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Abstract. Today’s developers often face the demanding task of devel-
oping software for ensembles: systems with massive numbers of nodes,
operating in open and non-deterministic environments with complex in-
teractions, and the need to dynamically adapt to new requirements, tech-
nologies or environmental conditions without redeployment and without
interruption of the system’s functionality. Conventional development ap-
proaches and languages do not provide adequate support for the prob-
lems posed by this challenge. The goal of the ASCENS project is to
develop a coherent, integrated set of methods and tools to build software
for ensembles. To this end we research foundational issues that arise
during the development of these kinds of systems, and we build mathe-
matical models that address them. Based on these theories we design a
family of languages for engineering ensembles, formal methods that can
handle the size, complexity and adaptivity required by ensembles, and
software-development methods that provide guidance for developers. In
this paper we provide an overview of several research areas of ASCENS:
the SOTA approach to ensemble engineering and the underlying for-
mal model called GEM, formal notions of adaptation and awareness, the
SCEL language, quantitative analysis of ensembles, and finally software-
engineering methods for ensembles.

1 Introduction

The increasing miniaturization and decreasing cost of computers and micro-
controllers has led to nearly ubiquitous adoption of software-intensive systems.
Traditional computer systems such as notebooks, workstations and servers are
networked with huge numbers of physical appliances and devices that rely heavily
on software, such as smartphones, industrial controllers, and smart robots. We
want these systems to integrate seamlessly into our lives and environments, and
we want them to responsibly utilize available resources without compromising
our privacy or security.



1.1 What Are Ensembles?

Numerous reasons why it is not only desirable but necessary to develop these
kinds of systems have been documented [12]. In this context the ICT-FET
project InterLink [14] has coined the term ensemble for a particularly inter-
esting class of systems: Ensembles are software-intensive systems with massive
numbers of nodes or complex interactions between nodes, operating in open
and non-deterministic environments in which they have to interact with humans
or other software-intensive systems in elaborate ways. Ensembles have to dy-
namically adapt to new requirements, technologies or environmental conditions
without redeployment and without interruption of the system’s functionality,
thereby blurring the distinction between design-time and run-time.

National infrastructures such as the power grid, large online businesses such
as Amazon or Google, or the systems used by modern armies, all satisfy the
definition of an ensemble. However, as complicated and difficult to build as these
systems are, they solve relatively well-understood problems and their size is to a
large degree a function of the amount of their scale, as well as the data and the
number of transactions they have to process. These are interesting and complex
problems, but they are far from the largest challenges when building ensembles
as defined in the previous systems: None of these systems can actually adapt
to unforeseen environmental conditions in a meaningful way; and none of these
systems can easily evolve to satisfy new requirements.

1.2 The ASCENS Approach

Instead of static software that operates without knowledge about its environ-
ment and hence relies on manual configuration and optimization we have to
build systems with self-aware, intelligent components that mimic natural fea-
tures like adaptation, self-organization, and autonomous as well as collective be-
havior. However, traditional software engineering, both agile and heavyweight,
relies to a large degree on code inspection and testing, approaches which are not
adequate for reliably developing large concurrent systems, let alone self-aware,
adaptive systems. Formal methods have successfully been employed in an ever
increasing number of projects; however, they generally cannot deal with the
dynamic and open-ended nature of the systems we are interested in, and they
are difficult to scale to the size of industrial-scale projects. Approaches from
autonomic and multi-agent systems address aspects such as self-configuration
and self-optimization, but they often lack necessary guarantees for reliability,
dependability and security and are therefore not easily appropriate for critical
systems without modification.

One of the most important and challenging duties when engineering ensem-
bles is to ensure that an ensemble can continue to work reliably in spite of unfore-
seen changes in its environment and requirements, and that adaptation does not
lead to the system becoming inoperable, unsafe or insecure. To achieve this goal,
the ASCENS project researches ways of building ensembles that combine the
maturity and wide applicability of traditional software-engineering approaches



Fig. 1. Ensemble of robots

with the assurance about functional and non-functional properties provided by
formal methods and the flexibility, low management overhead, and optimal uti-
lization of resources promised by autonomic, self-aware systems. At the core of
this research are new concepts for the design and development of autonomous,
self-aware systems with parallel and distributed components. We are developing
sound, formal reasoning and verification techniques to support the specification
and development of these systems as well as their analysis at run-time. The
project goes beyond the current state of the art in solving difficult problems
of self-organization, self-awareness, autonomous and collective behavior, and re-
source optimization in a complex system setting. The relevant disciplines use
different formalisms and techniques that have to be related in a single framework
in order to present ensemble engineers with a unified development approach.

In this paper we present first steps towards the unified approach of ASCENS.
Using a simple swarm robot example (Sect. 2) of autonomous robots we high-
light several phases in the development of ensembles. The State Of The Affairs
(SOTA) method (Sect. 3) is our approach to specifying the overall domain and
the requirements of an ensemble. The denotational General Ensemble Model
(GEM) (Sect. 4) serves as semantic basis of SOTA, refines some of the model as-
sumptions of SOTA and provides the semantic foundations for the formal notions
of black-box adaptation and awareness (Sect. 5). The Service Component En-
semble Language (SCEL, Sect. 6) is developed to provide programming support
and formal reasoning of the behavior of autonomic components. As an example,
we show how to use continuous-time Markov chains and ordinary differential
equations for quantitative reasoning of the robot ensemble (Sect. 7). Finally, we
discuss a pattern-based approach for engineering ensembles (Sect. 8).

2 Example: Garbage-Collecting Robots

As a running example we will use a swarm of robots that collects garbage in
a rectangular exhibition hall (cf. Fig. 1). The robots should move around the
room, pick up the garbage that visitors have dropped and move it to the service



Fig. 2. The trajectory of an entity in the SOTA space, starting from a goal precondition
and trying to reach the postcondition while moving in the area specified by the maintain
condition.

area. For simplicity we assume that the service area is just a rectangular strip
along one side of the hall. Since visitors do not want to be distracted by too
many robots driving around the exhibition area, there should be as few robots
outside the service area as possible while still keeping the hall adequately clean.
Furthermore, for environmental and cost reasons the robots should minimize the
amount of energy that the swarm consumes. Depending on the sensors of the
robots and the type of garbage they are collecting, they may be able to perceive
garbage from some distance away, or they may be perceive garbage only while
they are driving over it.

