to the domain of integer
boxes I] (Def. 3), ordered by element-wise interval inclusion. We have a Galois
connection, and use as size function the length of the largest dimension:

D −−−→←−−−
αb

γb I]

γb(Ja1, b1K, . . . , Jan, bnK) = Ja1, b1K× · · · × Jan, bnK
αb(X) = λi.Jmin {x ∈ Z | ∃(x1, . . . , xn) ∈ X, xi = x},

max {x ∈ Z | ∃(x1, . . . , xn) ∈ X, xi = x}K
τb(Ja1, b1K, . . . , Jan, bnK) = maxi(bi − ai)

Example 3. Hull consistency (Def. 8) corresponds to the domain of boxes with
floating-point bounds B] (Def. 4). We use the following Galois connection and
size function:

D −−−→←−−−
αh

γh B]

γh([a1, b1], . . . , [an, bn]) = [a1, b1]× · · · × [an, bn]
αh(X) = λi.[ max {x ∈ F | ∀(x1, . . . , xn) ∈ X, xi ≥ x},

min {x ∈ F | ∀(x1, . . . , xn) ∈ X, xi ≤ x}]
τh([a1, b1], . . . , [an, bn]) = maxi(bi − ai)

We observe that to each choice corresponds a classic non-relational abstract
domain, which is an homogeneous Cartesian product of identical single-variable
domains. However, this needs not be the case: new solvers can be designed beyond
the ones considered in traditional CP by varying the abstract domains further.
A first idea is to apply different consistencies to different variables which per-
mits, in particular, mixing variables with discrete domains and variables with
continuous domains. A second idea is to parametrize the solver with other ab-
stract domains from the AI literature, in particular relational domains, which
we illustrate below.



Example 4. The octagon domain O] [18] assigns a (floating-point) upper bound
to each binary unit expression ±vi ± vj on the variables v1, . . . , vn. It enjoys a
Galois connection, and we use the size function from [20]:

D −−−→←−−−
αo

γo O]

O] = {αvi + βvj | i, j ∈ J1, nK, α, β ∈ {−1, 1} } → F

γo(X
]) = {(x1, . . . , xn) ∈ Rn | ∀i, j, α, β, αxi + βxj ≤ X](αvi + βvj)}

αo(X) = λ(αvi + βvj).min {x ∈ F | ∀(x1, . . . , xn) ∈ X, αxi + βxj ≤ x}

τo(X
]) = min( maxi,j,β (X](vi + βvj) +X](−vi − βvj)),

maxi (X](vi + vi) +X](−vi − vi))/2)

Example 5. The polyhedron domain P] [9] abstract sets as convex, closed poly-
hedra. Modern implementations [15] generally follow the “double description
approach” and maintain two dual representations for each polyhedron: a set of
linear constraints and a set of generators (vertices and rays, although our poly-
hedra never feature rays as they are bounded). There is no abstraction function
α for polyhedra, and so, no Galois connection. Operators are generally easier on
one representation. In particular, we define the size function on generators as
the maximal Euclidian distance between pairs of vertices:

τp(X
]) = max

gi,gj∈X]
||gi − gj ||

3.3 Constraints and Consistency

We now assume that an abstract domain D] underlying the solver is fixed. Given
the concrete semantics of the constraints ρ = ρ1 ◦ · · · ◦ ρp, and if D] enjoys a

Galois connection D −−−→←−−−α
γ
D], then the semantics of the perfect propagator

achieving the consistency for all the constraints is simply: α ◦ ρ ◦ γ. Solvers
achieve this algorithmically by applying the propagator for each constraint in
turn until a fixpoint is reached or, when this process is deemed too costly, return
before a fixpoint is reached. By observing that each propagator corresponds to an
abstract test transfer function ρ]i in D], we retrieve the local iterations proposed
by Granger to analyze conjunctions of tests [11]. A trivial narrowing is used here:
stop refining after an iteration limit is reached.

