Skip to main content

Dynamic Task Parallelism with a GPU Work-Stealing Runtime System

  • Conference paper
Languages and Compilers for Parallel Computing (LCPC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7146))

Abstract

NVIDIA’s Compute Unified Device Architecture (CUDA) enabled GPUs become accessible to mainstream programming. Abundance of simple computational cores and high memory bandwidth make GPUs ideal candidates for data parallel applications. However, its potential for executing applications that combine task and data parallelism has not been explored in detail. CUDA does not provide a viable interface for creating dynamic tasks and handling load balancing issues. Any support for such has to be orchestrated entirely by the CUDA programmer today.

In this work, we introduce a finish-async style API to GPU device programming as first step towards task parallelism. We present the design and implementation details of our new intra-device inter-SM work-stealing runtime system. We compare performance results using our runtime to direct execution on the device as well as past work on GPU runtimes. Finally, we show how this runtime can be targeted by extensions to the high-level CnC-CUDA programming model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Supercomputing Center in Tianjin, Tianhe-1A (November 2010), http://www.top500.org/system/details/10587

  2. Nvidia, CUDA (2011), http://developer.nvidia.com/cuda-action-research-apps

  3. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA, NY, USA, pp. 519–538 (2005)

    Google Scholar 

  4. Grossman, M., Simion Sbîrlea, A., Budimlić, Z., Sarkar, V.: CnC-CUDA: Declarative Programming for GPUs. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 230–245. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Duran, A., et al.: Barcelona openmp tasks suite: A set of benchmarks targeting the exploitation of task parallelism in openmp. In: ICPP 2009, pp. 124–131 (2009)

    Google Scholar 

  6. Cederman, D., Tsigas, P.: GPU-quicksort: A practical quicksort algorithm for graphics processors. J. Exp. Algorithmics 14 (January 2010)

    Google Scholar 

  7. The Java Grande Forum benchmark suite, http://www.epcc.ed.ac.uk/javagrande/javag.html

  8. Lastras-Montano, M.A., et al.: Dynamic work scheduling for GPU systems. In: International Workshop of GPUs and Scientific Applications, GPUScA 2010 (2010)

    Google Scholar 

  9. X10 2.1 CUDA, http://x10.codehaus.org/x10+2.1+cuda

  10. Cederman, D., Tsigas, P.: On sorting and load balancing on GPUs. SIGARCH Comput. Archit. News 36 (June 2009)

    Google Scholar 

  11. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform for task scheduling on heterogeneous multicore architectures. Concurr. Comput.: Pract. Exper. 23, 187–198 (2011)

    Article  Google Scholar 

  13. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ortí, E.S.: An Extension of the StarSs Programming Model for Platforms with Multiple GPUs. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 851–862. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Opencl 1.1, http://www.khronos.org/opencl/

  15. Habanero-C, https://wiki.rice.edu/confluence/display/habanero/habanero-c

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, S., Grossman, M., Sbîrlea, A., Sarkar, V. (2013). Dynamic Task Parallelism with a GPU Work-Stealing Runtime System. In: Rajopadhye, S., Mills Strout, M. (eds) Languages and Compilers for Parallel Computing. LCPC 2011. Lecture Notes in Computer Science, vol 7146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36036-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36036-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36035-0

  • Online ISBN: 978-3-642-36036-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics