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Abstract. While the impact of network properties on information
spreading is now widely studied, influence of network dynamics is very
little known. In this paper, we study how evolution mechanisms tradi-
tionally observed within social networks can affect information diffusion.
We present an approach that merges two models: model of informa-
tion diffusion through social networks and model of network evolution.
Since epidemics provide a reference in application domains of information
spreading, we measure the impact of basic network structure changes on
epidemic peak value and timing. Then we investigate observed trends in
terms of changes appearing in the network structure. Our results provide
promising results on how and why network dynamics is a strong param-
eter to integrate in requirements for information spreading modelling.

1 Introduction

Network analysis has been the subject of an active domain, so-called “Science
of Networks” [2,4], an emerging scientific discipline that encompasses the whole
diversity of researches on interconnected entities. Intensive effort has been done
to study the structure of networks, especially with the emergence of Social Net-
work Analysis (SNA) and its applications in various fields such as sociology [17],
biology [14], ethology [9] or computer science [3].

In this paper, we address the issue of information dissemination through so-
cial networks, a field that has recently been explored with a focus on network
modeling [16,21]. Information is here considered with a wide meaning and may
represent either knowledge, rumor or viruses for instance. It has been argued in
several works that the nature of the information does not make much difference
for the modeling principles of diffusion [4,10,12]. Whatever can be the kind of
information, it is now well admitted that the main concern for modeling the
diffusion is the impact of social contacts of individuals [15,6].

However although the effect of social network properties on spreading is cur-
rently studied [20,6], the impact of network changes is an emerging field [19,7].
Some solutions have been proposed to model evolution processes leading to spe-
cific structural features observed on real world networks [18,11]. It is interest-
ing to note that the issues of dynamics of networks (network evolution) and
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dynamics through networks (dissemination) are still independent fields. In the
latter, the mathematical approach of Gross et al. [13] models the impact of links
deletion on spreading. Read et al. [19] show how changes in the frequency of
encounters between individuals may impact the dissemination. More recently,
Christensen et al. [7] measured the effect of changes in demographic attributes
within population on the disease transmission.

Nevertheless, to the best of our knowledge, it seems that no empirical or even
comparative study was proposed to explain the impact of network dynamics
on the information dissemination process. In this work we focus on the impact
of network dynamics by comparing effect of several evolution mechanisms on
incidence curves. We show that the dynamics of links plays an important role in
spreading through the network, and therefore is a strong requirement to consider
for modeling the behavior of information diffusion in real world networks. A
concrete example that motivates this study is provided by intervention strategies
that are currently proposed in epidemiology and are generally focused on node-
based measures. For example, the intervention strategy that gives best results is
to vaccinate individuals (nodes) with a highest degree. However, it is obvious that
individuals with highest degree at time t will probably not be in the same state
at time (t + 1), due to changes that occur in the network. Therefore, dynamic
appears to have a strong and real impact on spreading, and have to be taken
into account.

As said above, models of information diffusion are very much similar whatever
can be the nature of the information. Mathematical approach of compartment
models for epidemics modeling like the standard SIR (Susceptible−Infected−
Recovered) model perfectly fits other cases such as knowledge or rumor spread-
ing. These models consider that individuals moves from a state to another with
a given probability. The transitions “Susceptible to Infected” and “Infected to
Recovered” defined for epidemics are obviously analogous to “Innovator to Incu-
bator” and “Incubator to Adopter” transitions in knowledge diffusion as under-
lined by Borner et al. [4]. Network models have extended compartment models
more appropriately to understand diffusion process since they involve individu-
als (nodes) and contact links (vertices) among them [8,5,21]. They are able to
match various kinds of information too.

In this work, we experiment the approach on the epidemics field since it is
well studied and it provides references and resources such as training networks.
We propose an approach that merges two models: model of information dif-
fusion through the social network and network dynamics model. The paper is
organized in four sections. Section 2 details our approach and Section 3 presents
experiments and results. We conclude in Section 4.

2 Proposed Approach

Networks are alive and animated objects, in which nodes can appear and dis-
appear, links can be created, removed, or can even evolve. Complex networks
such as human sexual contact often do not have an engineered architecture but
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instead-of are self-organized by the actions of a large number of individuals. In
the network paradigm, these actions are often modeled as a set of rules, that
create or delete links leading to particular topological features.