3 SOTA: Domain and Requirements Modeling

SOTA (State Of The Affairs) [1] is the ASCENS approach to describing the
overall domain and the requirements for a system. In SOTA we identify the
behavior of a system with a single trajectory through a state space. The state
space is the set of all possible states of the system at a single point of time, the
trajectory describes how the state varies over time during an actual execution
of the system.

Each point in the system’s state space corresponds to a state of the affairs.
In SOTA, the state of the affairs thus represents the state of all parameters
that may affect the ensemble’s behavior and that are relevant to its capabilities.
Although it is common practice to distinguish between the ensemble and the
environment (and thus to distinguish between the parameters that describe some
characteristics of the environment and those that are inherent of the system),



such a distinction can often blur in complex situated ensembles. Accordingly, in
general SOTA does not make such a distinction. In SOTA, we consider the case
in which the state space is a finite product Q = Q1 × · · · ×Qn.

As the system executes, its position in the state space changes either due
to the actions of the ensemble or because of the dynamics of the environment.
Thus, each execution of a system gives rise to a trajectory ξ in its state space
(see Fig. 2).

When modeling requirements we are usually interested in “what the system
should do.” In the SOTA model, this corresponds to achieving or maintaining
certain states of the affairs throughout the systems execution, or more formally
to specifying one or more regions of the system’s set of all possible trajectories
in which the system’s observed trajectory has to remain. It is often convenient
to specify these regions in the form of goals: A goal G in SOTA is a triple of
the form G = 〈Gpre , Gpost , Gmaintain〉 consisting of a precondition Gpre that
specifies in which states of the affairs G should become active, a postcondition
Gpost that specifies when the goal has been achieved, and a condition Gmaintain

that has to be maintained while the goal is active. The maintain condition is
often called utility in SOTA, but in this paper we reserve the term utility for
the more general definition given in Sect. 4. A trajectory therefore satisfies a
goal G if, whenever the precondition Gpre is satisfied, the trajectory stays in the
region of the state space specified by Gmaintain until the postcondition Gpost is
satisfied. After that, the goal has been reached and is no longer relevant for the
system execution until its precondition becomes activated again. This capability
of pursuing goals during a system execution naturally matches goal-oriented and
intentional entities (e.g., humans, organizations, and multi-agent systems), and
consequently autonomic and self-adaptive systems.

It is possible to model systems at various levels of detail using the SOTA
approach. A very simple model of the robot ensemble that was described in
Sect. 2, under the assumption that we have a fixed number N of robots, might
be defined as follows: The state space consists of the states of the individual
robots, a count g] of the items of garbage currently in the public part of the
exhibition area, and a boolean flag o[ that indicates whether the exhibition is
currently open for the public or not. We describe each robot by its position in the
exhibition area, pi, and its state si. The state can either be Resting, Searching,
or Carrying, depending on whether the robot is currently resting, searching for
garbage, or carrying a garbage item back to the service area.

Accordingly, the state of the affairs space of the robot ensemble can be de-
scribed as follows:

pi = 〈xi, yi〉 ∈ R×R Position of robot i
Area ⊆ R×R Exhibition Area
si ∈ {Searching,Resting,Carrying} State of robot i
g] ∈ N Number of garbage items
o[ ∈ B Exhibition open for public?
Q = {〈p1, s1, . . . , pN , sN , g], o[〉 | pi ∈ Area} State space



One of our goals might be to always have fewer than 300 garbage items in
the exhibition area while the exhibition is open. This could be described by the
following goal G1:

G1
pre ≡ o[ = true

G1
maintain ≡ g] < 300

G1
post ≡ o[ = false

G1 states that whenever the exhibition opens (i.e., o[ becomes true), the
number of garbage items on the floor, g], is less than 300. Once the exhibition
closes, the postcondition of the goal becomes true and the goal is abandoned
until the exhibition opens again.

4 GEM: The General Ensemble Model

In SOTA we are concerned with the overall domain and the requirements of
the system. For this it is sufficient to deal with the state of the affairs without
regard for details such as the state’s internal structure or the probabilities of the
different trajectories.

For a more detailed investigation of the structure and behavior of ensembles
we need a more expressive model. To this end, in parallel with the definition of
the SOTA model and in concert with it, we have defined the General Ensemble
Model (GEM) [13], to model the behavior of ensembles in the state-of-the-affairs
space. In Sect. 4.1 we introduce the notion of trajectory space on which the
GEM model is based; in Sect. 4.2 we show how goals and utilities are used in
GEM. Finally, we give a brief introduction to a probabilistic extension of GEM
in Sect. 4.3.

4.1 The Trajectory Space

As in SOTA, in GEM it is not necessary to distinguish between ensemble and
environment. However, whenever it is necessary to do that, or when the system
specification enforces such a distinction, a unique state space can always be
obtained by combining ensemble and environment using a so-called combination
operator ; in the following sections we will use the term system to refer to this
combination. Combination operators are also used as the means to hierarchically
build ensembles from simpler components and smaller ensembles; therefore they
serve as a uniform way to model a system’s structure and behavior.

In general, a system can behave in a non-deterministic manner and there-
fore have multiple possible trajectories through the state space. If we know all
possible trajectories of the system we know everything that the state space can
express about the system. In GEM we identify a system S with the set of all its



possible trajectories in the SOTA space. We call the space of all trajectories the
trajectory space Ξ.3 Then, a system is a subset of the trajectory space, S ⊆ Ξ.

The state of the affairs concept of SOTA can therefore also be expressed in
an enriched way to account for such trajectories: for each trajectory ξ of the
system, and at each point in time t the state of affairs is the value S(ξ, t), which
is a point of the state space Q:

S(ξ, t) = ξ(t) = 〈qi〉i∈I ∈ Q if ξ ∈ S.

In GEM we structure the state space as the result of an interaction between the
ensemble and its environment. We formalize this using the notion of combina-
tion operator: let Ξens and Ξenv be the trajectory spaces of the ensemble and
environment, respectively4, and let ⊗ : Ξens ×Ξenv → Ξ be a partial map that
is a surjection onto S, i.e., there exist Sens ⊆ Ξens and Senv ⊆ Ξenv such that
Sens⊗Senv = S. In this case we obtain a trajectory of the system for compatible
pairs of ensemble and environment trajectories in Sens × Senv . We therefore re-
gard the system as the result of combining ensemble Sens and environment Senv

using the operator ⊗.
For example, in GEM we can structure a model of the garbage-collecting

robot ensemble as follows: we define the state space Qrobot and the trajectory
space Ξrobot as

Qrobot = R2 × {Searching,Resting,Carrying}
Ξrobot = F [T → Qrobot ].

