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Abstract. A significative percentage of the human population suffer from impair- 

ments in their capacity to distinguish or even see colours. For them, everyday tasks 

like navigating through a train or metro network map becomes demanding. We 

present a novel technique for extracting colour information from everyday natural 

stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. 

This technique was implemented inside a Personal Digital Assistant (PDA) portable 

device. In this implementation, colour information is extracted from the input image 

and categorised according to how human observers segment the colour space. This 

information is subsequently converted into sound and sent to the user via speakers 

or headphones. In the original implementation, it is possible for the user to send 

its feedback to reconfigure the system, however several features such as these were 

not implemented because the current technology is limited. We are confident that the 

full implementation will be possible in the near future as PDA technology improves. 
 
 

1   Introduction 
 

Colour is an important feature of everyday life. Although highly saturated objects 

are not abundant in nature, we build and paint objects with highly saturated colours 

in an attempt to grab each other’s attention, please each other, and transmit informa- 

tion. In the natural environment, colour helps organising scenes (blue is predominant 

in the sky, green in chlorophyll, brown in earth, grey in rocks, etc.) and crucially, 

it aids important survival tasks such as finding ripe fruit and leaves, detecting poi- 

sonous animals, and breaking luminance camouflage. In cities, colour highlights 
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or simplifies important information (red for danger or stop, green for way-out or 

go, fast identification of known products, understanding of train/metro maps, etc.) 

and this fact has been exploited to such degree that we are surrounded by advertis- 

ing, fashion, traffic signalling, etc. that relies on colour to transmit distinctive vi- 

sual information. However, colour processing is not an easy feat: years of research 

and technology development have shown that to extract reliable colour and texture 

information in lexical form from natural images is far from trivial. The main prob- 

lems to be addressed are not related to the technology available (medium to high- 

quality colour portable digital cameras are ubiquitous nowadays) but instead are 

related to the way humans sample and perceive the wavelength distributions of vis- 

ible light. The human visual system has several mechanisms to extract meaningful 

information from the light that reaches the eye, filtering out the less important, more 

redundant patterns. These include a bias towards representing the reflecting char- 

acteristics of objects rather than the chromatic content of the illumination (colour 

constancy) [32], a tendency to enhance or suppress the perceived richness (satu- 

ration) of a colour according to the variability of its extended surrounds [2], and 

several other mechanisms which alter the perceived hue of an object according to its 

immediate surroundings (chromatic induction) [3]. On top of this, there are various 

complex cultural issues that affect the way we transmit to others the information 

about what we perceive (language). For example, not everybody agrees on which 

semantic labels to assign to the same wavelength signal, and everybody is familiar 

with the experience of arguing about the colour of a piece of clothing or a newly 

painted wall. However, anthropologists have found a set of 11 basic colour terms 

that are common to most evolved cultures (white, black, red, green, blue, yellow, 

grey, brown, orange, pink, purple) [4] which are a good starting point to model the 

universal attributes of colour naming. 
 
 

1.1   Colour Vision and Colour Visual Deficiencies 
 

Colour is everywhere, and its very ubiquitousness and vividness makes us forget 

that it does not exists in the world ”per se” but it is constructed by our brains from a 

few highly specialised neurons in our retinas. The delicate equilibrium of this neu- 

ral construction becomes apparent when something goes wrong and our perception 

of the world becomes impaired. There are many forms of visual chromatic handi- 

cap, but some of the most common are impairments linked to deficiencies (or loss) 

of a given retinal photoreceptor. According to statistics compiled by the American 

Academy of Ophthalmology “red-green colour vision defects are the most com- 

mon form of colour vision deficiency. Approximately 8% of men and 0.5% of women 

among populations with Northern European ancestry have red-green colour defects. 

The incidence of this condition is lower in almost all other populations studied” [5]. 

The rate of incidence of blue-yellow colour vision defects is the same for males and 

females (fewer than 1 in 10,000 people worldwide). Complete achromatopsia (a rare 

type of impairment where subjects do not see colours and only perceive shades of 

grey) affects an estimated 1 in 30,000 people. People with achromatopsia almost 



 

 

 
 
 

 
 

 
always have additional problems with vision including reduced visual acuity, in- 

creased sensitivity to light (photophobia), etc. When visual acuity impairments are 

higher than 20/200 (10% of normal vision in Spain) or the visual field is less than 

20 degrees in diameter, sufferers are considered legally blind. In the U.S., there are 

more than one million legally blind people aged 40 or older (0.3% of the population) 

and only 10% of those are totally blind [5] (see Figure 1). 
 
