
Instance-based Non-standard Inferences in EL with
Subjective Probabilities

Rafael Peñaloza and Anni-Yasmin Turhan?

Institute for Theoretical Computer Science, TU Dresden, Germany,
email: last name@tcs.inf.tu-dresden.de

Abstract. For practical ontology-based applications representing and reason-
ing with probabilities is an essential task. For Description Logics with subjec-
tive probabilities reasoning procedures for testing instance relations based on the
completion method have been developed.
In this paper we extend this technique to devise algorithms for solving non-
standard inferences for EL and its probabilistic extension Prob-EL01

c : computing
the most specific concept of an individual and finding explanations for instance
relations.

1 Introduction

The ontology language recommended for the semantic web OWL [11, 25] is based
on Description Logics (DLs) [4]. Description logics are knowledge representation for-
malisms with formal semantics. Based on these semantics, powerful reasoning services
have been defined and reasoning algorithms have been investigated. In recent years,
so-called lightweight DLs have been devised; these DLs have a limited expressiveness,
which allows for efficient reasoning [6]. For the lightweight DL EL, typical DL reason-
ing services such as classification of TBoxes, i.e., computation of all sub- / supercon-
cept relations of named concepts, or the realization of ABoxes, i.e., computation of the
named concepts each of the ABox individuals belongs to, can be done in polynomial
time. The basis for ABox realization is instance checking, which tests whether a given
individual from the ABox belongs to a given concept. In the so-called EL-family of
DLs, which are the tractable extensions of EL, this inference can be computed using
completion algorithms, which extend the ones for concept subsumption [2, 3].

The DLs from the EL-family are employed most prominently in the medical field,
for instance in the well-known knowledge base SNOMED CT [23], as well as in context-
aware applications. In both of these application areas, the need for characterizing un-
certain observations, which are only known to hold with some probability, has been
long recognized. While several probabilistic extensions of DLs have been proposed—
see [14] for a survey—these are typically very expressive and thus no longer tractable
and they cannot handle subjective probabilities. A simple probabilistic variant of EL
that can express subjective probabilities is Prob-EL01

c , recently introduced in [15]. This
logic allows only a fairly limited use of uncertainty. More precisely, it is only possible to
? Partially supported by the German Research Foundation (DFG) in the Collaborative Research

Center 912 “Highly Adaptive Energy-Efficient Computing”.

express that a concept may hold (P>0C), or that it holds almost surely (P=1C). Despite
its limited expressivity, this logic is interesting due to its nice algorithmic properties; as
shown in [15], subsumption and instance checking can also be performed in polynomial
time.

In this paper we employ the above mentioned completion algorithms to compute
two non-standard inferences for DLs that allow to express subjective probability: the
most specific concept and explanation of instance relations in Prob-EL01

c .

Many practical applications that need to represent observed information, such as
medical applications or context-aware applications, need to characterize that these ob-
servations only hold with certain probability. Furthermore, these applications face the
problem that information from different sources does not coincide, e.g., different di-
agnoses yield differing results. These applications need to “integrate” differing obser-
vations for the same state of affairs [24]. A way to determine what information the
different information sources agree upon is to represent this information in the ABox
by different individuals and then to find a common generalization of these individuals.
A description of such a generalization of a group of ABox individuals can be obtained
by applying the so-called bottom-up approach for constructing knowledge bases [5].
In this approach a set of individuals is generalized into a single concept description by
first generating the most specific concept (msc) of each individual and then applying
the least common subsumer (lcs) to the set of obtained concept descriptions to extract
their commonalities.

The second step, i.e., a computation procedure for the approximate lcs has been in-
vestigated for EL and Prob-EL01

c in [21]. In this paper we present a similar procedure
for the msc. For the Description Logic EL the msc need not exist [1], if computed with
respect to general EL-TBoxes. However, it is still possible to find a concept description
that is the msc up to a fixed role-depth. This so-called k-msc is still a generalization of
the input, but not necessarily the least one—in this sense, it is only an approximation of
the msc. We first describe a practical approach for computing the role-depth bounded
msc, based on the polynomial-time completion algorithm for EL, and then extend it
to the probabilistic variant Prob-EL01

c . Our algorithms are based upon the completion
algorithms for ABox realization in EL and in Prob-EL01

c and thus can be easily imple-
mented on top of reasoners of these DLs. All the proofs can be found in [18].

The second non-standard inference that we explore in this paper is the explanation
of a given consequence. In case a large knowledge base is edited by hand, it is not trivial
for the developer to see why a particular consequence holds [10, 12]. In our case of
instance checking, we want to identify those statements in the TBox and the ABox that
cause an instance relationship to follow from the knowledge base. More precisely, we
want to compute minimal axiom sets (MinAs) that entail the consequence. We compute
these sets using a glass-box approach for axiom-pinpointing [22, 7]. Even for ontology-
based context-aware systems, which may operate on automatically generated ABoxes,
the identification of MinAs that cause an unwanted consequence is crucial, since it is
the first step to edit the knowledge base such that the consequence is resolved. More
than in the crisp case, finding the axioms that entail a consequence for a knowledge
base written in a DL with probabilities is a difficult task to do by hand.

A method to compute MinAs for subsumptions in EL was devised in [9] as an ex-
tension of the completion algorithm for TBox classification. In this paper we devise a
method to compute MinAs for instance relationships as an extension of the completion
algorithm for ABox realization for Prob-EL01

c .
This paper extends earlier work presented in [20, 21] by algorithms for computing

explanations for instance relationships in EL and Prob-EL01
c . To the best of our knowl-

edge, explanation has not yet been investigated for DLs that allow to express proba-
bilities. We start this undertaking by giving the basic notions in Section 2. In Section
3 we recall the completion algorithms for ABox realization. Section 4 discusses the
computation algorithm for the role-depth bounded msc. In Section 5 we introduce the
algorithm for computing explanations.

2 EL and Prob-EL

In this section we introduce the DL EL and its probabilistic variant Prob-EL01
c . Let

NI , NC and NR be disjoint sets of individual-, concept- and role names, respectively.
Prob-EL01

c -concept descriptions are built using the syntax rule

C,D ::= > | A | C uD | ∃r.C | P>0C | P=1C,

where A ∈ NC , and r ∈ NR. EL-concept descriptions are Prob-EL01
c -concept descrip-

tion that do not contain the constructors P>0 or P=1.
A knowledge base K = (T ,A) consists of a TBox T and an ABox A. An EL-

(Prob-EL01
c -) TBox is a finite set of general concept inclusions (GCIs) of the form

C v D, where C,D are EL- (Prob-EL01
c -) concept descriptions. An EL-ABox is a set of

assertions of the form C(a) or r(a, b), where C is an EL-concept description, r ∈ NR,
and a, b ∈ NI . A Prob-EL01

c -ABox is a set of assertions of the form C(a), r(a, b),
P>0r(a, b), or P=1r(a, b), where C is a Prob-EL01

c -concept description, r ∈ NR, and
a, b ∈ NI .