The model of each robot Srobot
i is a subset of the trajectory space consisting of

all possible trajectories that the robot can take through its state space:

Srobot
i ∈ P(Ξrobot).

The ensemble consisting of all N robots has as state space Qens = (Qrobot)N ,
and as trajectory space

Ξens = F [T → Qens ],

and the model of the ensemble, Sens , can be obtained from the models of the
individual robots by a combination operator

⊗ : P(Ξrobot)N → P(Ξens)

that combines all trajectories of robots that are physically possible, i.e., ⊗ is
essentially the canonical map between P(Ξrobot)N and P(Ξens), but it removes
those trajectories where robots would overlap in space.

3 For the mathematically inclined reader, we point out that Ξ = F [T → Q], where T
is the time domain and F [T → Q] the set of all functions from T to Q.

4 Formally we have Ξens = F [T → Qens ] where Qens =
∏

k∈K Qens
k , and Ξenv =

F [T → Qenv ] where Qenv =
∏

l∈LQ
env
l . Note that the sets Qens

k and Qenv
l may be

different from the sets Qi that appear in the system’s state space Q =
∏

i∈I Qi.



In this example, we define a more detailed state space for the environment
than we did in the previous section. We again include a boolean value o[ indi-
cating whether the exhibition is open for the public, and the number of garbage
items in the area g]. In addition we add a function g : N→ R2 so that g(i) gives
the location of the i-th garbage item for 1 ≤ i ≤ g], and the coordinates of the
public exhibition area and the service area:

Qenv = B×N×F [N→ R2]×P(R2)×P(R2).

As usual, the trajectory space of the environment is Ξenv = F [T → Qenv ] and
each environment Senv is a member of P(Ξenv ). In this simple example, the state
space Q for the whole ensemble is the product Qens ×Qenv and the ensemble’s
trajectory space is defined as F [T → Q]; the combination operator for ensemble
and environment has then the signature

⊗ : P(Ξens)×P(Ξenv )→ P(Ξ)

and combines again all trajectories of environment and ensemble that are possible
while removing those combined trajectories that cannot happen (e.g., no robot
can be outside the exhibition area, a robot’s state can only change from Searching
to Carrying when it is over a garbage item, and if no robot is in state Searching
during a time interval [t0, t1], then the number of garbage items cannot decrease
between t0 and t1, etc.).

4.2 Goals and Utilities

GEM is intended to serve as a semantic foundation for various kinds of calculi
and formal methods which often have a particular associated logic. We define
the notion of goal satisfaction “System S satisfies goal G,” written S |= G in a
manner that is parametric in the logic and in such a way that different kinds of
logic can be used to describe various properties of a system. See [13] for details.

While goals allow us to express many requirements of systems, many au-
thors have observed that “[g]oals alone are not enough to generate high-quality
behavior in most environments.” [20]. For example, the property “the garbage-
collecting robots should use as little energy as possible” cannot be expressed
as a goal, since there is no hard boundary on energy consumption that tells us
whether the goal was achieved or not. Instead we have to compare the energy
consumption along various trajectories and rate trajectories with lower con-
sumption as better than ones with higher consumption. A trajectory ξ of the
system may therefore be more or less desirable; we assign a measure u(ξ) to
each trajectory so that u(ξi) � u(ξj) if and only if ξj is at least as desirable as
ξi. The function u is called the utility function, and u(ξ) is called the utility of
trajectory ξ. Often, the definition of utilities is complicated by having not just a
single criterion that we want to optimize, but rather various conflicting criteria
between which we have to achieve a trade-off. In our example, the requirement
to achieve the “best” compromise between the number of robots in the hall and
the amount of garbage cleaned up is an instance of such a multi-criteria decision



problem [15]. Solutions for these kinds of trade-off can be achieved using the
framework of utilities as well; see Sect. 7.3 for a more detailed discussion.

An optimization goal is then a goal that requires the optimization of a utility.
This may take the form of either optimizing the maximal achieved utility at some
point on a trajectory through the state space, or the goal may be to optimize
an aggregate utility along the trajectory.

Note that utilities are strictly more expressive than goals; in fact it is often
useful to interpret goals as utilities as well: We can transform each goal G into
a utility uG with the value 1 for each trajectory ξ that satisfies the goal and the
value 0 for all other trajectories. Then, optimizing this goal has the same effect
as satisfying the original goal; only trajectories that satisfy the goal are taken
if such trajectories exist. However, utilities are more flexible than goals: If, for
example, G is the goal that no robot should run out of energy, we can define
uG to assign values between 0 and 1 to trajectories that sometimes violate G,
depending on the average number of robots that run out of energy every day.
Then, even if G cannot be permanently satisfied, the ensemble can choose the
trajectory that violates the goal for the least amount of time.

4.3 Probabilistic GEM

The model presented so far is sufficient to deal with deterministic and non-
deterministic systems. However, for many practical purposes, simply knowing
the possible trajectories of a system is not enough; instead, we need to know
the probability for taking particular trajectories to evaluate the quality of the
system. Therefore we need to turn to stochastic models. This would be needed,
for example, to capture the situation where a robot receives sensor input with
measurement errors.

Thus we assume that a probability measure P(X) is given for each set of
trajectories X.5 P(X) describes the probability that a trajectory in X is taken
by the system. If the system is generated from an ensemble Sens and an environ-
ment Senv , then we assume that probability distributions over their respective
trajectory spaces are given, and that the combination operator ⊗ computes the
distribution of S from these.

Given a probability measure P and a utility function u for a system S, we
define the evaluation of a system S as the expected utility, i.e.,

evalu(S) = EP[S, u] =

∫
ξ∈S

p(ξ)u(ξ)dξ.

where p is the probability density of P. The evaluation gives us an easy criterion
to compare different systems: a system S1 has a better utility than a system S2

if its evaluation is higher.
In the next section we will define adaptation and awareness based on the

notions developed in this section.