 

 
 

Fig. 1 Dichromats (People with impaired colour vision) find it difficult to perform basic tasks 

that involve detection and semantic labelling of different colours. These range from detecting 

danger signals at pedestrian crossings, discrimination of ripeness in fruit, discrimination of 

colour-coded train and tube lines in maps, etc. The right panel introduces some statistics about 

common deficiencies and their prevalence in the U.S. population [5]. (See color version of 

the figure at: http://www.cic.uab.cat/Publications/) 

 
 

Visually impaired people face a number of everyday problems, ranging from the 

mild to the severe. In particular, they may experience problems recognising differ- 

ent bi-colour or tri-colour Light Emitting Diodes (LED) traffic lights and in some 

physical arrangements, the position may not be a cue to their colours, as in the case 

of horizontal traffic lights. There is also the inconvenience of not being able to nav- 

igate the coloured maps of motorways, trains and tube lines, either printed on paper 

or on electronic media. Dichromats also complain that other people ”think that their 

choice of colours is strange” and that they cannot tell whether a piece of meat is raw 

or well done, or if a fruit is mature among other everyday problems. 

http://www.cic.uab.cat/Publications/)


 

 

 
 
 

 

 
1.2   Perceptual Interaction between Colour and Sound 

 
Hearing is arguably the second most important way by which humans sense infor- 

mation about the world, and consequently sound is another important feature of ev- 

eryday life. As with colour, we use sound to capture each other’s attention, transmit 

information, and please each other. 

Although they are processed by mainly separate neural mechanisms (and there- 

fore studied by different disciplines), there is evidence that the mammalian visual 

and auditory systems may have many areas of overlapping. For instance, both sys- 

tems share the ability to determine the speed and direction of a moving object, and 

to produce a unified percept of movement. Therefore, both types of sensory infor- 

mation have to merge or coordinate at some point. In addition, both systems have 

to coordinate and interact to direct attention to one modality or the other to control 

subsequent action [20]. More evidence of this neural mechanism overlap is provided 

by the involuntary cross-activation of the senses that occurs for a handful of individ- 

uals, in sound-colour synaesthesia, where auditory sensations spontaneously elicit 

visual experience. For example, when a key is struck on a piano a sound-colour 

synaesthete experiments a vivid colour sensation (see [42]) and this sensation may 

be different if another key is struck. However, if the same note is played the sensa- 

tion elicited is internally very consistent over time. Many musicians experience this 

phenomenon [41]. 

Although individuals with sound-colour synaesthesia differ in their cross-modal 

associations, the sound-to-colour mapping they experience is not necessarily ar- 

bitrary. For example, the vast majority of them associate high pitch with light 

colour [42]. In addition, both non-synaesthete and synaesthete people share the same 

heuristics for matching colour and sound. The difference is that the cross-modal 

sensation is elicited involuntary for synaesthetes, whereas it involves a conscious 

initiative/effort for non-synaesthetes. All in all, it seems that sound-colour synaes- 

thesia uses some common mechanisms of cross-modal perceptual interaction [42]. 

Accordingly, sound-colour cross-modal perception by synaesthetes is of interest for 

defining a colour-to-sound correspondence because it seems not to recruit privileged 

pathways between auditory and visual modalities. 

Indeed extreme cases of synaesthesia are rare, however researchers studying how 

the brain combines information from different sensory modalities (i.e. cross-modal 

perception and multisensory integration) hypothesise whether it might be the case 

that all humans are synaesthetes to some degree and whether these naturally biased 

correspondences may influence the development of language [19]. 

Synaesthetic individuals seldom complain about their condition, and in many 

cases they claim that their lives have been enhanced by this ability to relate colour 

to sound or haptic information. This apparent “enhancement” has motivated us to 

apply current multimodal interactive techniques to deliver the information that is 

missing in one sense (vision) as a pleasant stream to other sense (hearing). In other 

words, we created a portable device (Android platform) that extracts semantic colour 

information from images in a manner compatible with the human visual system and 

conveys this information as a pleasant stream of music which does not overwhelm or 



 

 

 
 
 

 
 

 
bother the user (see figure 2). We also wanted to make the device “interactive”, i.e. 

capable of receiving input from the user and “adaptive”, i.e. capable of learning from 

the user input to improve its inherent properties. Unfortunately, some of the work 

towards this aim was not implemented in the prototype due to current limitations of 

the portable device technology. However, we are confident that at the current rate of 

technological improvement suitable devices will be available in the near future. 