The semantics of EL is defined by means of interpretations I = (∆I , ·I) consisting
of a non-empty domain ∆I and an interpretation function ·I that assigns binary rela-
tions on ∆I to role names, subsets of ∆I to concepts and elements of ∆I to individual
names. For a more detailed description of this semantics, see [4].

We say that the interpretation I satisfies a general concept inclusion C v D, de-
noted as I |= C v D, if CI ⊆ DI ; it satisfies an assertion C(a), denoted as I |= C(a)
if aI ∈ CI and it satisfies an assertion r(a, b), denoted as I |= r(a, b) if (aI , bI) ∈ rI .
It is a model of a knowledge base K = (T ,A) if it satisfies all GCIs in T and all
assertions in A.

The semantics of Prob-EL01
c is a generalization of the semantics of EL, that consid-

ers a set of possible worlds. A probabilistic interpretation is of the form

I = (∆I ,W, (Iw)w∈W , µ),

where ∆I is the (non-empty) domain, W is a (non-empty) set of worlds, µ is a discrete
probability distribution onW , and for each world w ∈W , Iw is a classical EL interpre-
tation with domain ∆I , where aIw = aIw′ for all a ∈ NI , w,w′ ∈W . The probability

that a given element of the domain d ∈ ∆I belongs to the interpretation of a concept
name A is

pId (A) := µ({w ∈W | d ∈ AIw}).

The functions Iw and pId are extended to complex concepts in the usual way for the
classical EL-constructors, where the extension to the new constructors P∗ is defined as

(P>0C)
Iw := {d ∈ ∆I | pId (C) > 0},

(P=1C)
Iw := {d ∈ ∆I | pId (C) = 1}.

The probabilistic interpretation I satisfies a general concept inclusion C v D, denoted
as I |= C v D, if for every w ∈ W it holds that CIw ⊆ DIw . It is a model of a
TBox T if it satisfies all general concept inclusions in T . Let C,D be two Prob-EL01

c

concepts and T a TBox. We say that C is subsumed by D w.r.t. T (C vT D) if for
every model I of T it holds that I |= C v D. The concepts c and D are equivalent, if
C vT D and D vT C holds. The probabilistic interpretation I satisfies the assertion
P>0r(a, b) if µ({w ∈ W | Iw |= r(a, b)}) > 0, and analogously for P=1r(a, b). I
satisfies the ABox A if there is a w ∈W such that Iw |= A.

Finally, an individual a ∈ NI is an instance of a concept description C w.r.t. K
(K |= C(a)) if I |= C(a) for all models I of K. The ABox realization problem is to
compute for each individual a in A the set of named concepts from K that have a as
an instance and that are least (w.r.t. v). One of our main interests in this paper is to
compute most specific concepts.

Definition 1 (most specific concept). Let L be a DL, K = (T , A) be a L-knowledge
base. The most specific concept (msc) of an individual a from A is the L-concept de-
scription C s. t.

1. K |= C(a), and
2. for each L-concept description D holds: K |= D(a) implies C vT D.

The msc depends on the DL in use. For the DLs with conjunction as concept constructor
the msc is, if it exists, unique up to equivalence. Thus it is justified to speak of the msc.

3 Completion Algorithms for ABox Realization

In this section we briefly sketch the completion algorithms for instance checking in the
DLs EL [2] and Prob-EL01

c [15].

3.1 The Completion Algorithm for EL

Assume we want to test for an EL-knowledge base K = (T ,A) whether K |= D(a)
holds. The completion algorithm first augments the knowledge base by introducing a
concept name for the complex concept description D for the instance check; that is, it
redefines the knowledge base to K = (T ∪ {Aq ≡ D},A), where Aq is a new concept
name not appearing in K. The instance checking algorithm for EL works on knowledge

NF1 C u D̂ v E −→ { D̂ v A,C uA v E }
NF2 ∃r.Ĉ v D −→ { Ĉ v A,∃r.A v D }
NF3 Ĉ v D̂ −→ { Ĉ v A,A v D̂ }
NF4 B v ∃r.Ĉ −→ { B v ∃r.A,A v Ĉ }
NF5 B v C uD −→ { B v C,B v D }

where Ĉ, D̂ 6∈ BCT and A is a new concept name.

Fig. 1. EL normalization rules (from [2])

bases containing only axioms in a structured normal form. Every knowledge base can
be transformed into a normalized one via a two-step procedure.

First the ABox is transformed into a simple ABox. An ABoxA is a simple ABox, if
for every concept assertion C(a) ∈ A, C is a concept name. An arbitrary EL-ABox A
can be transformed into a simple ABox by first replacing each complex assertion C(A)
in A by A(a) where A is a fresh concept name and, second, introducing A ≡ C into
the TBox.

After this step, the TBox is transformed into a normal form as well. For a concept
description C let CN(C) denote the set of all concept names and RN(C) denote the set
of all role names that appear in C. The signature of a concept description C (denoted
sig(C)) is given by CN(C) ∪ RN(C). Similarly, the set of concept (respectively role)
names that appear in a TBox is denoted by CN(T) (respectively RN(T)). The signature
of a TBox T (denoted sig(T)) is CN(T)∪RN(T). The signature of an ABoxA (denoted
sig(A)) is the set of concept (role / individual) names CN(A) (RN(A)/IN(A) resp.)
that appear in A. The signature of a knowledge base K = (T , A) (denoted sig(K)) is
sig(T) ∪ sig(A).

An EL-TBox T is in normal form if all concept axioms have one of the following
forms, where C1, C2 ∈ sig(T) and D ∈ sig(T) ∪ {⊥}:

C1 v D, C1 u C2 v D, C1 v ∃r.C2 or ∃r.C1 v D.

Any EL-TBox can be transformed into normal form by introducing new concept names
and by applying the normalization rules displayed in Figure 1 exhaustively, where BCT
is the set containing all the concept names appearing in T and the concept >. These
rules replace the GCI on the left-hand side of the rules with the set of GCIs on the
right-hand side. Clearly, for a knowledge base K = (T ,A) the signature of A may be
changed only during the first of the two normalization steps and the signature of T may
be extended during both of them. The normalization of the knowledge base can be done
in linear time.

The completion algorithm for instance checking is based on the one for classifying
EL-TBoxes introduced in [2]. The completion algorithm constructs a representation
of the minimal model of K. Let K = (T ,A) be a normalized EL-knowledge base,
i.e., with a simple ABox A and a TBox T in normal form. The completion algorithm
works on four kinds of completion sets: S(a), S(a, r), S(C) and S(C, r) for each a ∈
IN(A), C ∈ CN(K) and r ∈ RN(K). These completion sets contain concept names

CR1 If C ∈ S(X), C v D ∈ T , and D 6∈ S(X)
then S(X) := S(X) ∪ {D}

CR2 If C1, C2 ∈ S(X), C1 u C2 v D ∈ T , and D 6∈ S(X)
then S(X) := S(X) ∪ {D}

CR3 If C ∈ S(X), C v ∃r.D ∈ T , and D 6∈ S(X, r)
then S(X, r) := S(X, r) ∪ {D}

CR4 If Y ∈ S(X, r), C ∈ S(Y), ∃r.C v D ∈ T , and
D 6∈ S(X) then S(X) := S(X) ∪ {D}

Fig. 2. EL completion rules

from CN(K). Intuitively, the completion rules make implicit subsumption and instance
relationships explicit in the following sense:

– D ∈ S(C) implies that C vT D,
– D ∈ S(C, r) implies that C vT ∃r.D.
– D ∈ S(a) implies that a is an instance of D w.r.t. K,
– D ∈ S(a, r) implies that a is an instance of ∃r.D w.r.t. K.

SK denotes the set of all completion sets of a normalized K. The completion sets are
initialized for each a ∈ IN(A) and each C ∈ CN(K) as follows:

– S(C) := {C,>} for each C ∈ CN(K),
– S(C, r) := ∅ for each r ∈ RN(K),
– S(a) := {C ∈ CN(A) | C(a) appears in A} ∪ {>}, and
– S(a, r) := {b ∈ IN(A) | r(a, b) appears in A} for each r ∈ RN(K).

Then these sets are extended by applying the completion rules shown in Figure 2 until
no more rule applies. In these rules X and Y can refer to concept or individual names,
while C,C1, C2 and D are concept names and r is a role name. After the completion
has terminated, the following relations hold between an individual a, a role r and named
concepts A and B:

– subsumption relation between A and B from K holds iff B ∈ S(A)
– instance relation between a and B from K holds iff B ∈ S(a),

as shown in [2]. To decide the initial query: K |= D(a), one has to test whether Aq

appears in S(a). In fact, instance queries for all individuals and all named concepts from
the knowledge base can be answered from the resulting completion sets; the completion
algorithm does not only perform one instance check, but complete ABox realization.
The completion algorithm runs in polynomial time in size of the knowledge base.

3.2 The Completion Algorithm for Prob-EL01
c

Before describing the completion algorithm for Prob-EL01
c , we modify the notion of

basic concepts. The set BCT of Prob-EL01
c basic concepts for a knowledge base K is

the smallest set that contains

PR1 If C′ ∈ S∗(X, v) and C′ v D ∈ T , then S∗(X, v) := S∗(X, v) ∪ {D}

PR2 If C1, C2 ∈ S∗(X, v) and C1 u C2 v D ∈ T , then S∗(X, v) := S∗(X, v) ∪ {D}

PR3 If C′ ∈ S∗(X, v) and C′ v ∃r.D ∈ T , then S∗(X, r, v) := S∗(X, r, v) ∪ {D}

PR4 If D ∈ S∗(X, r, v), D′ ∈ Sγ(v)(D, γ(v)) and ∃r.D′ v E ∈ T ,
then S∗(X, v) := S∗(X, v) ∪ {E}

PR5 If P>0A ∈ S∗(X, v), then S∗(X,P>0A) := S∗(X,P>0A) ∪ {A}

PR6 If P=1A ∈ S∗(X, v), v 6= 0, then S∗(X, v) := S∗(X, v) ∪ {A}

PR7 If A ∈ S∗(X, v) and v 6= 0, P>0A ∈ PT0 , then S∗(X, v′) := S∗(X, v
′) ∪ {P>0A}

PR8 If A ∈ S∗(X, 1) and P=1A ∈ PT1 , then S∗(X, v) := S∗(X, v) ∪ {P=1A}

PR9 If r(a, b) ∈ A, C ∈ S(b, 0), ∃r.C v D ∈ T , then S(a, 0) := S(a, 0) ∪ {D}

PR10 If P>0r(a, b) ∈ A, C ∈ S(b, P>0r(a, b)) and ∃r.C v D ∈ T ,
then S(a, P>0r(a, b)) := S(a, P>0r(a, b)) ∪ {D}

PR11 If P=1r(a, b) ∈ A, C ∈ S(b, v) with v 6= 0 and ∃r.C v D ∈ T ,
then S(a, v) := S(a, v) ∪ {D}

Fig. 3. Prob-EL01
c completion rules

1. the concept >,
2. all concept names used in K, and
3. all concepts of the form P>0A or P=1A,

where A is a concept name in K. A Prob-EL01
c -TBox T is in normal form if all its

axioms are of one of the following forms

C v D, C1 u C2 v D, C v ∃r.A, ∃r.A v D,

where C,C1, C2, D ∈ BCT and A is a concept name. The normalization rules in Fig-
ure 1 can also be used to transform a Prob-EL01

c -TBox into this extended normal form.
We still assume that the ABoxA is a simple ABox; that is, for all assertions C(a) inA,
C is a concept name. We denote as PT0 and PT1 the set of all concepts of the form P>0A
and P=1A respectively, occurring in a normalized knowledge baseK. Analogously,RT0
denotes the set of all assertions of the form P>0r(a, b) appearing in K.

The completion algorithm for Prob-EL01
c follows the same idea as the algorithm

for EL, but uses several completion sets to deal with the information of what needs
to be satisfied in the different worlds of a model. Intuitively, we will build a general
description of all models, using the set of worlds V := {0, ε, 1} ∪ PT0 ∪ RT0 , where
the probability distribution µ assigns a probability of 0 to the world 0, and the uniform
probability 1/(|V |−1) to all other worlds. The main idea is that the world 1 will include
all the entailments that hold with probability 1, and ε those that hold with probability
greater than 0.

For each individual name a, concept name A, role name r and world v, we store the
completion sets S0(A, v), Sε(A, v), S0(A, r, v), Sε(A, r, v), S(a, v), and S(a, r, v).

The algorithm initializes the sets as follows for every A ∈ BCT , r ∈ RN(K), and
a ∈ IN(A):

– S0(A, 0) = {>, A} and S0(A, v) = {>} for all v ∈ V \ {0},
– Sε(A, ε) = {>, A} and Sε(A, v) = {>} for all v ∈ V \ {ε},
– S(a, 0) = {>} ∪ {A | A(a) ∈ A}, S(a, v) = {>} for all v 6= 0,
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V , S(a, r, v) = ∅ for v 6= 0,
– S(a, r, 0) = {b ∈ IN(A) | r(a, b) ∈ A}.