5 More precisely, we assume that a probability space is given, i.e., that we have a σ
algebra Σ over Ξ and a probability measure on Σ. In this overview paper we will
ignore these kinds of technical complications.



5 Adaptation and Awareness

Using the GEM model for ensembles presented in the previous section, we can
define mathematical models for the important notions of adaptation (Sect. 5.1
and awareness (Sect. 5.2).

5.1 Adaptation

There are various senses in which the word “adaptation” is used, but an impor-
tant characteristic of adaptation is the ability to react usefully to some kind of
change. We can describe this reaction either by looking “inside” the system in
order to describe the mechanism by which the system implements the changes
it performs, or we can look at the system by evaluating only the quality of the
system’s behavior, without describing the mechanisms by which it is achieved.
We call the first approach white-box or glass-box adaptation; it is further de-
scribed in [3], in the following we focus on the second approach which we call
black-box adaptation.

We call a set of environments Aenv together with a goal G (and possibly a
probability measure) an adaptation domain A. The adaptation domain repre-
sents the situations in which we want the ensemble to work. Furthermore, we
suppose that we can define a combination operator ⊗ that combines any envi-
ronment Senv ∈ Aenv with an ensemble Sens . We then say that Sens can adapt
to A, written Sens  A:

Sens  A ⇐⇒ ∀Senv ∈ Aenv : Sens ⊗ Senv |= G.

In the case of probabilistic systems we replace the goal G with a utility u in
the definition of adaptation domains and lift the evaluation function eval to an
adaptation domain, so that instead of the evaluation of the system, evalu(S),
we obtain the evaluation with respect to an adaptation domain or lifted evalua-
tion eval(Sens ,A). In the simplest case, eval might be the minimal or maximal
evaluation of Sens⊗Senv for all Senv ∈ Aenv . It is often useful to equip the adap-
tation domain with a probability distribution and define the lifted evaluation as
the expected value of the evaluation for all environments in Aenv .

The environment models in the previous section allow us to define a wide
range of adaptation domains. For example, we could have adaptation domains
that vary parameters of the environment, such as the size or topology of the ex-
hibition area, or the distribution of the garbage. We can also define adaptation
domains with different goals, e.g., the maximum number of garbage items that
are allowed. Let Aenv

l be the set of all square arenas with side length l containing
no obstacles and in which garbage items appear according to some distribution.
Let goal G<n be the property that fewer than n garbage items are in the arena
while the exhibition is open (the example in Sect. 3 corresponds to n = 300). We
can then define adaptation domains A<n

l = 〈Aenv
l , G<n〉. We define the combi-

nation operator ⊗ such that it causes a robot to pick up a dropped garbage item
whenever the robot passes over the garbage item while being in state Searching.



The relation Sens  A<n
l then holds for each Ensemble Sens if and only if every

trajectory of the ensemble in a square arena with side length l leaves fewer than
n garbage items in the arena while the exhibition is open. A further refinement
would be to consider an adaptation domain that uses a utility function to rank
ensembles according to their energy consumption. For a practical example, see
Sec. 7.3.

Adaptation domains allow us to compare the ability of different ensembles
to adapt to a given range of situations. To simplify this comparison, we consider
sets of adaptation domains which we call adaptation spaces. Given an adapta-
tion space A we can compare the ability of ensembles to adapt by set-theoretic
inclusion:

Sens
2 v Sens

1 ⇐⇒ ∀A ∈ A : Sens
2  A =⇒ Sens

1  A

or in the case of utilities

Sens
2 v Sens

1 ⇐⇒ ∀A ∈ A : eval(Sens
2 ,A) < eval(Sens

1 ,A)

In this case, we say that Sens
1 is at least as adaptive as ensemble Sens

2 for A; if
we additionally have Sens

1 6v Sens
2 we say that Sens

1 is more adaptive than Sens
2 .

For example, we can define the adaptation spaces Al = {A<n
l | n ∈ N} which

ranks the adaptivity of ensembles according to their ability to collect garbage
in an arena of side length l, A<n = {A<n

l | l ∈ R} which ranks ensembles by
their ability to achieve a certain level of cleanliness in arenas of varying sizes
and A = {A<n

l | n ∈ N, l ∈ R} which combines these two criteria.
The previous notion of adaptation assumes that the goal that we want the

ensemble to achieve is fixed for all environments. This may lead to very compli-
cated goal specifications if we want to consider, e.g., quality-of-service properties
that depend on the environment. To this end, we extend the notion of adaptation
space and define a generalized adaptation domain as the set consisting of pairs of
environments and goals, A = {〈Senv

i , Gi〉 | i ∈ I}. Adaptation to a generalized
adaptation domain then means

Sens  A ⇐⇒ ∀〈Senv
i , Gi〉 ∈ A : Sens ⊗ Senv

i |= Gi.

The notions of adaptation space and lifted evaluation can be extended to gen-
eralized adaptation spaces in the obvious manner.

5.2 Awareness

One of the most important notions for adaptive systems is “awareness.” Intu-
itively, this term denotes an internal representation that the ensemble has about
some aspect of itself or its environment which is kept up-to-date as the system
moves through the state space. This does not necessarily imply that the ensem-
ble immediately registers changes in this aspect, it is also sufficient if, e.g., the
system receives periodic updates about changes from sensors or other systems.



In contrast to adaptation, it is our opinion that a definition of awareness
has to refer to the internal representation of the ensemble, and, if possible, it
should also take into account the information about the environment that the
ensemble derives from its internal representation. For example, if a garbage-
collecting robot has an exact internal representation of all the pieces of garbage
in the arena, but no internal interpretation of this representation, it seems to
us that it is not justified to call that robot “aware of the locations of pieces
of garbage.” How to determine whether the robot has an interpreted internal
representation is obviously a difficult problem. In this paper we restrict ourselves
to the simplest (but highly unrealistic) case in which we have a function giving,
for each state of its internal awareness representation, the states of the affairs
that the system considers possible.6 In more realistic scenarios we can sometimes
estimate this set of possible states of the affairs from our knowledge of the
ensemble’s implementation or by observing the ensemble’s behavior.