 

 
 

Fig. 2 Similarly to what happens in synaesthesia, the developed device converts colour in- 

formation to sound 
 

 

2   State of the Art 
 

Until recently, conversion from colour to sound and vice versa had received more 

attention from visual arts than from science. Several techniques aiming to convert 

sounds or music to a visual presentation are included in what is known as visual 

music [24]. Although these first approaches did not exactly transform colour into 

sound, they were a first step towards the goal of expressing colour as music (see [21] 

for an historical account of colour-to-sound correspondences). In the last years, the 

idea of implementing aid devices for helping blind and visually impaired people 

to perceive colour through the representation of colour as music has received an 

increasing attention. 

Cronly-Dillon et al. [25] showed the viability of representing some features from 

an image using music to describe its content to blind people. Their method se- 

lected different features of an image and represented each of them with a sound. 

The sounds for each part of the image were combined as a polyphonic melody that 

encoded the basic content of the image. Their experiments showed that blind people 

were able to interpret some images by hearing their associated melodies. 

Following a similar line, Bologna et al. [26] proposed a method to transform 

coloured pixels into musical notes in order to describe image content for blind users. 

To this end, hue was divided in several sectors and was represented by timbre (see 

below), saturation was divided in four levels and was represented with different 



 

 

 
 
 

 
 

 
notes, and luminosity was represented by bass for dark colours and a singing voice 

for bright colours. Using this transform, the input image was segmented and the 

sounds corresponding to the colours of the main parts of the image were repro- 

duced. Bologna et al. also proposed to use saliency detection techniques to focus 

the description on the most salient parts of the image. 

A similar idea was proposed by Rossi et al. [27], who developed a prototype of 

a device that transformed colours into melodies. The system was developed as a 

game for children and was implemented in a portable bracelet with a small camera 

installed on a pointer that allowed users to select any point of the scene. The system 

was able to identify six colours (red, green, blue, yellow, purple, and orange) by 

dividing the hue circle of the HSV colour space in six sectors. Each of these colours 

was assigned to a musical instrument that played a melody that could be chosen from 

a set of five melodies. Additionally, for each colour, three to five divisions were set 

on the value dimension, and each of these subdivisions was identified by a different 

tone. Black and white were also considered as additional cases on this system. As 

in the approach of Bologna et al. the initial identification of colour names was not 

perceptual and this fact might be a drawback of both systems. 

The approach which is closer to our purpose is the one by the visual artist and 

composer Neil Harbisson [22]. Harbisson suffers from achromatopsia, a visual con- 

dition that allows him to only see the world in shades of grey. To overcome his 

lack of colour perception, he designed a device called Eyeborg, which consists of a 

sensor that he wears on his head and points towards the direction he is looking at. 

Using a chip fixed to the back of his neck, the frequencies of light are converted into 

audible frequencies, which he interprets as a colour scale. Harbisson has developed 

two different conversion algorithms. The first one directly transforms seven light 

frequency ranges into seven sound frequencies. His second approach, divides the 

light frequency scale in 12 ranges corresponding to different colours and converts 

them in 12 musical notes. Both methods result in unpleasant and even heady sounds. 

As we stated in the introduction, our goal is to develop a personal assistant im- 

plemented on a mobile device running under the Android platform. Several applica- 

tions that acquire images with the device camera and are related to colour detection 

and identification can be found at the online shop for the Android platform, Google 

Play [23]. Some examples are ‘This Color What Color?’, ‘Color Detector’, ‘Color 

Picker’, and ‘Color Blend’. Although some of them give the name of the colours 

using synthesised voice, to the best of our knowledge, there is no application imple- 

menting a colour-to-sound transform algorithm to specifically aid visually impaired 

people. 
 
 

3   From Colour Signal to Sound 
 

We have built a prototype for colour name extraction that is able to, given a digital 

image, provide a list of the main colours of the objects present in it, in a man- 

ner consistent with the behaviour of human observers (see prototype schematics in 

Figure 3). 
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Fig. 3 Schematics of the prototype (See color version of the figure at: http://www. 

cic.uab.cat/Publications/) 

 
 

The prototype is able to communicate this information to a visually impaired 

user in two modalities: words and music. The definition of visually impaired here 

ranges from dichromats to low vision or even blind users. In other words, we have 

built a portable system that acts on the output of a digital camera and reproduces 

the basic mechanisms that a human observer employs to identify the names of the 

colours of the objects present in the scene. The colour names are communicated to 

the user by means of synthesised music or alternatively, an automated voice system. 

