
Logic of Non-Monotonic Interactive Proofs∗

(Formal Theory of Temporary Knowledge Transfer)

Simon Kramer

simon.kramer@a3.epfl.ch

October 25, 2018

Abstract

We propose a monotonic logic of internalised non-monotonic or instant
interactive proofs (LiiP) and reconstruct an existing monotonic logic of
internalised monotonic or persistent interactive proofs (LiP) as a minimal
conservative extension of LiiP. Instant interactive proofs effect a fragile
epistemic impact in their intended communities of peer reviewers that
consists in the impermanent induction of the knowledge of their proof goal
by means of the knowledge of the proof with the interpreting reviewer:
If my peer reviewer knew my proof then she would at least then (in that
instant) know that its proof goal is true. Their impact is fragile and
their induction of knowledge impermanent in the sense of being the case
possibly only at the instant of learning the proof. This accounts for the
important possibility of internalising proofs of statements whose truth
value can vary, which, as opposed to invariant statements, cannot have
persistent proofs. So instant interactive proofs effect a temporary transfer
of certain propositional knowledge (knowable ephemeral facts) via the
transmission of certain individual knowledge (knowable non-monotonic
proofs) in distributed systems of multiple interacting agents.

Keywords: agents as proof- and signature-checkers; constructive Kripke-
semantics; interpreted communication; multi-agent distributed systems;
interactive and oracle computation; proofs as sufficient evidence.

1 Introduction

The subject matter of this paper is modal logic of interactive proofs, i.e., a
novel logic of non-monotonic or instant interactive proofs (LiiP) as well as an
existing logic of monotonic or persistent interactive proofs (LiP) [Kra12]. (We
abbreviate interactivity-related adjectives with lower-case letters.) The goal

∗Work funded with Grant AFR 894328 from the National Research Fund Luxembourg
cofunded under the Marie-Curie Actions of the European Commission (FP7-COFUND), and
finalised during an invited stay at the Institute of Mathematical Sciences, Chennai, India.

1

ar
X

iv
:1

20
8.

18
42

v2
 [

cs
.L

O
]

 3
1

Ja
n

20
13

here is to define LiiP axiomatically and semantically as well as to reconstruct
LiP as a minimal conservative extension of LiiP. So for distributed and multi-
agent systems, whose states and thus truth of statements about states can vary,
proof non-monotonicity (as in LiiP) is in a logical sense more primitive than
proof monotonicity (as in LiP). In contrast, proof monotonicity is perhaps more
intuitive than proof non-monotonicity within formal physical theories validated
by experiment and surely within mathematical theories known to be consistent.

Rephrasing [Mak05, Section 1.1] model-theoretically, the proof modality of
LiiP internalises a non-monotonic notion of proof in the sense that it can happen
that a proposition φ can be proved with a (non-monotonic) proof M to an agent
a in some system state s, but not anymore in some subsequent state s′ in which
a will have learnt additional or lost previously learnt data M ′. See Appendix B
for formal application examples. Like in LiP [Kra12], we understand interactive
proofs as sufficient evidence to intended resource-unbounded (though unable to
guess) proof- and signature-checking agents (designated verifiers).

Instant interactive proofs effect a fragile epistemic impact in their intended
communities C of peer reviewers that consists in the impermanent induction of
the (propositional) knowledge (not only belief) of their proof goal φ by means
of the (individual) knowledge of the proof (the sufficient evidence) M with the
designated interpreting reviewer a : If a knew my proof M of φ then she would
at least then (in that instant) know that the proof goal φ is true. By individual
knowledge we mean knowledge in the sense of the transitive use of the verb “to
know,” here to know a message, such as the plaintext of an encrypted message.
Notation: a kM for “agent a knows message M” (cf. Definition 1). This is the
classic concept of knowledge de re (“of a thing”) made explicit for messages,
meaning taking them apart (analysing) and putting them together (synthesis-
ing). Whereas by propositional knowledge we mean knowledge in the sense of
the use of the verb “to know” with a clause, here to know that a statement
is true, such as that the plaintext of an encrypted message is (individually)
unknown to potential adversaries. Notation: Ka(φ) for “agent a knows that φ
(is true)” (cf. Fact 1). This is the classic concept of knowledge de dicto (“of a
fact”).1 (We distinguish individual and propositional knowledge with respect
to the “object” of knowledge [the known], i.e., with respect to a message and
clause, respectively. However, individual as well as propositional knowledge can
both be individual with respect to the subject of knowledge [the knower], i.e., an
[individual] agent.) With respect to belief, propositional knowledge essentially
differs in that it is necessarily true whereas belief is possibly false, as commonly
known and accepted [MV07]. The epistemic impact of our instant interactive
proofs is fragile and their induction of knowledge impermanent in the sense of
being the case possibly only at the instant of learning the proof. This accounts
for the important possibility of internalising proofs of statements, whose truth
value can vary, such as statements about system states, which, as opposed to
invariant statements, cannot have persistent proofs. Proofs must (not) prove

1 In a first-order setting, knowledge de re and de dicto can be related in Barcan-laws
[KR10].

2

true (false) statements! Standard examples of statements of variable truth value
are contingent (e.g., elementary) facts (expressed as atomic formulas) and char-
acteristic formulas of states [GO07].

In contrast [Kra12], the epistemic impact of persistent interactive proofs is
durable in the sense of being the case necessarily at the instant of learning the
proof and henceforth, where time can be present implicitly (such as here) or
explicitly (in future work). In other words, when a persistent proof can prove a
certain statement, the proof will always be able to robustly do so, independently
of whether or not more messages (data) than just the proof are learnt.

In sum, our instant interactive proofs effect a transfer of propositional knowl-
edge (knowable ephemeral facts) via the transmission of certain individual knowl-
edge (knowable non-monotonic proofs) in multi-agent distributed systems. That
is, L(i)iP is a formal theory of (temporary) knowledge transfer. The overarch-
ing motivation for L(i)iP is to serve in an intuitionistic foundation of interactive
computation. See [Kra12] for a programmatic and methodological motivation.