More formally, let Qens =
∏
k∈K Q

ens
k be the state space of the ensemble,

Ξens = F [T → Qens ] its trajectory space, and J ⊆ K such that the Qj , j ∈ J
are the components of Qens relevant for the awareness of the ensemble. We then
call B = F [T →

∏
j∈J Qj ] the awareness section of Ξens . We write ξ|B for the

obvious restriction of a trajectory in Ξens to B. As mentioned in the previous
paragraph, we assume that we have a function εS : B×T → P(Ξ), which we call
the awareness function, that gives the trajectories that the ensemble considers
possible for each value of its awareness section at each point in time.

With this definition, we can say what it means for the awareness function
to be correct: let ξens ∈ Ξens , ξenv ∈ Ξenv such that ξ = ξens ⊗ ξenv exists.
If for every time t ∈ T the actual state of the affairs at time t, ξ(t), is in the
set of possible states of the affairs according to the system’s awareness function
εS, i.e., ξ(t) ∈ εS(ξens |B, t) then εS is correct for 〈ξens , ξenv 〉. If the awareness is
correct for all pairs 〈ξens , ξenv 〉 for which ξens ⊗ ξenv is defined, then it is globally
correct.

In the GEM definition of the robot example given in Sect. 4, the awareness
section Brobot for each robot might, e.g., consist of its position and internal state
(Searching, Resting or Carrying) and the number of garbage items in the arena.
If the awareness function εrobot is the function mapping, for each time t, the
trajectory ξ|Brobot

into the set of all trajectories of the ensemble which agree with
the argument on Brobot, then the awareness function of the robot is correct. In
this case the robot is precisely aware of its own state, but not of the state of the
environment, even though the exact number of garbage items is contained in its
awareness section.

To compare different ensembles operating in the same environment it is also
useful to define some additional notions: Let ξenv ∈ Ξenv and let Sens [ξenv ] be
the set of all trajectories ξens ∈ Sens such that ξens ⊗ ξenv exists. If, for all

6 Giving the set of possible states of the affairs is in practice not particularly useful.
It is much more practical to give a probability distribution over the set of possible
states of the affairs. However, since this change introduces significant mathematical
complexities, we restrict the presentation to the deterministic case in this overview.



ξens ∈ Sens [ξenv ], the awareness function εS is correct for 〈ξens , ξenv 〉, then we
say that it is correct with respect to environment trajectory ξenv . We define the
environmental awareness function εenvS as

εenvS : ξenv 7→
⋃

ξens∈Sens [ξenv ]

εS(ξens |B, t)
∣∣
Ξenv .

The environmental awareness function εenvS can be used to compare the awareness
of different ensembles operating in the same environment. The definitions of
correctness transfer mutatis mutandis to environmental awareness; this notion
of correctness only judges whether the ensemble is aware of the environment
and not of its internal state. For two ensembles S1 and S2 and an environment
trajectory ξenv , we say that the awareness of S1 with respect to ξenv is more
precise than that of S2 if εenvS1

(ξenv ) is correct and if εenvS1
(ξenv ) ⊆ εenvS2

(ξenv ). We
say that the environmental awareness of S1 is more precise than that of S2 if it
is more precise with respect to all trajectories in the environment.

It is easy to see that the above notions can be extended to general adap-
tation spaces and general adaptation domains in a straightforward manner. It
is then possible to define a minimal level of awareness that an ensemble Sens

has to possess in order to adapt to a general adaptation domain A based on
the ensemble’s environmental awareness: if there are pairs 〈Senv

1 , G1〉 ∈ A and
〈Senv

2 , G2〉 ∈ A such that G1 and G2 cannot be simultaneously satisfied, then
for all trajectories ξenv in Senv

1 , the environmental awareness of Sens may not
include any trajectory in Senv

2 .
The definition of environmental awareness can be refined in the sense that

(i) not the whole environment has to be taken into account for the comparison
and (ii) parts of the ensemble’s state space may be taken into account for the
purposes of the comparison. This can be used to introduce “levels of awareness”
in various dimensions, so that we can, e.g., have awareness of single components,
of parts of the ensemble, and of the whole ensemble, or as another dimension,
awareness of purely spatial relationship versus awareness of social structure.

6 Solution Models

In Sect. 6.1 we provide a brief introduction to SCEL. It shall be used to give an
operational semantics to our case study, in Sect. 6.2.

6.1 Introduction to SCEL

The Service Component Ensemble Language (SCEL) [5] is developed within AS-
CENS to provide programming support and formal qualitative and quantita-
tive reasoning of the behavior of autonomic components. Its kernel is based on
process-algebraic principles, with the usual operators such as action prefix a.P ,
choice P1 + P2, and recursion via constants A , P . (The syntax for behavioral
description is in fact richer, but here we limit ourselves to the fragment which is
necessary for the understanding of the remainder.)



A peculiar feature of SCEL is the modeling of actions, which are interac-
tions between a process and a knowledge repository where items of information
may be accessed. Three types of actions are defined, get(T )@c, qry(T )@c, and
put(t)@c, in order to model removal or peek of a template T , and insertion of an
element t, respectively, into the knowledge repository at the component identi-
fied by c. The syntax for templates and tuples are purposely left unspecified and
are intended to be specialized by specific instantiations of SCEL; for instance, in
the following we consider a Klaim-based approach with tuple spaces [4], although
other notions of behavior (e.g., constraint stores) may be similarly devised.

Components are identified by names through interfaces with attributes, which
have syntax I[K, Π, P ]. The attribute I.id gives the name of the component.
This may be used to access its knowledge manager K, which handles the knowl-
edge repository (as such it is also left unspecified in SCEL). Policies, defined
by Π, are the mechanism to govern the interaction between components—for
instance they may be used to regulate access to knowledge repositories (but
they are not used later). It is worth of attention to underline that SCEL does
not provide a linguistic primitive for the specification of an ensemble; instead,
ensembles are inferred from the attributes of the interfaces of components. For
instance, in the specification of a component’s interface, I.ensemble is a pred-
icate on interfaces to determine the elements of the ensemble coordinated by
the component. Similarly, I.membership determines the ensembles which the
component may join. This design choice allows for a more flexible and dynamic
specification than syntactic constructs at the process algebra level.