We achieved this aim by: 
 

•  developing a human-based colour perception model to account for changes in 

perceived chromatic characteristics of the illuminant. 

•  developing a set of image descriptors to identify and label the main colours in 

images, in a manner similar to human observers. 

•  developing an interface based on natural language that is able to handle colour 

names. 

•  developing an interface based on sound that is capable to convert colour names 

into music 
 

Our prototype was conceived as a portable device, based on a state-of-the-art 

personal digital assistant (PDA) with an embedded digital camera. Such devices are 

relatively  inexpensive  and  provide  the  necessary  capabilities  to  develop  a 

http://www/


 

 

 
 
 

 
 

 
software-based model that uses the digital camera (input device) as a first stage and 

delivers its results through the sound system (speakers/headphones). They have also 

an adequate user interface hardware (touch screen) for entering the necessary user 

corrections to improve the colour-naming algorithm. Figure 4 provides the schemat- 

ics of the prototype design. The input data comes via the PDA camera’s uncalibrated 

camera and the system applies an illumination removal algorithm to produce an im- 

age free of the colouring imposed by the illuminant. We use this representation 

to classify the content of the scene according to its colour names. The output of 

this algorithm comes in two alternative forms: as a voice through a voice synthe- 

siser/speaker combination or as music. 

In the following sections we explain in more detail the physical and perceptual 

properties of colour and sound that we are about to simulate and manipulate to 

achieve the “sonification” of the image, i.e. the transfer of colour information to the 

auditive system. 
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Fig. 4 Feedback, multimodality and adaptation and their role in the prototype (See color 

version of the figure at: http://www.cic.uab.cat/Publications/) 

 
3.1   Properties of Colour 

 
The wavelength content of the electromagnetic radiation that reaches our eyes is 

sampled in the retina by specialised neurons (cones), converted into neural informa- 

tion and transferred throughout different stages in the visual pathway. In the latest 

stages, the information is categorised. Categorisation is the process by which ob- 

jects are differentiated and grouped, softening differences and favouring similarities 

among them, reducing an extremely complex world into cognitively tractable pro- 

portions. This reduction is extremely evident in the colour domain: from the nearly 

2 million colours that can be distinguished perceptually we recover only about 30 

colour categories which can be named by average subjects [7]. Although many 

colours can be distinguished and named, there is a group of 11 colour categories 

that are common to all advanced languages. They were defined by Berlin and Kay 

in their seminal work [4] and are thought to be inherent of the human neural machin- 

ery of colour categorisation [16, 17, 18]. These are black, white, red, green, yellow, 

http://www.cic.uab.cat/Publications/)


 

 

 
 
 

 
 

 
blue, brown, purple, pink, orange, and grey, and they appear in a language in this 

particular order as the language becomes more complex. More complex languages 

tend to have more categories, but these are the most primitive. 

To model this categorisation process as accurately as possible is a goal of many 

disciplines, from colour image reproduction to computer vision. Recent computa- 

tional models of colour space segmentation are based on either natural scene statis- 

tics [8] or psychophysical data [9, 10, 11, 12, 13, 14, 15]. We implemented a colour 

space segmentation model on the model of Benavente et al. [11] because it has 

several advantages over others: it is implemented in CIELab colour space (a percep- 

tually uniform space that has its lightness dimension built from relative luminance) 

and is parametric, i.e. can be easily adjusted depending on the user feedback. The 

model is built from fuzzy sets segmenting CIELab space in 11 regions and in its 

current implementation, it assigns to each pixel p = (L, a, b)T  a membership value 

between 0 and 1 to each colour category. Hence, for each pixel p, a 11-dimensional 

colour descriptor CD(p) is defined as 

CD(p) = 
f
μC1 

(p), ..., μC11 
(p)

l 
(1) 

 

where each component of this 11-dimensional vector describes the membership of 

p to a specific color category and the component with highest membership value 

determines to which category the pixel belongs. 