1.1 Contribution

Our technical contribution in this paper is fourfold. For LiiP, we provide an ad-
equate axiomatisation of its oracle-computational and knowledge-constructive
Kripke-semantics, and a minimal conservative extension LiiP+ with a single
monotonicity axiom schema making LiiP+ isomorphic to LiP. For LiP, we pro-
vide a substantially simplified semantic interface and a slightly simplified ax-
iomatisation, which is a nice side-effect of obtaining LiiP+.

The Kripke-semantics for LiiP (like for LiP [Kra12]) is knowledge-constructive
in the sense that (cf. Fact 1) our interactive proofs induce the knowledge of their
proof goal (say φ) in their intended interpreting agents (say a) such that the in-
duced knowledge (Ka(φ)) is knowledge in the sense of the standard modal logic
of knowledge S5 [FHMV95, MV07, HR10]. Note that our agents here are still
resource-unbounded with respect to individual and propositional knowledge,
though they are still unable to guess that knowledge. (Recall that S5-agents
are resource-unbounded, i.e., logically omniscient.) Thus we give an epistemic
explication of proofs, i.e., an explication of proofs in terms of the epistemic im-
pact that they effect in their intended interpreting agents (i.e., the knowledge
of their proof goal). Technically, we endow the proof modality with a standard
Kripke-semantics [BvB07], but whose accessibility relation MRCa we first de-
fine constructively in terms of elementary set-theoretic constructions,2 namely
as MRCa , and then match to an abstract semantic interface in standard form
(which abstractly stipulates the characteristic properties of the accessibility re-
lation [Fit07]). We will say that MRCa exemplifies (or realises) MRCa . (A simple
example of a constructive definition of a modal accessibility is the well-known
definition of epistemic accessibility as state indistinguishability defined in terms

2in loose analogy with the set-theoretically constructive rather than the purely axiomatic
definition of numbers [Fef89] or ordered pairs (e.g., the now standard definition by Kuratowski,
and other well-known definitions [Mos06])

3

of equality of state projections [FHMV95].) Recall, set-theoretically construc-
tive is different from intuitionistically constructive! The Kripke-semantics for
LiiP is oracle-computational in the sense that (cf. Definition 3) the individual
proof knowledge (say M) can be thought of as being provided by an imaginary
computation oracle, which thus acts as a hypothetical provider and imaginary
epistemic source of our interactive proofs. The semantic interface of LiP here is
simplified in the sense that we are able to eliminate all a posteriori constraints
from the semantic interface in [Kra12] and thus to manage with only standard,
a priori constraints, i.e., stipulations.

1.2 Roadmap

In the next section, we introduce our Logic of instant interactive Proofs (LiiP)
axiomatically by means of a compact closure operator that induces the Hilbert-
style proof system that we seek and that allows the simple generation of applica-
tion-specific extensions of LiiP (cf. Appendix B). We then prove some useful
(further-used) deducible laws within the obtained system. Next, we introduce
the set-theoretically constructive semantics and the abstract semantic interface
for LiiP, and prove the axiomatic adequacy of the proof system with respect
to this interface. In the construction of the semantics, we again make use of a
closure operator, but this time on sets of proof terms. Finally in Section 3, we
reconstruct LiP as a minimal conservative extension of LiiP.

2 Logic of instant interactive Proofs

The Logic of instant interactive Proofs (LiiP) provides a modal formula language
over a generic message term language. The formula language offers the propo-
sitional constructors, a relational symbol ‘ k ’ for constructing atomic proposi-
tions about individual knowledge (e.g., a kM), and a modal constructor ‘ :: ’
for propositions about proofs (e.g., M ::Ca φ). The message language offers term
constructors for message pairing and (not necessarily, but possibly cryptograph-
ically implemented) signing. (Cryptographic signature creation and verification
is polynomial-time computable [Kat10]. See [Kra12] for other cryptographic
constructors such as encryption and hashing.) In brief, LiiP is a minimal mod-
ular extension of classical propositional logic with an interactively generalised
additional operator (the proof modality) and proof-term language (only two
constructors, agents as proof- and signature-checkers). Note, the language of
LiiP is identical to the one of LiP [Kra12] modulo the proof-modality notation,
which in LiP is ‘ : ’.

Definition 1 (The language of LiiP). Let

• A 6= ∅ designate a non-empty finite set of agent names a, b, c, etc.

• C ⊆ A denote (finite and not necessarily disjoint) communities (sets) of
agents a ∈ A (referred to by their name)

4

• M 3 M ::= a
∣∣ B ∣∣ {[M]}a

∣∣ (M,M) designate our language of message
terms M over A with (transmittable) agent names a ∈ A, application-
specific data B (left blank here), signed messages {[M]}a, and message
pairs (M,M)

(Messages must be grammatically well-formed, which yields an induction
principle. So agent names a are logical term constants, the meta-variable
B just signals the possibility of an extended term language M, {[·]}a with
a ∈ A is a unary functional symbol, and (·, ·) a binary functional symbol.)

• P designate a denumerable set of propositional variables P constrained
such that for all a ∈ A and M ∈ M, (a kM) ∈ P (for “a knows M”) is a
distinguished variable, i.e., an atomic proposition, (for individual knowl-
edge)

(So, for a ∈ A, a k · is a unary relational symbol.)

• L 3 φ ::= P
∣∣ ¬φ ∣∣ φ ∧ φ ∣∣ M ::Ca φ designate our language of logical

formulas φ, where M ::Ca φ reads “M is a C ∪{a}-reviewable proof of φ” in
that “M can prove φ to a (e.g., a designated verifying judge) and this is
commonly accepted in the (pointed) community C ∪ {a} (e.g., for C being
a jury).”

Then LiiP has the following axiom and deduction-rule schemas, with grey-
shading indicating the difference to LiP.

Definition 2 (The axioms and deduction rules of LiiP). Let

• Γ0 designate an adequate set of axioms for classical propositional logic

• Γ1 := Γ0 ∪ {

– a k a (knowledge of one’s own name string)

– a kM → a k {[M]}a (personal [the same a] signature synthesis)

– a k {[M]}b → a k (M, b) (universal [any a and b] signature analysis)

– (a kM ∧ a kM ′)↔ a k (M,M ′) ([un]pairing)

– (M ::Ca (φ→ φ′))→ ((M ::Ca φ)→M ::Ca φ
′) (Kripke’s law, K)

– (M ::Ca φ)→ (a kM → φ) (epistemic truthfulness)

–
∧

b∈C∪{a}(((M, b) ::Ca φ︸ ︷︷ ︸
can prove

)→ {[M]}a ::
C∪{a}
b (a kM ∧M ::Ca φ︸ ︷︷ ︸

does prove

))

(nominal [in b] peer review)

– (M ::C∪C
′

a φ)→M ::Ca φ (group decomposition) }

designate a set of axiom schemas.