Thus, we compare effects of four well known basic evolution models, accepted
in the literature as reproducing changes observed in real world networks [11,18,4].
In this preliminary work, we have deliberately chosen simple evolution mecha-
nisms that are restricted to link creation only:

• Random (R): random creation of a link between two nodes.
• Triadic Closure (TC): a node creates links with neighbors of its neighbors
i.e “friends of my friends become my friends”.

• Global Connection (GC): a node creates links with other nodes outside
of its local neighborhood i.e. beyond friends of its friends.

• Preferential Attachment (PA): a node is more likely to connect to one
with high degree i.e. “rich get richer”.

To address the problem of diffusion in evolving networks, we integrate a dy-
namic layer into the diffusion (epidemic) model. Thus, we measure the impact
of evolution strategies on the diffusion process by introducing the information (a
disease) in an evolving network. We assume, as is often the case in real life, that
individuals behavior does not change with the occurrence of the disease, i.e. the
network still follows to the same evolution strategy.
The two models of evolution are concerning: (1) the network that is evolving
and (2) the disease that is spreading into this evolving network. In the com-
monly used SIR model of disease spreading, parameters are the β probability
of transmission per contact and the γ probability of recover. We assume that
a susceptible individual i has a probability 1 − (1 − β)k

i
t to become infected,

where kit is the number of infected neighbors of the node i at time t. Incidence
curves of SIR epidemics spread are illustrated in Figure 1. According to this
model, the epidemic is dependent on the initial infected population size and on
probabilities β and γ. For instance it is demonstrated that for high values of β
and low values of γ, the diffusion is improved as depicted on Figure 1.

Our approach to merge both spreading and dynamics models is illustrated in
Figure 3. Let N be the number of individuals within the network. We denote Gt

the state of the network at time t, L the infection list that stores the percentage
of infected nodes at each time t, W the network evolution model (R, TC, GC or
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Fig. 1. Example of incidence curves obtained by SIR with two sets of parameters: set1
(β = 0.55 and γ = 0.1) and set2 (β = 0.775 and γ = 0.05)
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Fig. 3. Proposed approach to merge dynamics and diffusion

PA) and Q the evolution speed (number of links created at each iteration). We
use two seed networks (see Fig. 2) and the classic SIR model and we introduce
evolution mechanisms and measure their effects on each network. N1 is a kind of
networks most commonly observed in real world, such as the Internet, telephone
calls networks, sexual networks or friendship networks known as scale-free net-
works. In was generated with the BarabasiAlbert model [1]. N2 is a synthetic
network extracted from EpiSims, an epidemiological simulation system prior to
EpiSimdemics [3].

Both networks N1 and N2 are appropriate candidates for applying the dy-
namic models R, TC, GC and PA that add new links. And indeed, in real world
networks such as scale free networks or random networks like N1 and N2, link
updates are mostly creations and link removing is rare.

Thus the approach was to experiment the resulting spreading-dynamic model
and to observe how the network evolution may have an impact on spreading.
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3 Experiment and Results

In this section, the approach is first experimented to analyze effects of evolution
models (R, TC, GC, PA) on the epidemic strength in terms of value and in
occurrence time. Afterwards, we investigate explanations on network properties.

3.1 Effects on Spreading

Disease behavior depends on many parameters such as the number of initial
infected individuals, the probability of transmission or the probability of recover.
However, changes in these parameters often influence only the virulence of the
epidemic and are quite well known. In the issue we address, the most relevant
parameter seems to be the evolution speed of the network. Thus to study the
impact of this parameter on the disease behavior, we trained the two networks,
evolution models and different evolution speeds.

The data collection was done over a period of 120 iterations. The probability
of transmission was set to 0.1 and the probability of recover was set to 0.2, i.e.
β = 0.1 and γ = 0.2. Each test was performed upon 100 runs and the average
was computed.

On Figures 4 and 5, we compare the results obtained for each model. As a
first analysis, with Figure 4, one can compare the incidence curves obtained
with two arbitrary speeds 50 and 150. This first test allows us to make several
observations on the evolution of the epidemic peak. For a more complete analysis,
Figure 5 presents summary results on the evolution of the epidemic peak by
focusing on its value and its occurrence in time.

On Figure 4, the percentage of infected nodes at each iteration is plotted
according to the kind of network and evolution speed (x-axis). The incidence
curve obtained without any evolution mechanism is plotted as a reference. We
can observe that although all evolution strategies generate an epidemic peak
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Fig. 4. Incidence curves according to networks and evolution speeds (x-axis)
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Fig. 5. Synthetic results for N1, N2 according to speed: (1) values of peak maximum,
(2) peak maximum occurrence time

on N1 at speed 50, the difference between strategies remain very low for this
speed. In the case of network N2 a speed of 50 links per iteration is not sufficient
to generate an epidemic expect with PA the only strategy able to generate an
epidemic on this network.