The value of each of the components of the colour descriptor is obtained from a 

triple-sigmoid with elliptical center (TSE) function given by 
 

T SE (p, θ ) = DS(p, T, θDS )ES(p, T, θES ),  (2) 
 

where ES is is an elliptical-sigmoid function which models the central achromatic 

region and is defined as 

 
ES(p, T, θES ) =  

 

1 
f r( u1 Rφ Tp   2

 

 
 
u2 Rφ Tp   2

 

 
ll , (3) 

1 + exp − βe ex  

) 
+ 

(
 ey  

) 
− 1 

 

and DS is a double-sigmoid function defined as the product of two oriented 2D- 

sigmoids given by 
 

DS(p, T, θDS ) = S1 (p, T, αy , βy )S2 (p, T, αx , βx )  (4) 
 

 
 

Si (p, T, α , β ) = 
1 + exp(

 
1 

β u R
 

 

Tp) 
, i = 1, 2 (5) 

− i    α 

In equations 2 to 5, θ = (t, θDS , θES ), θDS , and θES  are the set of parameters of 

the TSE, the DS, and the ES functions, respectively, T is a translation matrix, Rφ 

is a rotation matrix of angle φ , u1  = (1, 0, 0)T , u2 = (0, 1, 0)T , ex  and ey  are the 

semiminor and semimajor axis of the central ellipse, βe is the slope of the sigmoid 

curve that forms the central ellipse boundary, αi is an angle with respect to axis i, βi 



 

 

 
 
 

 
 
 

 
 

Fig. 5 TSE function fitted to the chromatic categories defined on a given lightness level. In 

this case, only six categories have memberships different than zero. (See color version of the 

figure at: http://www.cic.uab.cat/Publications/) 
 

 
is the slope of a sigmoid function defined over axis i, and Rα is a rotation matrix of 

angle α . 

Figure 5 shows an example of how the model divides a specific chromatic plane 

of the CIELab space. 
 
 

3.2   Colour Constancy 
 

Colour constancy is usually defined as the tendency of objects to appear the same 

colour even under changing illumination [28]. This is important due to the big vari- 

ability of illumination in our real life (indoor/outdoor situations, midday/sunset day- 

time, etc.) For example, we will perceive as white a white piece of paper both in an 

indoor scenario or in an outdoor scenario at midday. However the information reach- 

ing the eye will be yellowish in the first case (tungsten illumination) and bluish in 

the second one. Several studies widely agree that human colour constancy is not 

based on a single mechanism [29]. 

In computational colour we simplify the human colour constancy property to con- 

vert it into a tractable problem. In particular, computational colour constancy tries 

to convert the captured scene under an unknown illumination into the same scene 

viewed under a white illumination (that is, we suppose that under white light, the 

perceived colours mimic the physical values). From a mathematical point of view, 

the problem is regarded as the search of a 3 × 3 matrix. However, for simplicity, re- 
searchers have widely used the Von Kries model [30] to simplify the problem. Von 

Kries model states that illumination change is a process which operates in each sen- 

sor response channel independently. Then, the 3 × 3 original matrix is converted to 

http://www.cic.uab.cat/Publications/)
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a diagonal one, greatly simplifying colour constancy computation. Mathematically, 
let us suppose we have an object with reflectance S(λ ) viewed under two illumi- 

nants E1(λ ), E2(λ ), and captured by a camera with sensitivities Ri (λ ), i ∈ {1, 2, 3}. 

Then, the colours captured by the camera are denoted as ρ 1  and ρ 2 , where their 

components are given by 

 

i  = S(λ )E1(λ )Ri (λ )dλ 

 

i  = S(λ )E2(λ )Ri (λ )dλ  (6) 

 

Then, in computational colour constancy we search for α ,β , and γ fulfilling 

⎛ 
α 0 0 

⎞
 

ρ 1 = 
⎜ 

0 β 0 
⎟ 

· ρ 2  (7) ⎝ ⎠ 

0  0 γ 
 

There are several methods trying to solve for this equation. The simpler ones 

(that actually give quite good results in real databases) are Grey-World [31] and 

MaxRGB [32]. Basically, GreyWorld assumes that the average of the scene is grey, 

while MaxRGB assumes the highest intensity values of the scene as a white point. 

These two methods were generalised by Shades-of-Gray [33] where the Minkowski 

norm was added and Grey-Edge [34] where image derivatives were also added. 

Some other methods deal with physical properties, such as mutual reflections [37], 

highlights and shading [36], and specular highlights [35]. Finally, another set of 

colour constancy methods are probabilistic such as Color-by-Correlation [38] and 

Illumination-by-Voting [39]. 

Recently, a new voting method [40] has been defined. This method follows the 

category hypothesis: Feasible illuminants can be weighted according to their ability 

to anchor the colours of an image to basic colour categories. In particular, it chooses 

the focals of colour names to behave as anchor categories. In this way, it returns as a 

solution the scene maximising the number of nameable colours. For example, if we 

have an outdoor scene in a field, it will return the image that converts both the sky 

and the green colours into the prototypical blue and green that have evolved with 

humans. Due to the naming nature of this approach, it would be the most suitable 

for our system, however, for limitations of the current mobile devices, a simpler 

method, the MaxRGB algorithm, has been used as a preprocessing step. 
 