5

Then, LiiP := Cl(∅) :=
⋃

n∈N Cln(∅), where for all Γ ⊆ L :

Cl0(Γ) := Γ1 ∪ Γ

Cln+1(Γ) := Cln(Γ) ∪
{ φ′ | {φ, φ→ φ′} ⊆ Cln(Γ) } ∪ (modus ponens, MP)
{ M ::Ca φ | φ ∈ Cln(Γ) } ∪ (necessitation, N)

{ (M ::Ca φ)↔M ′ ::Ca φ | (a kM ↔ a kM ′) ∈ Cln(Γ) }
(epistemic bitonicity).

We call LiiP a base theory, and Cl(Γ) an LiiP-theory for any Γ ⊆ L.

Notice the logical order of LiiP, which is, due to propositions about (proofs of)
propositions, higher-order propositional. Further, observe that we assume the
existence of a dependable mechanism for signing messages, which we model with
the above synthesis and analysis axioms. In trusted multi-agent systems, signa-
tures are unforged, and thus such a mechanism is trivially given by the inclusion
of the sender’s name in the sent message, or by the sender’s sensorial impression
on the receiver when communication is immediate. In distrusted multi-agent
systems (e.g., the open Internet), a practically unforgeable signature mecha-
nism can be implemented with classical certificate-based or, more directly, with
identity-based public-key cryptography [Kat10]. We also assume the existence
of a pairing mechanism modelling finite sets. Such a mechanism is required
by the important application of communication (not only cryptographic) pro-
tocols [And08, Chapter 3], in which concatenation of high-level data packets is
associative, commutative, and idempotent. The key to the validity of K is that
we understand interactive proofs as sufficient evidence for intended resource-
unbounded proof-checking agents (who are though still unable to guess), see
[Kra12, Section 3.2.2] for more details. Next, the significance of epistemic truth-
fulness to interactivity is that in truly distributed multi-agent systems, not all
proofs are known by all agents, i.e., agents are not omniscient with respect to
messages. Otherwise, why communicate with each other? So there being a
proof does not imply knowledge of that proof. When an agent a does not know
the proof and the agent cannot generate the proof ex nihilo herself by guessing
it, only communication from a peer, who thus acts as an oracle, can entail the
knowledge of the proof with a. That is, provability and truth are necessarily
concomitant in the non-interactive setting, whereas in interactive settings they
are not necessarily so [Kra12]. In nominal peer review, “can prove” suggests the
proof potentiality of (M, b) : “if a were to know, e.g., receive, (M, b)” (and thus
know her potential interlocutor b’s name). Whereas given {[M]}a to b, e.g., in
an acknowledgement from a, “does prove” suggests the proof actuality of M :
“a does know, e.g., did receive, (M, b)”, otherwise a could not have signed M .
See the proof of Corollary 4.5 for a semantic justification of the raison d’être of
b in (M, b). Then, the justification for the necessitation rule (schema) is that
in interactive settings, validities, and thus a fortiori tautologies (in the strict
sense of validities of the propositional fragment), are in some sense trivialities
[Kra12]. To see why, recall that modal validities are true in all pointed models

6

(cf. Definition 6), and thus not worth being communicated from one point to
another in a given model, e.g., by means of specific interactive proofs. (Nothing
is logically more embarrassing than talking in tautologies.) Therefore, validities
deserve arbitrary proofs. What is worth being communicated are truths weaker
than validities, namely local truths in the standard model-theoretic sense (cf.
Definition 6), which may not hold universally. Otherwise why communicate
with each other? Finally, observe that epistemic bitonicity is a rule of logical
modularity that allows the modular generation of structural modal laws from
equivalence term laws (cf. Theorem 1).

The grey-shading in Definition 2 indicates that the axioms and rules of
LiiP differ from those of LiP in exactly Kripke’s law, nominal peer review,
and epistemic bitonicity (cf. [Kra12] and Section 3). In LiP, these three LiiP-
laws correspond to the generalised Kripke-law (M :Ca (φ→ φ′))→ ((M ′ :Ca φ)→
(M,M ′) :Ca φ

′), (plain) peer review (M :Ca φ) →
∧

b∈C∪{a}({[M]}a :
C∪{a}
b (a kM ∧

M :Ca φ)), and epistemic antitonicity “from a kM → a kM ′ deduce (M ′ :Ca φ)→
M :Ca φ”, respectively. The addition of the axiom schema

(M ::Ca φ)→ (M,M ′) ::Ca φ

to LiiP will result in a logic LiiP+ that is isomorphic to LiP (cf. Theorem 4).
So in some sense, the essential difference between instant proofs (proofs for at
least an instant) and persistent proofs (proofs for eternity) is distilled in this
single additional law. Following Artëmov in [Art08], this law can be interpreted
as Lehrer and Paxson’s indefeasibility condition for justified true belief [Kra12].
In sum, while both LiP-proofs and LiiP-proofs are indefeasible in the instant
when they are learnt (they induce knowledge, not only belief), LiiP-proofs (LiP-
proofs) are possibly (necessarily) (in)defeasible in the future of the instant in
which they are learnt.

Now note the following macro-definitions: > := a k a, ⊥ := ¬>, φ ∨ φ′ :=
¬(¬φ ∧ ¬φ′), φ → φ′ := ¬φ ∨ φ′, and φ ↔ φ′ := (φ → φ′) ∧ (φ′ → φ). In the
sequel, “:iff” abbreviates “by definition, if and only if”.

Proposition 1 (Hilbert-style proof system). Let

• Φ `LiiP φ :iff if Φ ⊆ LiiP then φ ∈ LiiP

• φ a`LiiP φ
′ :iff {φ} `LiiP φ

′ and {φ′} `LiiP φ

• `LiiP φ :iff ∅ `LiiP φ.