6.2 SCEL Model of the Case Study

We consider the case study discussed in Section 2 and assume that each garbage-
collecting robot behaves independently from the swarm. It explores the exhi-
bition hall in search for items by proceeding along a random direction at a
constant velocity. Whilst exploring, it may encounter three kinds of obstacles:
another robot or a wall, in which case a collision-avoidance algorithm is invoked
to change its direction of movement; or an item, in which case the robot picks
it up to return to the service area. This is realized by means of a light source
at the service area which is sensed by the robot in order to decide the direction
along which to move. When the robot arrives at the service area, it drops off
the item and subsequently tries to rest to reduce power consumption. In order
to do so, it moves in the service area to find available space, and then goes into
sleep mode for some time. When it resumes, it starts exploring the exhibition
hall again.
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(a) Transition system from the SCEL model (1).
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(b) Reduced model.

Fig. 3. Qualitative discrete-state behavior of a garbage-collecting robot.

Qualitatively, the behavior of a single robot could be modeled with the fol-
lowing SCEL fragment.

s , get(collision)@ctl.s+ get(item)@ctl.p

p , get(items, !x)@master .p′

p′ , put(items, x+ 1)@master .c

c , get(collision)@ctl.c+ get(arrived)@ctl.d

d , put(dropped)@master .r′

r′ , get(collision)@ctl.r′ + put(sleep)@timer .r

r , get(elapsed)@timer .s

(1)

The process constants stand for: s = searching for a garbage item; p = picking
up item; c = carrying the item (returning to nest); d = dropping off item; r′

= searching for a rest place; r = resting. Processes s, c, and r′ exhibit similar
behavior in that they may consume a tuple collision which is produced by some
controller ctl . However, this results in a self-loop which does not change the
behavior as the process behaves as before. Notice that the item is removed from
the tuple space, therefore it is responsibility of ctl to produce another tuple,
whenever a collision is detected. The controller may also produce an item, in
which case process s behaves then as p. Here, we assume a central repository
master which keeps track of the total number of items collected during the
evolution of the system. The current value is first retrieved and then put back
into the repository after being incremented. Another noteworthy process is r′,
which puts an item sleep into the tuple space of a timer . It will be able to resume
when the timer puts an elapsed tuple in its tuple space. The labeled transition
system for this process, derived according to the operational semantics of SCEL,
is shown in Fig. 3(a). For reasons of space, the (obvious) transition labels are
not explicitly given.

The names ctl , master , and timer are assumed to be exposed by other com-
ponents, k, m, t, respectively (not shown here for brevity), according to the
parallel composition

(I1[·, Π, s] ‖ I2[·, Π, k] ‖ I3[·, Π, t]) ‖ J [·, Π,m].



Here, we are assuming that the tuple spaces at each component are initially
empty, and we let Π be the most permissive policy which permits access to
every tuple space. The definitions of the interfaces are such that I1.id = robot ,
I2.id = ctl , I3.id = timer , and J .id = master . The other two attributes of an
interface, i.e. ensemble and membership, are taken to be such that all components
belong to the same ensemble. This model, which deals with only one robot, can
be extended to an arbitrary number of robots by suitably repeating the term
between parentheses; the component with interface J is unique if one assumes
a single master node.

For the purposes of quantitative evaluation, the behavior may be simplified
by making the following assumptions: (i) The transitions p → p′ and p′ → c
take up a negligible amount of time with respect to the representative time
scales of the system; similarly, (ii) the durations of d → r′ and r′ → r are
assumed to be negligible. In other words, (i) and (ii) imply that the robot goes
to sleep as soon as it enters the service area. The validity of such assumptions
was successfully validated with the simulation experiments which are described
in the remainder. Overall, these simplifications lead to a smaller discrete-state
description as shown in Fig. 3(b). Notice that the three states of this reduced
labelled transition system correspond to the states of the robot described in
SOTA in Sect. 3, and in GEM in Sect. 4.

7 Quantitative Analysis

In this section, we equip the reduced labelled transition system that arises from
the SCEL model with quantitative information, leading to a continuous-time
Markov chain, and a compact approximation thereof based on ordinary differ-
ential equations, as presented in Sect. 7.1. In Sect. 7.2, we successfully validate
the model against simulation. Finally, Section 7.3 uses the model to perform
black-box adaption by means of sensitivity analysis over system parameters.

7.1 Quantitative Model

The quantitative model is given in terms of a continuous-time Markov chain
(CTMC) that keeps track of the population of robots in each of the states S,
C, R, and of the total amount of garbage items to be collected in the exhibition
hall, denoted by G. Although the model is defined directly in such an aggre-
gated manner, it can be shown to be automatically inferred from the individual
description of a single robot, see Fig. 3(b); this is not discussed here for space
reasons (similar arguments to [11] may be used). Thus, each state of the CTMC
is associated with a vector of nonnegative integers (S,C,R,G). The chain has



the following transitions:

(S,C,R,G) −→ (S − 1, C + 1, R,G− 1), with rate µS
G

S + C +G
, (2)

(S,C,R,G) −→ (S + 1, C,R− 1, G), with rate βR, (3)

(S,C,R,G) −→ (S,C − 1, R+ 1, G), with rate γC, (4)

(S,C,R,G) −→ (S,C,R,G+ 1), with rate λ. (5)

The first transition describes that an item is found; thus, the number of exploring
robots is reduced by one and, correspondingly, the number of robots returning to
the service area is increased by one; also, the number of items in the exhibition
hall decreases. The rate is defined in terms of µ, which is to be intended as
the encounter rate of each robot, i.e., the opposite of the average time between
collisions between robots or between a robot and an item. The actual value used
in the model is parametrized by simulation runs. The fraction G/(S + C + G)
represents the probability of a successful encounter, which is simply given as the
ratio of items with respect to the total amount of objects a robot may encounter.
The factor S in the rate is the multiplicative factor in order to consider the rate
for the whole population of exploring robots. The robot is assumed to sleep for
an exponentially distributed amount of time with rate β, therefore βR is the
sleep rate of the overall system. Rate γ is the rate to return to the service area,
which is also parametrized with the measurements from simulation. Finally, the
last transition denotes drops of garbage items with exponentially distributed
inter-arrival times, that is, according to a Poisson process with rate λ.

Although this model may readily be used for the analysis, we observe that it
gives rise to an infinite-state Markov chain, even if the total number of robots in
each state is always equal to N (those in the initial state of the system), because
of (5) which may always increase the number of items. Although this problem
can be tackled by numerically truncating the chain, the total number of states
grows quickly with N . Using standard manipulations of Eqs. 2–5, it is possible
to derive the following system of coupled ordinary differential equations (ODEs)
which are interpreted as the first-order approximation of the Markov process.