 

3.3   Properties of Sound 
 

Physically, sound corresponds to mechanical vibrations transmitted through an 

elastic medium (gas, liquid, or solid) and is composed of longitudinal waves char- 

acterised by their frequency (or wavelength) and amplitude. Humans with nor- 

mal hearing are capable of perceiving frequencies between 20 and 20,000Hz and 



 

 

 
 
 

 
 

 
intensities within a range of 12 orders of magnitude. When talking about sound, 

we refer to wavelength frequency as pitch and amplitude as loudness and interpret 

sound as a perceptual experience, in a way similar to how we interpret colour. When 

a key on a piano is struck, for example, we can identify both the pitch and loud- 

ness of the sound produced. The pitch is well defined and corresponds to physical 

properties of the wire struck (tension, linear mass density, and length), therefore we 

construct instruments manipulating these properties to produce different pitches. We 

can produce a louder sound by giving the key a bigger pull. In that case, the ampli- 

tude of the vibrations of the corresponding wire is bigger. Other attributes of sound 

events are duration, spatial position and timbre. Duration simply refers to the time 

span of a single sound event. On the other hand, the auditory system is capable of 

discerning the spatial localisation of a sound source. Localisation of sound events is 

by far less precise than localisation of objects by the visual system but not limited 

by the lighting conditions and in addition, hearing is omnidirectional. 

By asking human subjects to tell the difference or express similarity judgement 

when listening to different sound excerpts corresponding to different musical in- 

struments, one can derive timbre spaces. These spaces are perceptual and represent 

similarities between sounds. They are the counterpart in psychoacoustics of the per- 

ceptual colour spaces in vision, which are derived using psychophysics. However, 

giving a constructive definition of timbre is not easy and instead, timbre is often 

referred to a combination of qualities of sound that allow the distinction between 

sounds of the same pitch and loudness. To put it plainly, timbre is what allows us to 

tell the difference between a piano and a cello when both are playing the same note 

(pitch) with the same loudness (for the same duration and at the same position). 

Unlike pitch and loudness, which are characterised by frequency and amplitude, 

there is no single physical characteristic that directly relates to timbre. However, the 

main attributes of timbre are harmonic content and dynamic characteristics such as 

vibrato and the intensity envelope (attack, sustain, release, and decay). 
 

 

3.4   Colour Sonification: Our Proposal 
 

The central question is to find a systematic way to encode colour into sound. Such 

a mapping should have the following features: 
 

i  easy to use 

ii not heady 

iii coherent with synaesthesia (main features of) 

iv perceptual isometry 
 

Let us explain property (iv) in greater detail. Let C be a perceptual colour space 

and S a sound space. Suppose now that both spaces are endowed with a perceptual 

metric (denoted by  . C and  . S , respectively). A mapping Φ : C → S is said to 

be a perceptual isometry if the following property holds: for any two colours C1 ,C2 

in C, if  C1 − C2 C = TC (C1 ,C2 ), where TC (C1 ,C2 ) is the discrimination threshold 



 

 

 
 
 

 
 

 
in the region of C1 ,C2  in C, then   Φ (C1 ) − Φ (C2 ) S  = TS (Φ (C1 ), Φ (C2 )), where 

TS (Φ (C1 ), Φ (C2 )) is the discrimination threshold at Φ (C1 ) in S. Such a property 

would ensure no loss of discriminative power in the translation of colour into sound. 

The first step in the construction of a timbre space is the extraction of physical 

characteristics. Sound events are expressed in terms of several time-frequency repre- 

sentations (harmonic sinusoidal components, short-term Fourier transform, energy 

envelope). Next, a large number of descriptors are derived which capture spectral, 

temporal, spectrotemporal, and energetic properties of sound events [43]. The infor- 

mation provided by these descriptors is highly redundant. Often, multidimensional 

scaling is applied to the space of descriptors to get a 3D space. The acoustic corre- 

lates of the three dimensions vary from a proposal to another. The spectral centroid 

receives a wide support in the literature and is often considered as the first and prin- 

cipal dimension (see [44] for a review on this issue). Another important dimension is 

provided by the attack time. The temporal variation of the spectrum is often adopted 

as the third dimension, but is less consensual. Note that describing sound using a 

three dimensional space S is a requisite if we are to define a perceptual isometry 

from a three dimensional colour space C to S. Both spaces should have the same 

dimension. 

For computational reasons, we have implemented a simplified approach of the 

colour sonification which is mainly based on pitch for characterising sound. The in- 

put to the sonification algorithm is the output of the colour naming model described 

in section 3.1, that is, an 11-dimensional vector containing the membership values 

to the eleven colour categories considered. Hence, a colour is described by the 11 

membership values of the colour naming descriptor. 

In our approach, each chromatic colour category1 is characterised by a different 

pitch (note) of a violin sound. The loudness of the sound is varied according to 

the membership value of the pixel to each colour category. To avoid noise, only 

membership values higher than 0.1 are considered. Therefore, given a colour, the 

generated sound will be a mixture of the sounds corresponding to the categories 

with membership values higher than 0.1, with different loudness each. 

To differentiate between chromatic and achromatic2 categories categories, timbre 

is used. Thus, achromatic colours are converted to a violoncello sound instead of the 

violin sound used to represent the chromatic categories. The differentiation among 

the three achromatic categories is done by assigning a specific pitch (note) to each 

of them: black is mapped to note C (do), grey is mapped to F (fa), and white is 

mapped to B (si). Table 1 summarizes the colour sonification scheme used. 

Finally, the lightness of the colour, which depends on the value of CIELab coor- 

dinate L, is represented by different octaves. Hence, the lightness axis L is divided 

in two parts (low/high lightness) and colours in each part are represented by sounds 

on a specific octave. 
 

1 Red, green, yellow, blue, brown, purple, pink, and orange. 
2 Black, white, and grey. 



 

 

 
 
 

 
 
 

Table 1 Summary of the conversion provided by the colour sonification algorithm 

 
Colour Pitch 

(note) 

Timbre 

(instrument) 

pink E violin 

purple D violin 

blue C# violin 

green A violin 

yellow G# violin 

brown G violin 

orange F# violin 

red F violin 

white B violoncello 

grey F violoncello 

black C violoncello 

 
 

4   A Multimodal Device for the Visually Impaired 
 

The mobile application developed is called Coloresia (i.e. a mixture between the 

words color and synaesthesia) and has three main modules, which are implemented 

as an Android activity3. WelcomeAct shows the initial interface of the applica- 

tion, Color2Sound is the main activity of the application and performs most of 

the tasks, such as acquiring images from the camera, displaying information on 

screen, or playing sounds, and ConfigAct allows the user to control the configura- 

tion of the application. Figure 6 shows a module diagram of the three activities of the 

application. 
 
 

 
 

Fig. 6 Schematics of the main modules of the mobile application Coloresia 
 

3 In the Android platform, activities denote the basic components of applications. An activity 

corresponds to an interface of the application where the user can do some actions. 



 

 

 
 
 

 
 

 
When the application is started, the user accesses to WelcomeAct, the initial ac- 

tivity of the application, which presents three buttons to the user. Two of these but- 

tons take the user to the colour identification application in the two available modes, 

namely, music and voice. The third button calls the configuration module where the 

user can set different parameters of the application. 

Figure 7(a) shows the interface of this initial activity. As it can be seen, the in- 

terface has been designed to facilitate the accessibility to visually impaired people: 

a large size font and colours with high differences in lightness have been used to 

highlight the text and make it easy to read. 

From the WelcomeAct activity, the user can access to Color2Sound, the main 

activity of the application. When Color2Sound is started, the application acquires 

a sequence of images with the device camera and displays them on the screen. On 

one out of two frames of the sequence a region of interest (ROI) on the center of 

the image is selected. The dimensions of the ROI can be set by the user in the 

configuration activity. 

The pixels’ values in the ROI are averaged to obtain the mean RGB of the region. 

This mean RGB is the input to the colour naming method explained in section 3.1 

to obtain the 11-dimensional vector with the membership values to the 11 colour 

categories considered. Then, this 11-dimensional vector is the input to the colour 

sonification algorithm presented in section 3.4. 

Finally, the result of the conversion algorithm, i.e. a sound defined as a mixture of 

notes played by one or two instruments, is played on the device to allow the visually 

disabled users to know the colour of the objects at the center of the images they are 

acquiring with their device. 

Besides the final sound played by the application, it also provides some informa- 

tion displayed on the screen of the device. This information is: 
 

•  The rectangle containing the region of interest. 
•  The colour name with the highest membership value corresponding to the mean 

RGB in the ROI. 

•  The mean RGB and CIELab values in the ROI. 
 