In other words, `LiiP ⊆ 2L×L is a system of closure conditions in the sense of
[Tay99, Definition 3.7.4]. For example:

1. for all axioms φ ∈ Γ1, `LiiP φ

2. for modus ponens, {φ, φ→ φ′} `LiiP φ
′

3. for necessitation, {φ} `LiiP M ::Ca φ

7

4. for epistemic bitonicity, {a kM ↔ a kM ′} `LiiP (M ::Ca φ)↔M ′ ::Ca φ.

(In the space-saving, horizontal Hilbert-notation “Φ `LiiP φ”, Φ is not a set of
hypotheses but a set of premises, cf. modus ponens, necessitation, and epistemic
bitonicity.) Then `LiiP can be viewed as being defined by a Cl-induced Hilbert-
style proof system. In fact Cl : 2L → 2L is a standard consequence operator,
i.e., a substitution-invariant compact closure operator.

Proof. Like in [Kra12]. That a Hilbert-style proof system can be viewed as
induced by a compact closure operator is well-known (e.g., see [Gab95]); that
Cl is indeed such an operator can be verified by inspection of the inductive
definition of Cl; and substitution invariance follows from our definitional use of
axiom schemas.3

Corollary 1 (Normality). LiiP is a normal modal logic.

Proof. Jointly by Kripke’s law, modus ponens, necessitation (these by defini-
tion), and substitution invariance (cf. Proposition 1).

We are now going to present some useful (further-used), deducible structural
laws of LiiP. Here, “structural” means “deducible exclusively from term axioms”.
The laws are enumerated in a (total) order that respects (but cannot reflect)
their respective proof prerequisites. The laws are also deducible in LiP, in the
same order [Kra12]. (All LiiP-deducible laws are also LiP-deducible, but not
vice versa.)

Theorem 1 (Some useful deducible structural laws).

1. `LiiP a k (M,M ′)→ a kM (left projection, 1-way K-combinator property)

2. `LiiP a k (M,M ′)→ a kM ′ (right projection)

3. `LiiP a k (M,M)↔ a kM (pairing idempotency)

4. `LiiP a k (M,M ′)↔ a k (M ′,M) (pairing commutativity)

5. `LiiP (a kM → a kM ′) ↔ (a k (M,M ′) ↔ a kM) (neutral pair ele-
ments)

6. `LiiP a k (M,a)↔ a kM (self-neutral pair element)

7. `LiiP a k (M, (M ′,M ′′))↔ a k ((M,M ′),M ′′) (pairing associativity)

8. `LiiP ((M,M) ::Ca φ)↔M ::Ca φ (proof idempotency)

9. `LiiP ((M,M ′) ::Ca φ)↔ (M ′,M) ::Ca φ (proof commutativity)

10. {a kM → a kM ′} `LiiP ((M,M ′) ::Ca φ) ↔ M ::Ca φ (neutral proof ele-
ments)

3Alternatively to axiom schemas, we could have used axioms together with an additional
substitution-rule set { σ[φ] | φ ∈ Cln(Γ) } in the definiens of Cln+1(Γ).

8

11. `LiiP ((M,a) ::Ca φ)↔M ::Ca φ (self-neutral proof element)

12. `LiiP ((M, (M ′,M ′′)) ::Ca φ)↔ ((M,M ′),M ′′) ::Ca φ (proof associativity)

13. `LiiP ({[M]}a ::Ca φ)↔M ::Ca φ (self-signing idempotency)

Proof. Laws 1–7 and 13 are proved like in LiP [Kra12], as LiiP and LiP have
identical term axioms. Law 8, 9, 11, and 12 follows immediately from Law 3,
4, 6, and 7, respectively by epistemic bitonicity. For Law 10, suppose that
`LiiP a kM → a kM ′. Hence `LiiP a k (M,M ′) ↔ a kM by the law of neutral
pair elements and propositional logic. Hence `LiiP (M,M ′) ::Ca φ ↔ M ::Ca φ by
epistemic bitonicity.

Like in LiP [Kra12], the preceding 1-way K-combinator property and the
following simple corollary of Theorem 1 jointly establish the important fact
that our communicating agents can be viewed as combinators in the sense of
Combinatory Logic viewed in turn as a (non-equational) theory of (message or
proof) term reduction [HS08]. (The converse of the above K-combinator property
does not hold.)

Corollary 2 (S-combinator property).

1. `LiiP a k ((M,M ′),M ′′)↔ a k (M, (M ′′, (M ′,M ′′)))

2. `LiiP (((M,M ′),M ′′) ::Ca φ)↔ (M, (M ′′, (M ′,M ′′))) ::Ca φ

Proof. 1 follows jointly from idempotency (copy M ′′′), commutativity, and as-
sociativity of pairing; and 2 follows jointly from 1 and epistemic bitonicity.

We are going to present also some useful (further-used) deducible logical laws
of LiiP. Here, “logical” means “not structural” in the previously defined sense.
Also these laws are enumerated in an order that respects their respective proof
prerequisites, and are deducible in LiP in the same order [Kra12].

Theorem 2 (Some useful deducible logical laws).

1. {φ→ φ′} `LiiP (M ::Ca φ)→M ::Ca φ
′ (regularity)

2. {a kM ↔ a kM ′, φ→ φ′} `LiiP (M ::Ca φ)→M ′ ::Ca φ
′ (biepistemic regul.)

3. `LiiP ((M ::Ca φ) ∧M ::Ca φ
′)↔M ::Ca (φ ∧ φ′) (proof conjunctions bis)

4. `LiiP ((M ::Ca φ) ∨M ::Ca φ
′)→M ::Ca (φ ∨ φ′) (proof disjunctions bis)

5. `LiiP M ::Ca > (anything can prove tautological truth)

6. `LiiP {[M]}b ::
C∪{b}
a b kM (authentic knowledge)

7. `LiiP M ::∅a a kM (self-knowledge)

8. `LiiP (M ::C∪C
′

a φ)→ ((M ::Ca φ) ∧M ::C
′

a φ) (group decomposition bis)

9

9. `LiiP (M ::
C∪{a}
a φ)↔ (M ::Ca φ) (self-neutral group element).

10. `LiP M ::Ca ((M ::Ca φ)→ φ) (self-proof of truthfulness)

11. `LiP M ::Ca (¬(M ::Ca ⊥)) (self-proof of proof consistency)

12. `LiP (M ::Ca (M ::Ca φ))↔M ::Ca φ (modal idempotency)

Proof. Like in LiP [Kra12].