Additionally, each ρ]i can be internally implemented by local iterations [11], a
technique which is used in both the AI and CP communities. A striking connec-
tion is the analysis in non-relation domains using forward-backward iterations
on expression trees [17, §2.4.4], which is extremely similar to the HC4-revise
algorithm [3] developed independently for CP.

When there is no Galois connections (as for polyhedra), there is no equivalent
to consistency. Nevertheless, we can still use local iterations on approximate test
transfer functions ρ]i , which serve the same purpose: to remove some points that
do not satisfy the constraints.



3.4 Disjunctive Completion and Split

In order to approximate the solution to an arbitrary precision, solvers use a
coverage of finitely many abstract elements from D]. This corresponds in AI
to the notion of disjunctive completion. We now consider the abstract domain
E] = Pfinite(D]), and equip it with the Smyth order v]E , a classic order for
disjunctive completions defined as:

X] v]E Y
] ⇐⇒ ∀B] ∈ X], ∃C] ∈ Y ], B] v] C]

The creation of new disjunctions is achieved by a split operation ⊕, that
splits an abstract element into two or more elements:

Definition 9 (Split Operator). A split operator ⊕ : D] → E] satisfies:

1. ∀e ∈ D], | ⊕ (e)| is finite,
2. ∀e ∈ D], ∀ei ∈ ⊕(e), ei v] e, and
3. ∀e ∈ D], γ(e) =

⋃
{γ(ei) | ei ∈ ⊕(e)}.

Condition 2 implies⊕(e) v]E {e}. Condition 3 implies that⊕ is an abstraction
of the identity; thus, ⊕ can be freely applied at any place during the solving
process without altering the AI-soundness (over-approximation). We now present
a few example splits.

Example 6 (Split in S]). The instantiation of a variable vi in a discrete domain
X] = (S1, . . . , Sn) ∈ S] is a split operator:

⊕a(X]) = {(S1, . . . , Si−1, {x}, Si+1, . . . , Sn) |x ∈ Si}

Example 7 (Split in B]). Cutting a box in two along a variable vi in a continuous
domain X] = (I1, . . . , In) ∈ B] is a split operator:

⊕h(X]) = {(I1, . . . , Ii−1, [a, h], Ii+1, . . . , In), (I1, . . . , Ii−1, [h, b], Ii+1, . . . , In)}

where Ii = [a, b] and h = (a+ b)/2 rounded in F in any direction.

Example 8 (Split in O]). Given a binary unit expression αvi + βvj , we define
the split on an octagon X] ∈ O] along this expression as:

⊕o(X]) = {X][(αvi + βvj) 7→ h], X][(−αvi − βvj) 7→ −h]}

where h = (X](αvi + βvj)−X](−αvi − βvj))/2, rounded in F in any direction.

Example 9 (Split in P]). Given a polyhedron X] ∈ P] represented as a set of
linear constraints, and a linear expression

∑
i βivi, we define the split:

⊕p(X]) = {X] ∪ {
∑
i βivi ≤ h}, X] ∪ {

∑
i βivi ≥ h}}

where h = (minγ(X])

∑
i βivi + maxγ(X])

∑
i βivi)/2 can be computed by the

Simplex algorithm.



These splits are parametrized by the choice of a direction of cut (some variable
or expression). For non-relational domains we can use two classic strategies from
CP: split each variable in turn, or split along a variable with maximal size (i.e.,
|Si| or bi − ai). These strategies lift naturally to octagons by replacing the set
of variables with the (finite) set of unit binary expressions (see also [20]). For
polyhedra, one can bisect the segment between two vertices that are the farthest
apart, in order to minimize τp. However, even for relational domains, we can use
a faster and simpler non-relational split, e.g., cut along the variable with the
largest range.