Ṡ = −µSG(S + C +G)−1 + βR

Ċ = +µSG(S + C +G)−1 − γC
Ṙ = +γC − βR
Ġ = +λ− µSG(S + C +G)−1

(6)

Together S(0) = N , C(0) = R(0) = G(0) = 0, this leads to an initial value prob-
lem which is easily solved using standard numerical integration. In the following,
we consider a scenario with N = 20 garbage-collecting robots.

7.2 Validation

A discrete-event simulation of the system under study was developed with the
ARGoS tool [19]. The source code for a robot controller was instrumented to



S C R

Simulation 15.972 3.778 0.250
Model 16.070 3.730 0.200

Normalized error 0.49% 0.24% 0.25%

Table 1. Model validation. Steady-state ODE estimates of robot sub-populations
against discrete-event simulation of the system.

record the timestamps of transitions according to the classification of states in
Fig. 3(b). These logs were used to estimate µ and γ in the model. The former was
simply estimated by computing the reciprocal of the average time between two
successive timestamps where an encounter with a garbage item or with another
robot were registered. In the case of an encounter with the robot, this informa-
tion was deduced by observing a change of direction in the robot movement,
which is the result of the collision-avoidance algorithm. The estimation of γ was
performed similarly, by measuring the average time between a robot picking up
a garbage item and dropping it off at the service area. With an arena size of 16
squared meters, these parameters were found to be µ = 0.012 and γ = 0.003.
The simulation also logged the total number of robots in each of the states S, C,
R as a function of time. Across all experiments, we set λ = 0.010 and β = 0.050.
The mean steady-state estimates were calculated by using 150 independent runs
of the simulation, each lasting ten hours of simulated time. They were compared
against the fixed point of the ODE solution. We used the following measure of
accuracy to assess the quality of the results:

Normalized error =
|Simulation estimate−ODE estimate|

N
× 100

This error relates the absolute difference with respect to the total population
of elements considered in the analysis. This is to better capture the fact that a
large absolute difference between two estimates may be practically unimportant
when related to the proportions of robots in a particular state. The results of
the analysis, shown in Table 1, demonstrate a very good accuracy of the model,
with a maximum error less than 0.5% relative to the total population of robots.

7.3 Black-Box Adaptation by Sensitivity Analysis

We now turn to relating this operational interpretation of an ensemble of robots
with the SOTA/GEM description. We observe that the trajectory space of GEM
simply reduces to the solution of the initial value problem (6), which is unique in
this specific model. Furthermore, the general notion of utility has here the inter-
pretation of a real-valued function of the solution, i.e. ϕ(S(t), C(t), R(t), G(t)).
For instance, an interesting utility function is throughput, i.e., the frequency at
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Fig. 4. Sensitivity analysis of throughput of garbage collection (solid line) and dirtiness
of exhibition hall (dash-dotted line) against rest time at the service area. The dotted
line shows the SOTA requirement (maintain goal) that there must not be more than
300 garbage items in the arena.

which garbage items are returned to the service area. In this case, as C(t) is
the number of returning robots at time t that have picked up a garbage item,
throughput may be expressed as the function γC(t).

This dynamic model allows for forms of black-box adaptation as described in
a more general sense in Section 5.1. Here, black-box adaptation may realized by
means, for instance, of sensitivity analysis, intended as the evaluation of different
model instances where some parameters of interest are changed in order to study
their dependence on the overall system’s behavior. For instance, an interesting
application would be to evaluate the impact of the resting time on the throughput
of garbage collection. Intuitively, the smaller the resting time the higher the
throughput, because there will be on average more robots circulating in the
arena, all the other parameters remaining the same. However, too high a rate
may not be convenient because a robot could be keep exploring the arena without
finding garbage items, which are being picked up by all the other robots. This
would lead to wasteful consumption of energy, which can be reasonably modeled
as a cost function which is linear with the amount of time that a robot is moving.

Therefore, a trade-off is sought between maintaining a clean arena and re-
ducing energy consumption by using robots parsimoniously. One could think
of adapting the parameters of the robot to ensure that a certain goal of arena
cleanliness is maintained. For instance, the SOTA requirement in Section 3 of
having less than 300 garbage items in the arena can be translated into a sensi-
tivity analysis which looks at the estimated value of G(t), solution of the system
of ODEs. For example, this can be done by inspecting a curve which plots the



steady-state throughput against the average rest time 1/β, as shown in Fig. 4.
The throughput curve, in solid line, shows insensitivity for a wide range of rest
times, until about 1500. This is because, in those situations, the arena is kept
relatively clean (with about 2 garbage items, dash-dotted line), therefore many
robots keep exploring but they encounter an item infrequently. As rest times are
further increased, however, the robots cannot keep up with the waste; throughput
decreases because fewer robots are present, and the arena becomes more soiled.
Thus, the maximum allowed rest time predicted by the model, corresponding to
the lowest energy consumption possible whilst achieving the desired maintain
goal, corresponds to 1580, when the garbage-item line and the maintain-goal one
(dotted line) intersect.

8 Engineering Ensembles

The previous sections presented techniques and formal foundations for designing
and analyzing ensembles. To be useful to the developer, they have to be inte-
grated into the development process. To facilitate this, we propose patterns and
best practices for applying our methods in Sect. 8.1, an approach to awareness-
and knowledge-cognizant software engineering in Sect. 8.2, and tool support in
Sect. 8.3.

8.1 Best Practices and Patterns

The design of an ensemble such as the swarm of garbage-collecting robots poses
many difficult trade-offs and design decisions for the developer: What capabilities
should each robot have, and is it better to use many simple, inexpensive robots,
or would it be better to use a small number of larger, more powerful robots?
Should the swarm be homogeneous or should it contain robots with specialized
capabilities? What kind of awareness and knowledge do the robots need? How
much knowledge do robots share, how do they assess the quality of the knowledge
they acquire from sensors and other robots, and how should robots deal with
contradictory information? Should robots have simple, predictable behaviors or
more complex ones that have possibly greater potential for adaptation but also
for unexpected failures? Should formal methods be used in the development
process, and if so, which properties should be validated?