These sets are then extended by exhaustively applying the rules shown in Figure 3,
where X ranges over BCT ∪ IN(A), S∗(X, v) stands for S(X, v) if X is an individual
and for S0(X, v), Sε(X, v) if X ∈ BCT , and γ : V → {0, ε} is defined by γ(0) = 0,
and γ(v) = ε for all v ∈ V \ {0}.

This algorithm terminates in polynomial time. After termination, the completion
sets store all the information necessary to decide subsumption of concept names, as
well as checking whether an individual is an instance of a given concept name [15]. For
the former decision, it holds that for every pair A,B of concept names: B ∈ S0(A, 0)
iff A vK B. In the case of instance checking, we have that K |= A(a) iff A ∈ S(a, 0).

4 Computing the k-MSC using Completion

The msc was first investigated for EL-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [13]. It was shown that the msc does not need to exists
for cyclic ABoxes. Consider the ABox A = {r(a, a), C(a)}. The msc of a is then

C u ∃r.(C u ∃r.(C u ∃r.(C u · · ·

and cannot be expressed by a finite concept description. For cyclic TBoxes it has been
shown in [1] that the msc does not need to exists even if the ABox is acyclic.

To avoid infinite nestings in presence of cyclic ABoxes it was proposed in [13] to
limit the role-depth of the concept description to be computed. This limitation yields an
approximation of the msc, which is still a concept description with the input individual
as an instance, but it does not need to be the least one (w.r.t. v) with this property.
We follow this idea to compute approximations of the msc also in presence of general
TBoxes.

The role-depth of a concept description C (denoted rd(C)) is the maximal number
of nested quantifiers of C. This allows us to define the msc with limited role-depth for
EL.

Definition 2 (role-depth bounded EL-msc). LetK =(T ,A) be an EL-knowledge base
and a an individual in A and k ∈ IN. Then the EL-concept description C is the
role-depth bounded EL-most specific concept of a w.r.t. K and role-depth k (written
k-mscK(a)) iff

1. rd(C) ≤ k,
2. K |= C(a), and
3. for all EL-concept descriptions E with rd(E) ≤ k holds: K |= E(a) implies
C vT E.

Notice that in case the exact msc has a role-depth less or equal to k the role-depth
bounded msc is the exact msc.

Example 3. As an example we consider the labeled knowledge baseKex = (Tex,Aex).
In this labeled knowledge base each axiom and assertion is associated with a label
(printed in the same line), which will be used later.

Tex = {∃r.> v A, ax1
B v ∃r.C, ax2
D v E} ax3

and Aex = {B(a), as1
D(b), as2
r(a, b), as3
s(a, c), as4
r(c, a) } as5

Obviously the ABox Aex is cyclic due to the last two assertions. Note, that c is an
instance of A due to as5 and ax1. Now, for k = 3 we obtain the following role-depth
bounded msc for a:

3-mscKex
(a) = B u

∃r.D u
∃s.(A u ∃r.(B u ∃r.D u ∃s.A))).

Next we describe how to obtain the k-msc in general.

4.1 Computing the k-msc in EL by Completion

The computation of the msc relies on a characterization of the instance relation. While
in earlier works this was given by homomorphisms [13] or simulations [1] between
graph representations of the knowledge base and the concept in question, we use the
completion algorithm as such a characterization. Moreover, we construct the msc by
traversing the completion sets to “collect” the msc. More precisely, the set of completion
sets encodes a graph structure, where the sets S(X) are the nodes and the sets S(X, r)
encode the edges. Traversing this graph structure, one can construct an EL-concept. To
obtain a finite concept in the presence of cyclic ABoxes or TBoxes one can limit the
number of edges than can be traversed during this construction.

Definition 4 (traversal concept). Let K be an EL-knowledge base, K′ be its normal-
ized form, SK the completion set obtained from K and k ∈ IN. Then the traversal con-
cept of a named concept A (denoted k-CSK(A)) with sig(A) ⊆ sig(K′) is the concept
obtained from executing the procedure call traversal-concept-c(A, SK, k) shown in Al-
gorithm 1.

The traversal concept of an individual a (denoted k-CSK(a)) with a ∈ sig(K) is the
concept description obtained from executing the procedure call traversal-concept-i(a,
SK, k) shown in Algorithm 1.

The idea is that the traversal concept of an individual yields its msc. However, the
traversal concept contains names from sig(K′) \ sig(K), i.e., concept names that were
introduced during normalization—we call this kind of concept names normalization
names in the following. The returned msc should be formulated w.r.t. the signature
of the original knowledge base, thus the normalization names need to be removed or
replaced.

Algorithm 1 Computation of a role-depth bounded EL-msc.

Procedure k-msc (a,K, k)
Input: a: individual from K; K =(T , A) an EL-knowledge base; k ∈ IN
Output: role-depth bounded EL-msc of a w.r.t. K and k.
1: (T ′, A′) := simplify-ABox(T , A)
2: K′ := (normalize(T ′), A′)
3: SK := apply-completion-rules(K)
4: return Remove-normalization-names (traversal-concept-i(a,SK, k))

Procedure traversal-concept-i (a, S, k)
Input: a: individual name from K; S: set of completion sets; k ∈ IN
Output: role-depth traversal concept (w.r.t. K) and k.
1: if k = 0 then return

d
A ∈ S(a)A

2: else return
d
A ∈ S(a)A ud

r∈RN(K′)

d

A ∈ CN(K′)∩S(a,r)
∃r. traversal-concept-c (A,S, k − 1) u

d

r∈RN(K′)

d

b ∈ IN(K′)∩S(a,r)
∃r. traversal-concept-i (b, S, k − 1)

3: end if

Procedure traversal-concept-c (A, S, k)
Input: A: concept name from K′; S: set of completion sets; k ∈ IN
Output: role-depth bounded traversal concept.
1: if k = 0 then return

d
B∈S(A)B

2: else return
d

B∈S(A)

B u
d

r∈RN(K′)

d

B∈S(A,r)
∃r.traversal-concept-c (B,S, k − 1)

3: end if

Lemma 5. Let K be an EL-knowledge base, K′ its normalized version, SK be the set
of completion sets obtained for K, k ∈ IN a natural number and a ∈ IN(K). If C =

k-CSK(a) and Ĉ is obtained from C by removing the normalization names, then

K′ |= C(a) iff K |= Ĉ(a).

This lemma guarantees that removing the normalization names from the traversal con-
cept preserves the instance relationships. Intuitively, this lemma holds since the con-
struction of the traversal concept conjoins exhaustively all named subsumers and all
subsuming existential restrictions to a normalization name up to the role-depth bound.
Thus removing the normalization name does not change the extension of the conjunc-
tion. The proof can be found in [18].