Like in LiP, the key to the validity of modal idempotency is that each agent
(e.g., a) can act herself as proof-checker, see [Kra12, Section 3.2.2] for more
details.

We now continue to (re)present the constructive semantics for LiiP (cf.
[Kra12, Section 2.2]) and establish some important new and further-used results
about it. The essential differences to the semantics of LiP are grey-shaded.

Definition 3 (Semantic ingredients). For the knowledge-constructive model-
theoretic study of LiiP let

• S designate the state space—a set of system states s

• msgsa : S → 2M designate a raw-data extractor that extracts (without
analysing) the (finite) set of messages from a system state s that agent a ∈
A has either generated (assuming that only a can generate a’s signature)
or else received as such (not only as a strict subterm of another message);
that is, msgsa(s) is a’s data base in s

• clsa : 2M → 2M designate a data-mining operator such that clsa(D) :=
cla(msgsa(s) ∪ D) :=

⋃
n∈N clna(msgsa(s) ∪ D), where for all D ⊆M:

cl0a(D) := {a} ∪ D
cln+1

a (D) := clna(D) ∪
{ (M,M ′) | {M,M ′} ⊆ clna(D) } ∪ (pairing)
{ M,M ′ | (M,M ′) ∈ clna(D) } ∪ (unpairing)
{ {[M]}a | M ∈ clna(D) } ∪ (personal signature synthesis)
{ (M, b) | {[M]}b ∈ clna(D) } (universal signature analysis)

• <M
a ⊆ S ×S designate a data preorder on states such that for all s, s′ ∈
S, s <M

a s′ :iff clsa({M}) = cls
′

a (∅), were M can be viewed as oracle
input in addition to a’s individual-knowledge base clsa(∅) (cf. also [Kra12,
Section 2.2])

• <M
C := (

⋃
a∈C <

M
a)++, where ‘++’ designates the closure operation of

so-called generalised transitivity in the sense that <M
C ◦<M ′

C ⊆ <
(M,M ′)
C

• ≡a := <a
a designate an equivalence relation of state indistinguishability

10

• MRCa ⊆ S×S designate a concretely constructed accessibility relation—
short, concrete accessibility—for the proof modality such that for all
s, s′ ∈ S,

s MRCa s
′ :iff s′ ∈

⋃
s <M

C∪{a} s̃ and

M ∈ cls̃a(∅)

[s̃]≡a

(iff there is s̃ ∈ S s.t. s <M
C∪{a} s̃ and M ∈ cls̃a(∅) and s̃ ≡a s

′).

Note that the data-mining operator cla : 2M → 2M is a compact closure
operator, which induces a data-derivation relation `a ⊆ 2M × M such that
D `a M :iffM ∈ cla(D), which (1) has the compactness and (2) the cut property,
(3) is decidable in deterministic polynomial time in the size of D and M , and
(4) induces a Scott information system of information tokens M [Kra12]. Fact 1
establishes the knowledge-constructiveness of our Kripke-model for LiiP (cf.
Definition 5).

Fact 1 (Kripke-model knowledge-constructiveness).

for all s′ ∈ S, if s MRCa s
′ then (S,V), s′ |= φ if and only if

for all š ∈ S, if s <M
C∪{a} š then (S,V), š |= a k M︸︷︷︸

sufficient

evidence

→ Ka(φ︸︷︷︸
induced

knowledge

),

where the standard epistemic modality Ka is defined like in [MV07] as

(S,V), š |= Ka(φ) :iff for all s′ ∈ S, if š ≡a s
′ then (S,V), s′ |= φ.

Proof. By elementary-logical transformations of the definiens of MRCa .

Lemma 1. If s <M
a s′ then s′ <M

a s′.

Proof. Consider that when s <M
a s′, M ∈ cls

′

a (∅), and thus cls
′

a ({M}) = cls
′

a (∅).

Proposition 2 (Restricted reflexivity).

1. s <a
a s (self-reflexivity)

2. biconditional reflexivity:

(a) s <M
a s if and only if M ∈ clsa(∅)

(b) s <M
a s if and only if there is s′ ∈ S such that s′ <M

a s

Proof. For 1, consider that a ∈ clsa(∅), and thus clsa({a}) = clsa(∅). For 2.a,
inspect the proof of Lemma 1. For the forward-direction of 2.b, take s as s′;
and for the backward-direction apply Lemma 1.

11

Proposition 3 (Self-symmetry).

If s <a
a s
′ then s′ <a

a s.

Proof. By expansion of the definition of ‘<a
a’ and the symmetry of equality.

Proposition 4 (Generalised transitivity).

If s <M
a s′ and s′ <M ′

a s′′ then s <(M,M ′)
a s′′.

Proof. Let s, s′ ∈ S and suppose that s <M
a s′ and s′ <M ′

a s′′. Thus:

1. clsa({M}) = cls
′

a (∅); thus M ∈ cls
′

a (∅), thus:

(a) M ∈ cls
′

a ({M ′}) by closure monotonicity (∅ ⊆ {M ′}),

(b) cls
′

a (∅) = cls
′

a ({M}), thus clsa({M}) = cls
′

a ({M}), and hence

clsa({(M,M ′)}) = cls
′

a ({(M,M ′)});

2. cls
′

a ({M ′}) = cls
′′

a (∅); thus M ′ ∈ cls
′′

a (∅), thus cls
′′

a (∅) = cls
′′

a ({M ′}), thus

cls
′

a ({M ′}) = cls
′′

a ({M ′}), and hence cls
′

a ({(M,M ′)}) = cls
′′

a ({(M,M ′)}).

Hence:

• M ∈ cls
′′

a (∅) by 1.a and the first assertion in 2 , thus (M,M ′) ∈ cls
′′

a (∅) by

the second assertion in 2 and pairing closure, thus cls
′′

a (∅) = cls
′′

a ({(M,M ′)});

• clsa({(M,M ′)}) = cls
′′

a ({(M,M ′)}) by 1.b and 2.

Hence clsa({(M,M ′)}) = cls
′′

a (∅), and thus s <
(M,M ′)
a s′′ by definition.

Corollary 3 (Transitivity).

If s <M
a s′ and s′ <M

a s′′ then s <M
a s′′.

Proof. Directly from Proposition 4 by the fact that clsa({(M,M)}) = clsa({M}).

So as announced in Definition 3, ‘<M
a ’ is indeed a (non-reflexive) pre-order,

and ‘<a
a’ indeed an equivalence relation (cf. Proposition 2.i and 3).

Definition 4 (Message ordering and equivalence).

• M vs
a M

′ :iff if M ∈ clsa(∅) then M ′ ∈ clsa(∅)

• M ≡s
a M

′ :iff M vs
a M

′ and M ′ vs
a M

• M va M
′ :iff for all s ∈ S, M vs

a M
′

• M ≡a M
′ :iff for all s ∈ S, M ≡s

a M
′

Fact 2. vs
a ⊆M×M is a pre- but not a partial order.

12

Proposition 5 (Conditional stability).

If M ≡a M
′ then <M

a = <M ′

a .

Proof. Suppose that for all s′′ ∈ S, M ∈ cls
′′

a (∅) if and only if M ′ ∈ cls
′′

a (∅), and

let s, s′ ∈ S. For the ⊆-part, suppose that s <M
a s′, i.e., clsa({M}) = cls

′

a (∅),
and thus M ∈ cls

′

a (∅). Hence:

1. M ′ ∈ cls
′

a (∅) by particularisation of the first hypothesis, and (M,M ′) ∈
cls

′

a (∅) by pairing closure; and thus cls
′

a ({(M,M ′)}) = cls
′

a (∅);

2. M ∈ clsa(∅) if and only if M ′ ∈ clsa(∅) by particularisation of the first
hypothesis, thus M ∈ clsa({M ′}) if and only if M ′ ∈ clsa({M ′}), thus
M ∈ clsa({M ′}), and thus clsa({M ′}) = clsa({(M,M ′)});

3. cls
′

a ({M}) = cls
′

a (∅), thus cls
′

a ({M}) = clsa({M}), and thus cls
′

a ({(M,M ′)}) =
clsa((M,M ′)).

Hence clsa({M ′}) = cls
′

a (∅) by 1, 2, and 3. And symmetrically for the ⊇-part.

Proposition 6 (Communal lifting).

1. If C ⊆ C′ then <M
C ⊆ <M

C′ (communal monotonicity).

2. If M ∈ clsa(∅) then s <M
C∪{a} s (conditional reflexivity).

3. If M ≡a M
′ then <M

C∪{a} = <M ′

C∪{a} (conditional stability).

Proof. 1 follows directly from definitions, 2 from 1 and Proposition 2.ii.a, and
3 from Proposition 5 and the definition of ‘<M

C∪{a}’ and ‘<M ′

C∪{a}’.

Proposition 7 (Signature property).

If s <
{[M]}a
C s′ then M ∈ cls

′

a (∅).

Proof. Let s, s′ ∈ S and suppose that s <
{[M]}a
C s′. Thus there is b ∈ C such

that s <
{[M]}a
b s′. Hence {[M]}a ∈ cls

′

b (∅) by biconditional reflexivity (cf. Propo-

sition 2.ii.a). But then also M ∈ cls
′

a (∅) by the unforgeability of signatures (cf.
the closure conditions of personal/universal signature synthesis/analysis). That
is, nobody else than a can have generated {[M]}a, and thus a also knows M .
(Otherwise suppose that somebody else has, and derive a contradiction.)

Corollary 4 (Concrete accessibility).

1. If C ⊆ C′ then MRCa ⊆ MRC
′

a (communal monotonicity).

2. If M ≡a M
′ then MRCa = M ′RCa (conditional stability).

3. If M ∈ clsa(∅) then s MRCa s (conditional reflexivity).

13

Table 1: Satisfaction relation

(S,V), s |= P :iff s ∈ V(P)

(S,V), s |= ¬φ :iff not (S,V), s |= φ

(S,V), s |= φ ∧ φ′ :iff (S,V), s |= φ and (S,V), s |= φ′

(S,V), s |= M ::Ca φ :iff for all s′ ∈ S, if s MRCa s′ then (S,V), s′ |= φ

4. If s {[M]}bR
C
a s
′ then M ∈ cls

′

b (∅) (signature property).

5. For all b ∈ C ∪ {a}, ({[M]}aR
C∪{a}
b ◦MRCa) ⊆ (M,b)R

C
a (communal transitiv-

ity).

Proof. 1–4 follow by inspection of definitions and Proposition 6 and 7. For 5,

suppose that b ∈ C∪{a} and let s, s′, s′′ ∈ S. Further suppose that s {[M]}aR
C∪{a}
b

s′ and s′ MRCa s
′′. That is, (there is s̃ ∈ S such that s <

{[M]}a
C∪{a}∪{b} s̃ and {[M]}a ∈

cls̃b(∅) and s̃ ≡b s
′) and (there is s̃′ ∈ S such that s′ <M

C∪{a} s̃
′ and M ∈ cls̃

′

a (∅)
and s̃′ ≡a s′′). Hence, s <

{[M]}a
C∪{a} s̃ by the first supposition and communal

monotonicity (C ∪ {a} ∪ {b} = C ∪ {a}), and also s̃ <b
b s
′ by definition (cf.

second supposition). Hence consecutively, s̃ <b
C∪{a} s

′ by the first supposition

and communal monotonicity ({b} ⊆ C ∪ {a}), s <({[M]}a,b)
C∪{a} s′ by generalised

transitivity, s <
(({[M]}a,b),M)

C∪{a} s̃′ by the third supposition and again generalised

transitivity, s <
(M,b)
C∪{a} s̃

′ by conditional stability ((({[M]}a, b),M) ≡a (M, b)),

and thus finally s (M,b)R
C
a s
′′ by again the third supposition.

Definition 5 (Kripke-model). We define the satisfaction relation ‘|=’ for LiiP
in Table 1, where

• V : P → 2S designates a usual valuation function, yet partially predefined
such that for all a ∈ A and M ∈M,

V(a kM) := { s ∈ S | M ∈ clsa(∅) }

(If agents are Turing-machines then a knowing M can be understood as a
being able to parse M on its tape.)

• S := (S, {MRCa}M∈M,a∈A,C⊆A) designates a (modal) frame for LiiP with
an abstractly constrained accessibility relation—short, abstract acces-
sibility—MRCa ⊆ S × S for the proof modality such that—the semantic
interface:

– if C ⊆ C′ then MRCa ⊆ MRC
′

a

– if M ≡a M
′ then MRCa = M ′RCa

14

– if M ∈ clsa(∅) then s MRCa s

– if s {[M]}bR
C
a s
′ then M ∈ cls

′

b (∅)

– for all b ∈ C ∪ {a}, ({[M]}aR
C∪{a}
b ◦MRCa) ⊆ (M,b)RCa

• (S,V) designates a (modal) model for LiiP.

Looking back, we recognise that Corollary 4 actually establishes the im-
portant fact that our concrete accessibility MRCa in Definition 3 realises all the
properties stipulated by our abstract accessibility MRCa in Definition 5; we say
that

MRCa exemplifies (or realises) MRCa .

Further, observe that LiiP (like LiP) has a Herbrand-style semantics, i.e., logi-
cal constants (agent names) and functional symbols (pairing, signing) are self-
interpreted rather than interpreted in terms of (other, semantic) constants and
functions. This simplifying design choice spares our framework from the ad-
ditional complexity that would arise from term-variable assignments [BG07],
which in turn keeps our models propositionally modal. Our choice is admissible
because our individuals (messages) are finite. (Infinitely long “messages” are
non-messages; they can never be completely received, e.g., transmitting irra-
tional numbers as such is impossible.)

Theorem 3 (Axiomatic adequacy). `LiiP is adequate for |=, i.e.,:

1. if `LiiP φ then |= φ (axiomatic soundness)

2. if |= φ then `LiiP φ (semantic completeness).

Proof. Both parts can be proved with standard means: soundness follows as
usual from the admissibility of the axioms and rules (cf. Appendix A.1); and
completeness follows by means of the classical construction of canonical models,
using Lindenbaum’s construction of maximally consistent sets (cf. Appendix A.2).

3 LiP as an extension of LiiP

In this section, we reconstruct LiP syntactically, as a minimal conservative ex-
tension of LiiP with one simplified and one additional axiom schema, as well as
semantically, with a simplified semantic interface that has none of the a pos-
teriori constraints from [Kra12] but only standard, a priori constraints, i.e.,
stipulations.

Theorem 4. Define the LiiP-theory

LiiP+ := Cl({(M ::Ca φ)→ (M,M ′) ::Ca φ︸ ︷︷ ︸
proof extension

}),

15

where Cl is as in Definition 2. Then LiiP+ is isomorphic to LiP, in symbols,

LiiP+ ∼= LiP.

In particular, the generalised Kripke law GK as mentioned before and below
is deducible in LiiP+, and thus we need only stipulate the simpler standard
Kripke law K for LiP, like for LiiP. Moreover, alternatively to adding the axiom
schema of proof extension to LiiP, we could equivalently replace the primitive
rule schema of epistemic bitonicity in LiiP with the stronger one of epistemic
antitonicity.

Proof. The isomorphism consists in simply switching between proof-modality
notations, which in LiP is ‘ : ’ and in LiiP+ ‘ :: ’. Then, as already mentioned on
Page 7, LiiP and LiP differ in the following corresponding axiom and deduction-
rule schemas: Kripke’s law K versus the generalised Kripke-law GK, nominal
peer review (NPR) versus plain peer review, and epistemic bitonicity versus epis-
temic antitonicity—see below. Note that in the sequel PL abbreviates “(Clas-
sical) Propositional Logic,” and `LiiP+ is defined similarly to `LiiP.

• GK (cf. Line 7) becomes deducible:

1. `LiiP+ (M ::Ca (φ→ φ′))→ (M,M ′) ::Ca (φ→ φ′) proof extension

2. `LiiP+ ((M,M ′) ::Ca (φ→ φ′))→ (((M,M ′) ::Ca φ)→ (M,M ′) ::Ca φ
′) K

3. `LiiP+ (M ::Ca (φ→ φ′))→ (((M,M ′) ::Ca φ)→ (M,M ′) ::Ca φ
′) 1, 2 PL

4. `LiiP+ (M ′ ::Ca φ)→ (M ′,M) ::Ca φ proof extension

5. `LiiP+ ((M ′,M) ::Ca φ)↔ (M,M ′) ::Ca φ proof commutativity

6. `LiiP+ (M ′ ::Ca φ)→ (M,M ′) ::Ca φ 4, 5, PL

7. `LiiP+ (M ::Ca (φ→ φ′))→ ((M ′ ::Ca φ)→ (M,M ′) ::Ca φ
′) 3, 6, PL.

• plain peer review (cf. Line 3) becomes deducible:

1. `LiiP+

∧
b∈C∪{a}((M ::Ca φ)→ (M, b) ::Ca φ) proof extension

2. `LiiP+

∧
b∈C∪{a}(((M, b) ::Ca φ)→ {[M]}a ::

C∪{a}
b (a kM∧M ::Ca φ))NPR

3. `LiiP+ (M ::Ca φ)→
∧

b∈C∪{a}({[M]}a ::
C∪{a}
b (a kM ∧M ::Ca φ)) 1, 2,

PL.

• epistemic antitonicity (cf. Line 8) becomes deducible:

1. `LiiP+ a kM → a kM ′ hyp.

2. `LiiP+ ((M,M ′) ::Ca φ)↔M ::Ca φ 1, neutral proof elememts

3. `LiiP+ (M ′ ::Ca φ)→ (M ′,M) ::Ca φ proof extension

4. `LiiP+ ((M ′,M) ::Ca φ)↔ (M,M ′) ::Ca φ proof commutativity

5. `LiiP+ (M ′ ::Ca φ)→ (M,M ′) ::Ca φ 3, 4, PL

6. `LiiP+ (M ′ ::Ca φ)→M ::Ca φ 2, 5, PL

16

7. if `LiiP+ a kM → a kM ′ then `LiiP+ (M ′ ::Ca φ)→M ::Ca φ 1–6, PL

8. {a kM → a kM ′} `LiiP+ (M ′ ::Ca φ)→M ::Ca φ 7, def.

Conversely, that is, assuming epistemic antitonicity, proof extension is directly
deducible from jointly this assumption and (pair) left projection, like in LiP
[Kra12].