Figure 7(c) shows the interface of the Color2Sound activity with all the information 

displayed on screen while the activity is working. 

The Color2Sound activity also captures the events generated by the user on the 

touch screen. While this activity is working, the user can move the ROI through the 

image to identify the colour of a different image area. The user can also modify the 

size of the ROI, which can be set between a minimum size of 4 × 4 pixels and a 

maximum of 16 × 16. The size of the ROI can also be modified at the configuration 
activity as detailed below. 

The user can also access the application menu from the menu key of the device. 

The options in this menu allow the user to save images on the device memory card, 

to access the configuration tool, to change the operation mode, and to exit the appli- 

cation. Figure 7(d) shows a screen shot of the menu layout. 

The last module of the application is the configuration activity ConfigAct. In this 

activity, the user can set the three main parameters of the application. The first one is 



 

 

 
 
 

 
 
 

 
 

(a) (b) 

 
 

(c) (d) 
 

Fig. 7 Coloresia interfaces. (a) WelcomeAct activity. (b) ConfigAct activity. (c) Main inter- 

face of the Color2Sound activity. (d) Auxiliary menu of the Color2Sound activity. (See color 

version of the figure at: http://www.cic.uab.cat/Publications/) 

 
 

the radius of the region of interest, with a minimum of 2 pixels (i.e. a 4 × 4 window) 

and a maximum of 8 pixels (i.e. a 16 × 16 window). The value of this parameter can 

be adjusted by means of a sliding bar. 

The second parameter is the language of the application. The selected language 

will be used in all the messages at the interface and by the voice synthesiser. The 

selection can be done by a spinner among the three supported languages: English, 

Spanish, and German. By default, English is initially selected. If the device does 

not have the language selected by the user installed on the device, the application 

http://www.cic.uab.cat/Publications/)


 

 

 
 
 

 
 

 
proceeds to its installation. If, for any reason, the installation is not possible, the 

application warns the user by a message on the screen. 

The third parameter that can be modified is the operation mode, where the user 

can choose between the default music output to represent the colours or a voice 

indicating the colour name of the stimulus detected by the application. 

Finally, ConfigAct has two buttons to save the settings or going back discard- 

ing the changes. Figure 7(b) shows the layout of the activity that follows the same 

aesthetics as the previous activities. 
 
 

4.1   Test and Results 
 

The application has been tested on a HTC Desire mobile, with operative system 

Android v.2.2, a 1GHz processor, and 576Mb of RAM memory. The test of the 

application has been focussed on the processing time and the robustness against 

illumination conditions. 

To test the speed of the colour identification part, the processing time of the 

30 first detections on each test were averaged. The mean processing time was 

123.18ms, with a standard deviation on 74.89ms. The test was only performed on 

the first executions to test the worst case, because after the initial colour detections 

the processing times reduce considerably to a mean processing time of 90ms. 
 
 

 

 
(a) (b) (c) 

 
Fig. 8 Examples of detections performed by the application. In the lower row, the central 

part of each image is zoomed. (a) Under natural daylight. (b) Under a reddish tungsten bulb 

light. (c) Under a mixture of daylight and tungsten bulb light. (See color version of the figure 

at: http://www.cic.uab.cat/Publications/) 

http://www.cic.uab.cat/Publications/)


 

 

 
 
 

 
 

 
Regarding the robustness against illumiantion changes, the application has been 

tested on three different illumination conditions: daylight, reddish tungsten bulb 

light, and a mixture of both. Although the application has more problems with low- 

illuminated environments, the application is able to correctly describe colours in 

most cases on the tested illumination conditions. Figure 8 shows three examples of 

the application working under the three illumination conditions. 
 
 

5   Conclusions 
 

In this chapter we have presented a prototype to help visually impaired people who 

is not able to see colour properly. The application is implemented on a mobile device 

and acquires images with the device camera. From this image, a region of interest is 

selected and the mean colour of the region is converted to a sound that is played by 

the device. Therefore, the users of this application are able to interpret these sounds 

and can identify the colours in the scene. 

The method to represent colour as a musical sound is based on two steps. The first 

one transforms the input colour stimulus to a 11-dimensional vector representing the 

membership value of the colour to the eleven basic colour categories. The second 

step converts each membership value to a sound, and these sounds are combined to 

produce the final output of the system. From this output, the user can interpret the 

colour of the stimulus he or she has in front of. 

With this application colour-blind people have an easy-to-use and low-price as- 

sistant for everyday tasks such as choosing the clothes to wear, understanding an 

underground map, or even interpreting a piece of art. 
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