The procedure k-msc uses an individual a from a knowledge baseK, the knowledge
base K itself and a number k for the role depth-bound as parameters. It first performs
the two normalization steps on K, then applies the completion rules from Figure 2 to
the normalized knowledge base K′, and then stores the set of completion sets in SK.
Afterwards it computes the traversal-concept of a from SK w.r.t. role-depth bound k. In
a post-processing step it applies Remove-normalization-names to the traversal concept
obtained in the previous step.

Example 6. We use the knowledge base from Example 3, to apply the algorithm k-msc
to the individual a from Aex again for k = 3. Since the TBox Tex is in normal form
and the ABox Aex is simple, completion can be applied directly. After completion we
have the following elements in the completion sets:

S(A) = {>, A}
S(B) = {>, A,B}
S(C) = {>, C}
S(D) = {>, D,E}

S(a) = {>, A,B}
S(b) = {>, D,E}
S(c) = {>, A}

S(B, r) = {>, C}
S(a, r) = {>, D,E}
S(a, s) = {>, A}
S(c, r) = {>, A}

The here omitted completion sets do not change after initialization and are empty. We
obtain:

k-msc(a,Kex, 3) = > uA uB u
∃r.(> uD u E) u
∃s.(> uA u ∃r.(> uA uB u ∃r.(> uD u E) u ∃s.(> uA))).

The resulting concept description is larger than the k-msc derived in Example 3, since
all the elements from the completion set are conjoined to the result concept description
in traversal-concept-i and traversal-concept-c. However, it is easy to see that the result
is a concept description equivalent to the k-msc w.r.t. Kex.

Obviously, the concept description returned from the procedure k-msc has a role-
depth less or equal to k. Thus the first condition of Definition 2 is fulfilled. As we prove
next, the concept description obtained from the procedure k-msc fulfills also the second
condition from Definition 2.

Lemma 7. Let K = (T ,A) be an EL-knowledge base and a an individual in A and
k ∈ IN. If C = k-msc(a,K, k), then K |= C(a).

The claim can be shown by induction on k. Each name in C is from a completion set of
(1) an individual or (2) a concept, which is connected via existential restrictions to an
individual. The full proof can be found in [18].

Lemma 8. Let K = (T ,A) be an EL-knowledge base, a an individual appearing in
A, and k ∈ IN. If C = k-msc(a,K, k), then for every EL-concept description E with
rd(E) ≤ k the following holds: K |= E(a) implies C vT E.

Again, the full proof can be found in [18]. Together, these two Lemmas yield the cor-
rectness of the overall procedure.

Theorem 9. Let K = (T ,A) be an EL-knowledge base and a an individual in A and
k ∈ IN.
Then k-msc(a,K, k) ≡ k-mscK(a).

It is important to notice that, while the completion sets can be computed in polynomial
time, the k-msc can grow exponential in the size of the knowledge base. In addition to
that and as the example already indicated, the concept description obtained from k-msc
contains a lot of redundant information and thus is quite larger. However for practical
usability it is necessary to rewrite the concept to an equivalent, but smaller one. A
heuristic for this has been proposed in [16]. The algorithm and the rewriting heuristic
are implemented in the GEL system1.

1 See http://gen-el.sourceforge.net/

4.2 Computing the k-msc in Prob-EL01
c by Completion

The role-bounded msc for a Prob-EL01
c -knowledge base can be computed in a similar

fashion to the one described before for EL. The knowledge base is first normalized and
the completion procedure is executed to obtain all the completion sets.

In order to compute the msc, we simply accumulate all concepts to which the in-
dividual a belongs, given the information stored in the completion sets. This process
needs to be done recursively in order to account for both, the successors of a explicitly
encoded in the ABox, and the nesting of existential restrictions masked by normaliza-
tion names. In the following we use the abbreviation S>0(a, r) :=

⋃
v∈V \{0} S(a, r, v).

We then define traversal-concept-i(a,S, k) as
l

B∈S(a,0)

B u
l

r∈RN(K′′)

(l

r(a,b)∈K′′

∃r.traversal-concept-i(b, S, k − 1) u

l

B∈CN(K′′)∩S(a,r,0)

∃r.traversal-concept-c(B,S, k − 1) u

l

B∈CN(K′′)∩S(a,r,1)

P=1(∃r.traversal-concept-c(B,S, k − 1)) u

l

B∈CN(K′′)∩S>0(a,r)

P>0(∃r.traversal-concept-c(B,S, k − 1))
)
,

where traversal-concept-c(B, S, k + 1) is
l

C∈S0(B,0)

B u
l

r∈RN

(l

C∈S0(B,r,0)

∃r.traversal-concept-c(C,S, k) u

l

C∈S0(B,r,1)

P=1(∃r.traversal-concept-c(C,S, k)) u

l

C∈S>0
0 (B,r)

P>0(∃r.traversal-concept-c(C,S, k))
)

and traversal-concept-c(B,S, 0) =
d
C∈S0(B,0)

B. Once the traversal concept has been
computed, it is possible to remove all normalization names preserving the instance re-
lation, which gives us the msc in the original signature of K. As in the case for EL, the
proof of correctness of this method can be found in [18].

Theorem 10. Let K a Prob-EL01
c -knowledge base, a ∈ IN(A), and k ∈ IN; then

Remove-normalization-names(traversal-concept-i(a,S, k)) ≡ k-mscK(a).

5 Computing Explanations for Instance Relations in Prob-EL01
c

By definition, an individual a is always an instance of its (role-depth bounded) msc.
However, it is not always obvious why this is the case. We thus provide a method for
describing the axiomatic causes for a to be an instance of a concept name A.

Definition 11 (MinA). Let K = (T ,A) be an Prob-EL01
c -knowledge base, a an indi-

vidual in A and A a concept name such that K |= A(a). A minimal axiom set (MinA)
for K w.r.t. A(a) is a sub-knowledge base K′ = (S,B), with S ⊆ T ,B ⊆ A such that

– K′ |= A(a) and
– for all strict subsets S ′ ⊂ S,B′ ⊂ B, it holds that (i) (S ′,B) 6|= A(a) and

(ii) (S,B′) 6|= A(a).

Intuitively, a MinA is a sub-ontology that still entails the instance relationship be-
tween a and A, and that is minimal (w.r.t. set inclusion) with this property. As the
following example illustrates there may be several MinAs for one consequence.

Example 12. Continuing with our running example, we have that Kex |= A(a), and
there are two MinAs for Kex w.r.t. this instance relationship, namely

K1 = ({∃r.> v A,B v ∃r.C}, {B(a)}), and
K2 = ({∃r.> v A}, {r(a, b)}).

It is a simple task to verify that indeed these two knowledge bases entail A(a), and that
they satisfy the minimality requirement w.r.t. set inclusion.