To ensure the termination of the solver, we impose that any series of reduc-
tions, splits, and choices eventually outputs a small enough element for τ :

Definition 10. The operators τ : D] → R+ and ⊕ : D] → E] are compatible if,
for any reductive operator ρ] : D] → D] (i.e., ∀X] ∈ D], ρ](X]) v] X]) and any
family of choice operators πi : E] → D] (i.e., ∀Y ] ∈ E], πi(Y ]) ∈ Y ]), we have:

∀e ∈ D], ∀r ∈ R>0,∃K s.t. ∀j ≥ K, (τ ◦ πj ◦ ⊕ ◦ ρ ◦ · · · ◦ π1 ◦ ⊕ ◦ ρ)(e) ≤ r

Each of the split function we presented above, ⊕a, ⊕h, ⊕o, and ⊕p, is compat-
ible with the size function τa, τh, τo, and τp we proposed on the corresponding
domain.

The search procedure can be represented as a search tree where each node
corresponds to a search space and the children of a node are constructed by
applying the split operator on the parent and then applying a reduction. With
this representation, the set of nodes at a given depth corresponds to a disjunction
over-approximating the solution. Moreover, a series of reduction (ρ), selection
(π), and split (⊕) operators corresponds to a tree branch. Definition 10 states
that each branch of the search tree is finite.

3.5 Abstract Solving

We are now ready to present our solving algorithm, in Fig. 2. It maintains in
toExplore and sols two disjunctions in E], and iterates the following steps: choose
an abstract element e from toExplore (pop), apply the consistency (ρ]), and
either discard the result, add it to the set of solutions sols, or split it (⊕). The
solver starts with the maximal element >] of D], which represents γ(>]) = D̂.

Correctness. At each step,
⋃
{γ(x) |x ∈ toExplore∪sols} is an over-approxima-

tion of the set of solutions, because the consistency ρ] is an abstraction of the
concrete semantics ρ of the constraints and the split ⊕ is an abstraction of the
identity. We note that abstract elements in sols are consistent and either contain
only solutions or are smaller than r. The algorithm terminates when toExplore is
empty, at which point sols over-approximates the set of solutions with consistent
elements that contain only solutions or are smaller than r. To compute the exact
set of solutions in the discrete case, it is sufficient to choose r < 1.

The termination is ensured by the following proposition:



list of abstract domains sols ← ∅ /*stores the abstract solutions*/
queue of abstract domains toExplore← ∅ /*stores the abstract elements to explore*/
push >] in toExplore /*initialization with the abstract search space: γ(>]) = D̂*/

while toExplore 6= ∅ do
e← pop(toExplore)
e← ρ](e)
if e 6= ∅ then

if τ(e) ≤ r or isSol(e) /*isSol(e) returns true if e contains only solutions*/
then

sols ← sols ∪ e
else

push ⊕(e) in toExplore

Fig. 2. Our generic abstract solver.

Proposition 1. If τ and ⊕ are compatible, the algorithm in Fig. 2 terminates.

Proof. The search tree is finite. Otherwise, as its width is finite by Def. 9, there
would exist an infinite branch (König’s lemma), which would contradict Def. 10.

The solver in Fig. 2 uses a queue data-structure, and splits the oldest abstract
element first. More clever choosing strategies are possible (e.g., split the largest
element for τ). The algorithm remains correct and terminates for any strategy.

Comparison with Abstract Interpretation. Similarly to local iterations in
AI, our solver performs decreasing abstract iterations. Indeed, toExplore ∪ sols
is decreasing for v]E in the disjunctive completion domain E] at each iteration

of the loop (indeed, ⊕(e) v]E {e} and we can assume that ρ] is reductive in D]
without loss of generality). However, it differs from classic AI in two ways. Firstly,
there is no split operator in AI: new components in a disjunctive completion are
generally added only at control-flow joins (by delaying the abstract join t] inD]).
Secondly, the solving iteration strategy is far more elaborated than in AI. The
use of a narrowing is replaced with a data-structure that maintains an ordered
list of abstract elements and a splitting strategy that performs a refinement
process and ensures its termination. Actually, more complex strategies than the
simple one we presented here exist in the CP literature. One example is the
AC-5 algorithm [26] where, each time the domain of a variable changes, the
variable decides which constraints need to be propagated. The design of efficient
propagation algorithms is an active research area [22].

4 Experiments

We have implemented a prototype solver to demonstrate the feasibility of our
approach. We describe its main features and present experimental results.



4.1 Implementation

Our prototype solver, called Absolute, is implemented in OCaml. It uses Apron,
a library of numeric abstract domains intended primarily for static analysis [15].
We benefit from Apron domains (intervals, octagons, and polyhedra), its ability
to hide their internal algorithms under a uniform API, and its handling of integer
and real variables and of non-linear constraints.

Consistency. Apron provides a language of constraints sufficient to express
many CSPs: equalities and inequalities over numeric expressions (including op-
erators such as +, −, ×, /,

√
, power, modulo, and rounding to integers). The

test transfer function naturally provides propagators for these constraints. In-
ternally, each domain implements its own algorithm to handle tests, including
sophisticated methods to handle non-linear constraints (such as HC4 and lin-
earization [17]). Our solver then performs local iterations until either a fixpoint
or a maximum number of iterations is reached (which is set to 3 to ensure a
fast solving). In CP solvers, only the constraints containing at least one vari-
able that has been modified during the previous step are propagated. However,
for simplicity, our solver propagates all the constraints at each step of the local
iteration.

Split. Currently, our solver only splits along a single variable at a time, cutting
its range in two, even for relational domains and integer variables. It chooses the
variable with the largest range. It uses a queue to maintain the set of abstract
elements to explore (as in Fig. 2). Compared to most CP solvers, this splitting
strategy is very basic. It will be improved in the future by integrating more clever
strategies from the CP literature.

4.2 Exemple of AI-solving with Absolute

In order to make the abstract solving process clear, we detail here an example
with a very simple problem. Consider a CSP on two continuous variables v1 and
v2 taking their values in D1 = D2 = [−5, 5], and the constraints C1 : x2 +y2 ≤ 4
and C2 : (x− 2)2 + (y + 1)2 ≤ 1.

Figure 3 shows the first iterations of the AI-solving method for this CSP.
The root corresponds to the initial search space after applying the reduction
based on HC4 as explained above (D1 = [1, 2], D2 = [−1.73, 0]). Its successor
nodes correspond to the search spaces obtained after splitting the domain D2 in
half and applying the reduction to the new states. These two steps (split and
reduction) are repeatedly applied until all the solutions have been found, but
Figure 3 only shows the first three steps.

At a given depth in the search tree, the current approximation of the solution
space is made of the disjunction of the abstract elements currently investigated.
Figure 4 shows these disjunctions for the search tree depicted in Fig. 3.



Fig. 3. First iterations of the AI-solving method.

(a) (b) (c) (d)

Fig. 4. Disjunctions of the first iterations of the AI-solving method search tree given
in Fig. 3.



B] O]

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 0.009 0.018 0.053 0.048

nbody5.1 6 = 32.85 708.47 0.027 ≥ 1h

ipp 8 = 0.66 9.64 19.28 1.46

brent-10 10 = 7.96 4.57 0.617 ≥ 1h

KinematicPair 2 ≤ 0.013 0.018 0.016 0.011

biggsc4 4 ≤ 0.011 0.022 0.096 0.029

o32 5 ≤ 0.045 0.156 0.021 0.263

Table 1. CPU time in seconds to find the first solution with Ibex and Absolute.