Globally, two main observations can be made. Dynamics has an obvious im-
pact on the epidemic virulence, since peaks values increase with the speed with
a different range from one evolution model to another. Dynamics has also an
impact on the epidemic timing, since when the evolution speed increases, the
epidemic peak appears more or less early according to the evolution model.

These results suggest the direct impact of the network evolution speed on:
(1) the peak value, and (2) its occurrence time. Figure 5 shows how these two
indices behave when the speed is varying. Figure 5(1) (resp. (2)) gives the peak
value (resp. the occurrence time).

Common trends appear for the two networks. PA tends to give an epidemic
curve with a peak that is systematically higher than in the other three strategies.
It induces the earliest occurrence of the epidemic. The peak obtained by TC is
always the lowest and is the second to appear in time. R and GC give very
similar curves: the peak occurs later than for PA and TC.

3.2 Changes in Networks Properties

To explain the observed trends, we can investigate what happens at the network
level. For this, we focus on changes that occur on network structure, by studying
the evolution of main network properties. As shown in Figure 4, there is a strong
observable difference between strategies with speed 150. Thus we have compared
changes occurred on network features according to each strategy R, TC, GC and
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min degree avg degree max degree Clust. C.

N1

R 1.0 5.673 120.27 0.0045
Tria. C. 1.0 5.367 146.04 0.3036
Glo. C. 1.0 5.546 119.82 0.0020
Pre. A. 1.0 5.540 142.65 0.0142

N2

R 1.0 4.54 18.88 0.3882
Tria. C. 1.0 3.95 23.40 0.6204
Glo. C. 1.0 4.58 18.77 0.3763
Pre. A. 1.0 4.25 33.31 0.4588

Fig. 6. Changes in main properties of N1 and N2 with each evolution model after
epidemics with speed 150

PA, after an epidemic diffusion with speed 150. Results are shown in Figure 6,
and were obtained by averaging 100 runs.

To understand effects on these evolution mechanisms on spreading, the analy-
sis should be conducted at two levels. (1) Comparing network properties before
and after evolution (see Fig. 2 VS Fig. 6). (2) Comparing properties resulting
from different evolution models (see Fig. 6).

Preferential Attachment reinforces links of the most connected nodes. This
can be observed on the growth of max degree. For example, max degree of N2
is 17 against 18.88 for R, 23.40 for TC, 18.77 for GC and 33.31 for PA after
evolution. PA enables rapidly the emergence of individuals sufficiently connected
to result in a strong and fast transmission of disease within the network. The
virulence and earliest occurrence of the epidemic peak are thus explained.

Triadic Closure strengthens links within groups of nodes to result in a
significant increase in the overall clustering coefficient: from 0.00427 to 0.3036
for N1 and from 0.60880 to 0.6204 for N2. It is interesting to note that other
models may even reduce the clustering coefficient. While the strategy TC allows
the emergence of highly connected nodes, it also generates network with a high
clustering coefficient. So the epidemic appears relatively early and is less virulent,
since the transmission occurs mainly within a same community.

Random and Global Connection both tend to shorten the range of de-
gree value. However, GC allows a node to connect only with any node outside
its immediate community. This explains that, except for clustering coefficient,
observed properties with R and GC strategies are very close. GC does not al-
low creating triangles while R is likely to do it. R and GC provide very similar
results on spreading, since their effects on network properties prove to be very
similar.

4 Conclusion

Dynamics is an intrinsic property of real world networks. This work tackles the
emerging and fundamental issue of spreading in evolving networks. We have
addressed here this issue by comparing effects of various dynamics models on
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incidence curves in epidemic spreading. As currently admitted, the nature of
the information spread through social networks (rumor, knowledge, virus, dis-
ease. . . ) does not make much difference. Our work has highlighted a set of trends
related to evolution mechanisms and provides an interesting view about the way
a disease spreads through an evolving network.

In this preliminary work, the evolution strategies have been restricted to link
creation and we have shown that network properties are differently modified
from one strategy to another. These promising results have highlighted the im-
pact of the network dynamics upon diffusion. They should be useful to define
requirements that cannot be ignored to control and model spreading phenom-
ena. We are currently investigating more complex dynamics model in a similar
approach.
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