The process of computing MinAs is called pinpointing. As it has been done before
for other kinds of reasoning problems, we show that the completion algorithm for Prob-
EL01

c can be modified into a pinpointing algorithm. Rather than directly computing
the MinAs, we will construct a monotone Boolean formula—called the pinpointing
formula—that encodes all these MinAs. To define this formula, we first assume that
every axiom and every assertion α in K is labeled with a unique propositional variable
lab(α) and denote as lab(K) the set of all propositional variables labeling axioms and
assertions in K. A monotone Boolean formula over lab(K) is a Boolean formula that
uses only variables from lab(K), the binary connectives conjunction (∧) and disjunction
(∨), and the constant t (for “truth”). As customary in propositional logic, we identify
a valuation with the set of propositional variables that it makes true. Finally, given a
valuation V ⊆ lab(K), we define

KV := ({α ∈ T | lab(α) ∈ V}, {α ∈ A | lab(α) ∈ V}).

Definition 13 (pinpointing formula). Given a Prob-EL01
c -knowledge baseK = (T ,A),

an individual name a occurring in A and a concept name A, the monotone Boolean
formula φ over lab(K) is a pinpointing formula for K w.r.t. A(a) if for every valuation
V ⊆ lab(K) it holds that

KV |= A(a) iff V satisfies φ.

Example 14. Recall that we have given every axiom and assertion of Kex a unique
label, depicted in Example 3. Hence, for instance lab(∃r.> v A) = ax1. The following
is a pinpointing formula for Kex w.r.t. A(a):

ax1 ∧ (as3 ∨ (ax2 ∧ as1)).

The MinAs for an instance relation can be obtained from the pinpointing formula φ
by computing the minimal valuations that satisfy φ.

Proposition 15. If φ is a pinpointing formula for K w.r.t. A(a), then the set

{KV | V is a minimal valuation satisfying φ}

is the set of all MinAs for K w.r.t. A(a).

We take advantage of this proposition and describe an algorithm that computes a
pinpointing formula for a given instance relationship.2 If one is interested in the specific
MinAs, it is only necessary to find the minimal valuations that satisfy this formula. This
can be done by e.g. bringing the pinpointing formula to disjunctive normal form first
and then removing all the non-minimal disjuncts. In general, a pinpointing formula
may yield a more compact representation of the set of all MinAs, and hence be of more
practical use.

We will use a so-called glass-box approach for computing pinpointing formulas
for all the instance relationships that follow from a knowledge base K. The idea is
to extend the completion algorithm for deciding instances in Prob-EL01

c with a tracing
mechanism that encodes all the axiomatic causes for a consequence—in this case, either
a subsumption or an instance relation—to follow. Since EL is a sub-logic of Prob-EL01

c

and classification can be reduced to instance checking,3 our approach can also find
the pinpointing formulas for the different subsumption relations that follow from the
knowledge base. Thus, we generalize previous results on axiom-pinpointing in EL [9]
in two ways by developing explanations also for the entailed instance relationships and
include the probabilistic concept constructors from Prob-EL01

c .
In order to describe the pinpointing algorithm, we assume first that the knowledge

baseK is already in normal form; recall that our example knowledge baseKex is in nor-
mal form. The pinpointing extension of the completion algorithm for Prob-EL01

c also
stores completion sets S(a, v), S(a, r, v), S0(C, v), S0(A, r, v), Sε(A, v), and, Sε(A, r, v)
for the different individual-, and role names a, r, respectively, and basic concept A ap-
pearing in the knowledge base. However, the elements of these sets are not only con-
cept names from CN(K) as in Section 3, but rather pairs of the form (D,ϕ), where
D ∈ CN(K) and ϕ is a monotone Boolean formula. Intuitively, (D,ϕ) ∈ S(C) means
that D is a subsumer of C w.r.t. K, and ϕ stores information of the axioms responsible
for this fact. For the other three kinds of completion sets the idea is analogous.

The pinpointing algorithm initializes these completion sets as follows: for every
A ∈ BCT , r ∈ RN(K), and a ∈ IN(A)

– S0(A, 0) = {(>, t), (A, t)} and S0(A, v) = {(>, t)} for all v ∈ V \ {0},
– Sε(A, ε) = {(>, t), (A, t)} and Sε(A, v) = {(>, t)} for all v ∈ V \ {ε},
– S(a, 0) = {(>, t)} ∪ {(A, p) | A(a) ∈ A, p = lab(A(a))},
– S(a, v) = {(>, t)} for all v 6= 0,
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V , S(a, r, v) = ∅ for v 6= 0,
– S(a, r, 0) = {(b, p) ∈ IN(A) | r(a, b) ∈ A, p = lab(A(a))}.

2 In fact, our method produces pinpointing formulas for all instance relationships that follow
from the knowledge base at once.

3 Indeed, A vK B iff K∪ {A(a)} |= B(a), where a is an individual name not appearing in K.

PpR1 If (C′, ϕ) ∈ S∗(X, v), α = C′ v D ∈ T , and lab(α) = p
then S∗(X, v) := S∗(X, v) d (D,ϕ ∧ p)

PpR2 If (C1, ϕ1), (C2, ϕ2) ∈ S∗(X, v), α = C1 u C2 v D ∈ T , and lab(α) = p
then S∗(X, v) := S∗(X, v) d (D,ϕ1 ∧ ϕ2 ∧ p)

PpR3 If (C′, ϕ) ∈ S∗(X, v), α = C′ v ∃r.D ∈ T , and lab(α) = p
then S∗(X, r, v) := S∗(X, r, v) d (D,ϕ ∧ p)

PpR4 If (D,ϕ) ∈ S∗(X, r, v), (D′, ϕ′) ∈ Sγ(v)(D, γ(v)), α = ∃r.D′ v E ∈ T , and
lab(α) = p then S∗(X, v) := S∗(X, v) d (E,ϕ ∧ ϕ′ ∧ p)

PpR5 If (P>0A,ϕ) ∈ S∗(X, v), then S∗(X,P>0A) := S∗(X,P>0A) d (A,ϕ)

PpR6 If (P=1A,ϕ) ∈ S∗(X, v), v 6= 0, then S∗(X, v) := S∗(X, v) d (A,ϕ)

PpR7 If (A,ϕ) ∈ S∗(X, v) and v 6= 0, P>0A ∈ PT0
then S∗(X, v′) := S∗(X, v

′) d (P>0A,ϕ)

PpR8 If (A,ϕ) ∈ S∗(X, 1) and P=1A ∈ PT1 , then S∗(X, v) := S∗(X, v) d (P=1A,ϕ)