B] O]

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 0.02 0.10 0.26 0.14

nbody5.1 6 = 95.99 1538.25 27.08 ≥ 1h

ipp 8 = 38.83 39.24 279.36 817.86

brent-10 10 = 21.58 263.86 330.73 ≥ 1h

KinematicPair 2 ≤ 59.04 23.14 60.78 31.11

biggsc4 4 ≤ 800.91 414.94 1772.52 688.56

o32 5 ≤ 27.36 22.66 40.74 33.17

Table 2. CPU time in seconds to find all solutions with Ibex and Absolute.

4.3 Experimental Results

We have run Absolute on two classes of problems: firstly, on continuous problems
to compare its efficiency with state-of-the-art CP solvers; secondly, on mixed
problems, that these CP solvers cannot handle while our abstract solver can.

Continuous solving. We use problems from the COCONUT benchmark2, a
standard CP benchmark with only real variables. We compare Absolute with
the standard (interval-based) Ibex CP continuous solver3. Notice that the CO-
CONUT problems have a relatively small number of variables, compared for
instance to the number of variables that can be analyzed for a single program
in AI. The difficulty of the benchmark is here due to both the expressions of the
constraints (non linear with multiple variable occurences) and the high precision
that is required.

Additionally, we compare Absolute to our extension of Ibex to octagons from
previous work [20], which allows comparing the choice of domain (intervals versus
octagons) independently from the choice of solver algorithm (classic CP solver
versus our AI-based solver). Tables 1 and 2 show the run time in seconds to find
all the solutions or only the first solution of each problem. Tables 3 and 4 show

2 Available at http://www.mat.univie.ac.at/~neum/glopt/coconut/.
3 Available at http://www.emn.fr/z-info/ibex/.

http://www.mat.univie.ac.at/~neum/glopt/coconut/
http://www.emn.fr/z-info/ibex/


B] O]

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 145 28 45 207

nbody5.1 6 = 262 659 2 765 630 105 -

ipp 8 = 4 039 25 389 899 3 421

brent-10 10 = 101 701 12 744 2 113 -

KinematicPair 2 ≤ 43 55 39 55

biggsc4 4 ≤ 98 96 94 84

o32 5 ≤ 87 344 85 942

Table 3. Number of nodes created to find the first solution with Ibex and Absolute.

B] O]

name # vars ctr type Ibex Absolute Ibex Absolute

b 4 = 551 577 147 1057

nbody5.1 6 = 598 521 5 536 283 7 925 -

ipp 8 = 237 445 99 179 39 135 2 884 925

brent-10 10 = 211 885 926 587 5 527 -

KinematicPair 2 ≤ 847 643 215 465 520 847 215 465

biggsc4 4 ≤ 3 824 249 6 038 844 2 411 741 6 037 260

o32 5 ≤ 161 549 120 842 84 549 111 194

Table 4. Number of nodes created to find all solutions with Ibex and Absolute.

the number of nodes created to find all the solutions or only the first solution of
each problem.

On average, Absolute is competitive with the traditional CP approach. More
precisely, it is globally slower on problems with equalities, and faster on problems
with inequalities. This difference of performance seems to be related to the fol-
lowing ratio: the number of constraints in which a variable appears over the total
number of constraints. As said previously, at each iteration, all the constraints
are propagated even those for which none of their variables have changed. This
increases the computation time at each step and thus increases the overall time.
For instance, in the problem brent-10, there are ten variables, ten constraints,
and each variable appears in at most three constraints. If only one variable
has been modified, we will nevertheless propagate all ten constraints, instead of
three at most. This may explain the timeouts observed on problems brent-10

and nbody5.1 with Absolute.
Moreover, in our solver, the consistency loop is stopped after three iterations

while, in the classic CP approach, the fixpoint is reached. The consistency in
Absolute may be less precise than the one used in Ibex, which reduces the
time spent during the propagation step but may increase the search phase. This
probably explains why in tables 3 and 4 the number of nodes created during the
solving process with Absolute is most of the times larger than the one with Ibex.
Less reductions are performed thus more splitting operations are needed, hence
more nodes are created during the solving process.