This is just a small selection of the high-level design decisions that have to be
taken; while the system is developed and maintained, countless alternatives and
design choices, at various levels of detail, have to be evaluated. This will always
remain a challenging task that requires experience and domain knowledge on
the part of the designer. But best practices can help designers to ask the right
questions, to consider the problems that might arise in depth, and to evaluate
the various trade-offs involved in different solutions as objectively as possible.

In the development of traditional software, and in particular in the area of
distributed systems, patterns [9, 10] have proven to be a valuable contribution.



In general terms, an analysis or design pattern is a reusable solution to a de-
velopment problem that specifies the compromises required by the solution as
well as its influence on other, related development problems. Pattern libraries
provide a uniform vocabulary that simplifies the discussion of design choices,
and they are repositories of proven solutions to common design problems.

In ASCENS we want to expand the pattern-based approach to include pat-
terns for key features and mechanisms of SCs and SCEs (adaptation, awareness,
knowledge, and emergence) at different levels of abstraction. An example is [24]
which includes patterns that help designers to move from “black-box” descrip-
tions (what adaptation, awareness, knowledge and emergence should achieve)
to “white-box” solutions (how adaptation, awareness, knowledge and emergence
can be realized). In this taxonomy, the robots of our simple case study are
instances of the ”reactive component” pattern and the ensemble follows the ”en-
vironment mediated swarm intelligence” pattern. In the long term our goal is
to provide a semi-formal language for our patterns that allows better integra-
tion of the pattern catalog into the ASCENS software development environment.
A formal representation of patterns might even enable SCEs to reason about,
e.g., structural patterns at run time, and hence use the pattern catalog to au-
tonomously adapt the internal structure of the ensemble.

8.2 Awareness- and Knowledge-Cognizant Software Engineering

The SCEL model of the garbage-collecting robots in Sect. 6.2 is purely reactive,
with little awareness of the environment and simple behaviors of the individual
robots. While an ensemble built from very simple components may be sufficient
in some scenarios, there are many cases where more complex behaviors are re-
quired. If we look at a more realistic version of the garbage-collecting robots,
they will have to navigate in a complex environment, in which they have not only
to avoid collisions with humans, they have to do so in an acceptable manner—
driving at full speed in the direction of a visitor and then turning to avoid a
collision at the last moment is simply not acceptable. Similarly; the robots have
to distinguish garbage from other objects—they should, for example, definitely
not remove the exhibits. To this end they may need the capability to learn, e.g.,
by driving around the exhibition hall before the opening in order to learn which
objects belong to the exhibition. To fulfill these tasks the robots will need much
more awareness, knowledge and reasoning capabilities than the simple system
presented in Sect. 6. In ASCENS we are investigating a development approach
for these kinds of system based on the foundations presented in this paper and
inspired by previous work in the areas of artificial intelligence and multi-agent
systems.

One of the important ingredients of this process will be a set of patterns for
awareness- and knowledge-intensive components and ensembles. These patterns
will specify the consequences and trade-offs for different ways of gathering and
maintaining the data for awareness, and different processes of turning raw data
into knowledge that can be used in the development process or while the system
is executing. To support the developer beyond the purely conceptual stages of



development, we are designing and implementing the Pseudo-Operational En-
semble Modeling Language (Poem). Poem is a specification language for be-
havior and goals. It includes support for logical reasoning about fluents and
modeling with relational Markov decision processes; Poem models can contain
SCEL programs to describe executable behaviors.

8.3 Tool Support

Developing ensembles forces designers to deal with a multitude of languages,
platforms, and tools. These concerns are also present in more traditional soft-
ware development, but they are aggravated by the increased focus on awareness,
knowledge and adaptation when developing ensembles.

Therefore we are developing a Software Development Environment (SDE)
that integrates the various tools needed for modeling, validating, deploying and
monitoring ensembles. The SDE has its origin in the SENSORIA project [23, 17];
it is based on the Eclipse platform [7] and its underlying OSGi [18] framework.
The core of the SDE allows for a straightforward integration of tools as well as
the creation and use of tool chains built as orchestration of tools. Creating a new
service as an orchestration of existing services is possible using either a textual,
JavaScript-based approach or a graphical workflow approach.

As an example, a tool chain could be defined in the SDE consisting of a
modeling tool for the specification of the swarm of robots described in the in-
troduction, a tool for steady-state ODE simulation, and the ARGoS simulator
for robot swarms. The developer can then define an orchestration of these tools
that, e.g., generates traces from simulation runs and use them to validate the
quantitative ODE models.

9 Concluding Remarks

In this paper we have presented some of the first results of the ASCENS sys-
tematic engineering of autonomic service-component ensembles. We have given
short introductions to the SOTA approach to ensemble engineering and the un-
derlying formal model called GEM, formal notions of adaptation and awareness,
the SCEL language, quantitative analysis of ensembles, and finally envisaged
software-engineering methods for ensembles.

But these results represent only a small part of the ASCENS project. In
addition, the ASCENS project is developing an knowledge representation lan-
guage, called KnowLang [21], for modelling four different types of knowlegde: the
knowledge of the service components, the knowledge of the ensemble, context
knowledge and situational knowledge. Validation and verification techniques in
ASCENS are not restricted to quantitative model analysis; we also investigate
qualitative model analysis (see e.g. [2]), runtime monitoring (see e.g. [8]), predic-
tive analysis, the correspondence between the models and the implementation,
and implementation-specific issues not covered by the models.



Particular emphasis is put on case studies. The one in this paper shows only
a small part of our swarm-robotics approach which aims at ensembles of coop-
erating, self-aware robots. The Science Cloud case study is about making cloud
computing more dynamic and open while attempting to maintain its proper-
ties of being a reliable and flexible approach for using third-party resources and
services. The e-mobility case study aims at illustrating the theories and method-
ologies developed in ASCENS in the domain of e-mobility planning.

The case studies provide not only continuous feedback to the research per-
formed in ASCENS, they also lead to new scientific results in the case study do-
mains (see e.g. [19, 6, 1]) and help to achieve the overall aim of ASCENS: a unified
development approach to build self-aware, self-adaptive and self-expressive sys-
tems that can operate in open-ended, non-deterministic environments, perform
in a reliable, predictable manner, adapt to changing environments or require-
ments, and handle failures of individual nodes.
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