PpR9 If α1 = r(a, b) ∈ A, (C,ϕ) ∈ S(b, 0), α2 = ∃r.C v D ∈ T ,
lab(α1) = p1, and lab(α2) = p2 then S(a, 0) := S(a, 0) d (D,ϕ ∧ p1 ∧ p2)

PpR10 If α1 = P>0r(a, b) ∈ A, (C,ϕ) ∈ S(b, P>0r(a, b)), α2 = ∃r.C v D ∈ T ,
lab(α1) = p1, and lab(α2) = p2
then S(a, P>0r(a, b)) := S(a, P>0r(a, b)) d (D,ϕ ∧ p1 ∧ p2)

PpR11 If α1 = P=1r(a, b) ∈ A, (C,ϕ) ∈ S(b, v) with v 6= 0, α2 = ∃r.C v D ∈ T ,
lab(α1) = p1, and lab(α2) = p2 then S(a, v) := S(a, v) d (D,ϕ ∧ p1 ∧ p2)

Fig. 4. Prob-EL01
c completion rules for axiom-pinpointing

For describing the extended completion rules, we need some more notation. For a set
S and a pair (D,ϕ), the operation S d (D,ϕ) is defined as follows: if there exists a ψ
such that (D,ψ) ∈ S, then S d (D,ϕ) := S \ {(D,ψ)} ∪ {(D,ψ ∨ ϕ)}; otherwise,
S d (D,ϕ) := S ∪ {(D,ϕ)}. In other words, if the concept name D already belongs
to S with some associated formula ψ, we modify the formula by adding ϕ to it as a
disjunct; otherwise, we simply add the pair (D,ϕ) to S.

The completion sets are then extended by exhaustively applying the rules shown in
Figure 4, where X ranges over BCT ∪ IN(A), S∗(X, v) stands for S(X, v) if X is an
individual and for S0(X, v), Sε(X, v) if X ∈ BCT , and γ : V → {0, ε} is defined by
γ(0) = 0, and γ(v) = ε for all v ∈ V \ {0}.

To ensure termination of this algorithm, the completion can only be applied if their
application modifies at least one of the completion sets; that is, if either a new pair is
added, or the second element of an existing pair is modified to a (strictly) more general
Boolean formula. Under this applicability condition, this modified algorithm always
terminates, although not necessarily in polynomial time. In fact, every completion set
can contain at most as many pairs as there are concept names in K, and hence polyno-
mially many. Whenever the formula of a pair is changed, it is done so by generalizing
it in the sense that it has more models than the previous one. As there are exponentially

many models, such changes can only be done an exponential number of times. Thus,
in total we can have at most exponentially many rule applications, which take each at
most exponential time; that is, the pinpointing algorithm runs in exponential time in the
size of K.

As stated before, these completion sets make the subsumption and instance rela-
tionships explicit, together with a formula that describe which axioms are responsible
for each of these relationships. It is easy to see that the concepts appearing in the com-
pletion sets are exactly the same that will be obtained by applying the standard com-
pletion rules from Section 3. We thus know that A vK B iff there is some ψ with
(B,ψ) ∈ S0(A, 0) and K |= A(a) iff (A,ψ) ∈ S(a, 0) for some monotone Boolean
formula ψ. Moreover, the pinpointing algorithm maintains the following invariants:

– if (B,ψ) ∈ S0(A, 0), then for every valuation V satisfying ψ, A vKV B,
– if (A,ψ) ∈ S(a, 0), then for every valuation V satisfying ψ, KV |= A(a).

It can also be shown that when the algorithm has terminated, the converse implications
also hold; this is a consequence of the results from [8].

Theorem 16. Given a Prob-EL01
c -knowledge base in normal form, the pinpointing al-

gorithm terminates in exponential time. After termination, the following holds for every
concept name A and individual name a appearing in K:

if (A,ψ) ∈ S(a, 0), then ψ is a pinpointing formula for K w.r.t. A(a).

We have so far described how to find the MinAs of a normalized knowledge base
w.r.t. instance and subsumption relations. We now show how to extend this method to
deal also with non-normalized knowledge bases; that is, to obtain the MinAs referring to
the original axioms of the knowledge base and not to their normalized versions. Before
going into the details, it is worth noticing that the relationship between original axioms
and normalized axioms is many-to-many: one axiom in the original knowledge base
may produce several axioms in the normalized one, while one axiom in the normalized
knowledge base can be due to the presence of several axioms from the original one.
An example of the latter can be given by the two axioms A v B, A v B u C. The
normalization rules change these axioms into A v B,A v C, but the first axiom has
two sources; that is, it will appear in the normalized knowledge base whenever any of
the two original axioms is present.

Let K̂ be an arbitrary Prob-EL01
c -knowledge base andK its normalized version. If φ

is a pinpointing formula for K w.r.t. an instance or subsumption relation, that uses only
basic concepts appearing in K̂, then we can modify φ into a pinpointing formula for the
original knowledge base K̂ as follows. As in the case of normalized knowledge bases,
each axiom in K̂ is associated with a unique propositional variable. Each normalized
axiom in K has a finite number of original axioms that created it—at most as many
as there were in the original knowledge base. We modify the pinpointing formula φ
by replacing the propositional formula associated to each normalized axiom by the
disjunction of the labels of all its sources. We thus obtain a new pinpointing formula
that speaks of the original ontology K̂. In the above example, let lab(A v B) = p1
and lab(A v B u C) = p2, and suppose that the labels of the normalized ontology
are lab(A v B) = q1, lab(A v C) = q2, and that the knowledge base also contains

an assertion A(a) with label q3. The pinpointing formula for the normalized ontology
w.r.t.B(a) is q1∧q3. For the original ontology, this formula is changed to (p1∨p2)∧q3.

It is worth commenting on the execution time of the pinpointing algorithm and the
complexity of finding all MinAs. Recall that computing all MinAs is crucial when re-
solving an unwanted consequence of a knowledge base. As described before, the algo-
rithm takes exponential time to compute all instance and subsumption relations between
concept names and individual names, with their respective pinpointing formulas. These
formulas may be exponential in the size of the knowledge base K, however finding one
or all the minimal valuations satisfying a formula is only exponential on the number
of propositional variables appearing in that formula, hence, we can compute one or all
MinAs from each of these pinpointing formulas in exponential time in the size of K.
Since classification of an EL TBox is a special case of our setting—where the ABox A
is empty and no probabilistic concepts are used—our algorithm yields an optimal up-
per bound on the complexity of pinpointing for Prob-EL01

c . Indeed, it has been shown
that finding all MinAs for one subsumption relation in EL requires already exponential
time [17]. Additionally, other kinds of tasks like finding a MinA of least cardinality
or the first MinA w.r.t. some underlying ordering, can be also solved by computing
the related valuations over the pinpointing formula; this is in particular beneficial, as
the various optimizations developed in the SAT community, and in particular the very
efficient modern SAT/SMT-solvers, can be exploited.