First Solution All solutions

name
# vars

ctr type B] O] P] B] O] P]

int real

gear4 4 2 = 0.016 0.036 0.296 0.017 0.048 0.415

st miqp5 2 5 ≤ 0.672 1.152 ≥ 1h 2.636 3.636 ≥ 1h

ex1263 72 20 = ≤ 8.747 ≥ 1h ≥ 1h 473.933 ≥ 1h ≥ 1h

antennes 4 3 6 2 ≤ 3.297 22.545 ≥ 1h 520.766 1562.335 ≥ 1h

Table 5. CPU time, in seconds, to solve mixed problems with Absolute.

First Solution All solutions

name
# vars

ctr type B] O] P] B] O] P]

int real

gear4 4 2 = 43 226 226 67 501 501

st miqp5 2 5 ≤ 2 247 2 247 - 7 621 7 621 -

ex1263 72 20 = ≤ 8544 - - 493 417 - -

antennes 4 3 6 2 ≤ 17 625 40 861 - 2 959 255 6 657 237 -

Table 6. Number of nodes created to solve mixed problems with Absolute.

These experimentations show that our prototype, which only features quite
näıve CP strategies, behaves reasonably well on a classic benchmark. Further
studies will include a deeper analysis of the performances and improvements of
Absolute on its identified weaknesses (splitting strategy, propagation loop).

Mixed discrete-continuous solving. As CP solvers seldom handle mixed
problems, no standard benchmark exists. We thus gathered problems from Min-
LPLib,4 a library of mixed optimisation problems from the Operational Research
community. These problems are not satisfaction CSPs, but optimization prob-
lems, with constraints to satisfy and a function to minimize. We thus needed to
turn them info satisfaction CSPs. Following the approach in [4], we replaced each
optimization criterion min f(x) with a constraint |f(x)−best known value| ≤ ε.
We compared Absolute to the mixed solving scheme from [4], using the same ε
and benchmarks, and found that they have similar run times (we do not pro-
vide a more detailed comparison as it would be meaningless due to the machine
differences).

More interestingly, we observe that Absolute can solve mixed problems in
reasonable time and behaves better with intervals than with relational domains.
A possible reason is that current propagations and heuristics are not able to
fully use relational information available in octagons or polyhedra. Previous
works [20] suggest that a carefully designed split is key to efficient octagons;
future work will incorporate ideas from [20] into our solver and develop them
further. Already, Absolute is able to naturally cope with mixed CP problems

4 Available at http://www.gamsworld.org/minlp/minlplib.htm.

http://www.gamsworld.org/minlp/minlplib.htm


in a reasonable time, opening the way to new CP applications such as robotic
localization [14] or geometric problems [1].

5 Conclusion

In this paper, we have exposed some links between AI and CP, and used them to
design a CP solving scheme built entirely on abstract domains. The preliminary
results obtained with our prototype are encouraging and open the way to the
development of hybrid CP–AI solvers able to naturally handle mixed constraint
problems. In future work, we wish to improve our solver by adapting and in-
tegrating advanced methods from the CP literature. The areas of improvement
include: split operators for abstract domains, specialized propagators (such as
octagonal consistency or global constraints), and improvements to the propaga-
tion loop. We built our solver on abstractions in a modular way, so that existing
and new methods can be combined together, as is the case for reduced products
in AI. Ultimately, each problem should be automatically solved in the abstract
domains which best fit it, as it is the case in AI. A natural future work is thus
the development of new abstract domains adapted to specific constraint kinds.
Another exciting development would be to use some methods form CP in an
AI-based static analyzer. Areas of interest include: decreasing iteration meth-
ods, which are more advanced in CP than in AI, the use of a split operator
in disjunctive completion domains, and the ability of CP to refine an abstract
element to achieve completeness. Finally, it also remains to understand how fix-
point extrapolation operators, such as widenings, which are very popular in AI,
can be exploited in CP solvers.
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