6 Conclusions

In this paper we have presented a practical method for computing the role-depth bounded
msc in EL- and in Prob-EL01

c - w.r.t. a general TBox or cyclic ABoxes. Our approach is
based on the completion sets that are computed during realization of a knowledge base.
Thus, any of the available implementations of the EL completion algorithm, as for in-
stance JCEL4 [16] can be easily extended to an implementation of the (approximative)
msc computation algorithm – as it is provided in the GEL system5. We also showed that
the same idea can be adapted for the computation of the msc in the probabilistic DL
Prob-EL01

c .
Together with the completion-based computation of role-depth bounded (least) com-

mon subsumers given in [19] these results complete the bottom-up approach for general
EL- and Prob-EL01

c -knowledge bases. This approach yields a practical method to com-
pute commonalities for differing observations regarding individuals. To the best of our
knowledge this has not been investigated for DLs that can express uncertainty.

We have also applied the ideas of axiom-pinpointing to compute explanations for
instance relationships that follow from a Prob-EL01

c -knowledge base. To the best of
our knowledge this is also the first time that axiom-pinpointing has been applied to
instance relationships, even for crisp DLs. The glass-box approach proposed modifies
the computation of the completion sets to include an encoding of the axiomatic causes
for a concept to be added to each set. Understanding the causes for some unexpected
instance relationships is an important first step towards correcting a knowledge base,

4 http://jcel.sourceforge.net/
5 http://gen-el.sourceforge.net/

specially in the case of automatically generated ones, as done through the bottom-up
approach described before. In general, finding out the precise axioms responsible for an
unwanted consequence is a very hard task, even for experts, due to the large number of
axioms available. When dealing with uncertainty, the difficulty grows, as the probabil-
ities may interact in unexpected ways. Thus, being able to explain the consequences of
a Prob-EL01

c ontology automatically is of special importance.

References

1. F. Baader. Least common subsumers and most specific concepts in a description logic with
existential restrictions and terminological cycles. In G. Gottlob and T. Walsh, editors, Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), pages 325–330. Morgan
Kaufmann, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK, 2005. Morgan-Kaufmann
Publishers.

3. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark and P. F.
Patel-Schneider, editors, In Proc. of the OWLED Workshop, 2008.

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

5. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in description
logics with existential restrictions. In T. Dean, editor, Proc. of the 16th Int. Joint Conf. on
Artificial Intelligence (IJCAI-99), pages 96–101, Stockholm, Sweden, 1999. Morgan Kauf-
mann, Los Altos.

6. F. Baader, C. Lutz, and A.-Y. Turhan. Small is again Beautiful in Description Logics. KI –
Künstliche Intelligenz, 24(1):25–33, April 2010.

7. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 20(1):5–34, 2010. Special Issue: Tableaux and Analytic Proof Methods.

8. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 20(1):5–34, 2010. Special Issue: Tableaux and Analytic Proof Methods.

9. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description logic EL+.
In Proc. of the 30th German Annual Conf. on Artificial Intelligence (KI’07), volume 4667 of
Lecture Notes In Artificial Intelligence, pages 52–67, Osnabrück, Germany, 2007. Springer.

10. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pinpointing in the
description logic EL+. In Proceedings of the International Conference on Representing and
Sharing Knowledge Using SNOMED (KR-MED’08), Phoenix, Arizona, 2008.

11. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL web ontology language reference. W3C Recommendation,
February 2004. http://www.w3.org/TR/owl-ref/.

12. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of OWL DL
entailments. In The Semantic Web, 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007,
volume 4825 of Lecture Notes in Computer Science, pages 267–280, 2007.

13. R. Küsters and R. Molitor. Approximating most specific concepts in description logics with
existential restrictions. AI Communications, 15(1):47–59, 2002.

14. T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description logics
for the semantic web. J. Web Sem., 6(4):291–308, 2008.

15. C. Lutz and L. Schröder. Probabilistic description logics for subjective probabilities. In
F. Lin and U. Sattler, editors, Proc. of the 12th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-10), 2010.

16. J. Mendez, A. Ecke, and A.-Y. Turhan. Implementing completion-based inferences for the
EL-family. In R. Rosati, S. Rudolph, and M. Zakharyaschev, editors, Proc. of the 2011
Description Logic Workshop (DL 2011), volume 745. CEUR, 2011.

17. R. Peñaloza and B. Sertkaya. On the complexity of axiom pinpointing in the el family
of description logics. In F. Lin, U. Sattler, and M. Truszczynski, editors, Proceedings of the
Twelfth International Conference on Principles of Knowledge Representation and Reasoning
(KR 2010). AAAI Press, 2010.

18. R. Peñaloza and A.-Y. Turhan. Completion-based computation of most specific concepts
with limited role-depth for EL and prob-EL01. LTCS-Report LTCS-10-03, Chair f. Automata
Theory, Inst. for Theoretical Computer Science, TU Dresden, Germany, 2010.

19. R. Peñaloza and A.-Y. Turhan. Role-depth bounded least common subsumers by completion
for EL- and Prob-EL-TBoxes. In V. Haarslev, D. Toman, and G. Weddell, editors, Proc. of
the 2010 Description Logic Workshop (DL’10), 2010.

20. R. Peñaloza and A.-Y. Turhan. Towards approximative most specific concepts by completion
for EL01 with subjective probabilities. In T. Lukasiewicz, R. Peñaloza, and A.-Y. Turhan, ed-
itors, Proceedings of the First International Workshop on Uncertainty in Description Logics
(UniDL’10), 2010.

21. R. Peñaloza and A.-Y. Turhan. A practical approach for computing generalization inferences
in EL. In M. Grobelnik and E. Simperl, editors, Proc. of the 8th European Semantic Web
Conf. (ESWC’11), Lecture Notes in Computer Science. Springer, 2011.

22. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In G. Gottlob and T. Walsh, editors, Proc. of the 18th Int. Joint
Conf. on Artificial Intelligence (IJCAI-03), pages 355–362, Acapulco, Mexico, 2003. Mor-
gan Kaufmann, Los Altos.

23. K. Spackman. Managing clinical terminology hierarchies using algorithmic calculation of
subsumption: Experience with snomed-rt. Journal of the American Medical Informatics
Assoc., 2000. Fall Symposium Special Issue.

24. T. Springer and A.-Y. Turhan. Employing description logics in ambient intelligence for mod-
eling and reasoning about complex situations. Journal of Ambient Intelligence and Smart
Environments, 1(3):235–259, 2009.

25. W3C OWL Working Group. OWL 2 web ontology language document overview.
W3C Recommendation, 27th October 2009. http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/.