Corollary 5 (Simplified semantic interface for LiP). A simplified semantic
interface for LiP is given by the one for LiiP in Definition 5 but with the abstract
accessibility MRCa ⊆ S × S being constrained

• such that if M va M
′ then MRCa ⊆ M ′RCa (proof monotonicity)

instead of being constrained by conditional stability;

• or alternatively such that (M,M ′)RCa ⊆ MRCa (pair splitting)

in addition to being constrained by conditional stability.

Proof. It is straightforward to check that the semantic constraints of proof
monotonicity and pair splitting correspond to the syntactic laws of epistemic
antitonicity and proof extension, respectively, which are interdeducible (cf. The-
orem 4).

4 Conclusion

We have proposed LiiP with as main contributions those described in Sec-
tion 1.1. The notion of non-monotonic proofs captured by LiiP has the ad-
vantage of being not only operational thanks to our proof-theoretic definition
but also declarative thanks to our complementary model-theoretic definition,
which gives a constructive epistemic semantics to these proofs in the sense of
explicating what (knowledge) they effect in agents in the instant of their recep-
tion, complementing thereby the (operational) axiomatics, which explicates how
they do so.

We conclude by mentioning [BRS12] as a piece of related work. There, the
authors present a resource-bounded implicit-single-agent but dynamic logic of
defeasible (and thus non-monotonic) evidence-based S4-knowledge, where they
use a particular primitive Et for the implicit-agent’s knowledge of evidence terms
t. The authors’ atomic proposition Et is a particular and strongly resource-
bounded analog of my atomic proposition a kM for an arbitrary agent a’s knowl-
edge of message terms M . Et is strongly resource-bounded in the sense that the
term axioms for Et are axioms for term decomposition but not for term composi-
tion. Similar restrictions could be made for a kM , but we opine that they would
be too strong. At least some amount of term composition capabilities should
be conceded also to resource-bounded agents. The authors’ use of Et is crucial
for their contribution, who know but must have accidentally not acknowledged
the contribution of a kM to Et. See [Kra12] for historical references of my

17

uses of a kM in logics of explicit evidence/justification/proof. The addition of
atomic propositions a kM to languages of explicit evidence/justification/proof
will probably play a similarly important role as the addition of atomic proposi-
tions x ∈ S to the language of first-order logic (resulting in Set Theory).

References

[And08] R. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. Wiley, second edition, 2008.

[Art08] S. Artemov. The logic of justifications. The Review of Symbolic
Logic, 1(4), 2008.

[BG07] T. Braüner and S. Ghilardi. Handbook of Modal Logic, chapter First-
Order Modal Logic. Volume 3 of Blackburn et al. [BvBW07], 2007.

[BRS12] A. Baltag, B. Renne, and S. Smets. The logic of justified belief
change, soft evidence and defeasible knowledge. In Proceedings of
WoLLIC, volume 7456 of LNCS. Springer, 2012.

[BvB07] P. Blackburn and J. van Benthem. Handbook of Modal Logic, chapter
Modal Logic: A Semantic Perspective. Volume 3 of Blackburn et al.
[BvBW07], 2007.

[BvBW07] P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of
Modal Logic, volume 3 of Studies in Logic and Practical Reasoning.
Elsevier, 2007.

[Fef89] S. Feferman. The Number Systems: Foundations of Algebra and
Analysis. AMS Chelsea Publishing, second edition, 1964 (1989).
Reprinted by the American Mathematical Society, 2003.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

[Fit07] M. Fitting. Handbook of Modal Logic, chapter Modal Proof Theory.
Volume 3 of Blackburn et al. [BvBW07], 2007.

[Gab95] D.M. Gabbay, editor. What Is a Logical System? Number 4 in
Studies in Logic and Computation. Oxford University Press, 1995.

[GO07] V. Goranko and M. Otto. Handbook of Modal Logic, chapter Model
Theory of Modal Logic. Volume 3 of Blackburn et al. [BvBW07],
2007.

[HR10] V.F. Hendricks and O. Roy, editors. Epistemic Logic: 5 Questions.
Automatic Press, 2010.

[HS08] J.R. Hindley and J.P. Seldin. Lambda-Calculus and Combinators.
Cambridge University Press, second edition, 2008.

18

[Kat10] J. Katz. Digital Signatures. Springer, 2010.

[KR10] S. Kramer and A. Rybalchenko. A multi-modal framework for
achieving accountability in multi-agent systems. In Proceedings of
the ESSLLI-affiliated Workshop on Logics in Security, 2010.

[Kra12] S. Kramer. A logic of interactive proofs (formal theory of
knowledge transfer). Technical Report 1201.3667, arXiv, 2012.
http://arxiv.org/abs/1201.3667.

[Mak05] D. Makinson. Handbook of Philosophical Logic, volume 12, chapter
How To Go Nonmonotonic. Springer, second edition, 2005.

[Mos06] Y. Moschovakis. Notes on Set Theory. Springer, 2nd edition, 2006.

[MV07] J.-J. Meyer and F. Veltnam. Handbook of Modal Logic, chapter Intel-
ligent Agents and Common Sense Reasoning. Volume 3 of Blackburn
et al. [BvBW07], 2007.

[Tay99] P. Taylor. Practical Foundations of Mathematics. Cambridge Uni-
versity Press, 1999.

[Ven07] Y. Venema. Handbook of Modal Logic, chapter Algebras and Coal-
gebras. Volume 3 of Blackburn et al. [BvBW07], 2007.

A Axiomatic-adequacy proof

A.1 Axiomatic soundness

Definition 6 (Truth & Validity [BvB07]).

• The formula φ ∈ L is true (or satisfied) in the model (S,V) at the state
s ∈ S :iff (S,V), s |= φ.

• The formula φ is satisfiable in the model (S,V) :iff there is s ∈ S such
that (S,V), s |= φ.

• The formula φ is globally true (or globally satisfied) in the model (S,V),
written (S,V) |= φ, :iff for all s ∈ S, (S,V), s |= φ.

• The formula φ is satisfiable :iff there is a model (S,V) and a state s ∈ S
such that (S,V), s |= φ.

• The formula φ is valid, written |= φ, :iff for all models (S,V), (S,V) |= φ.

Proposition 8 (Admissibility of LiiP-specific axioms and rules).

1. |= a k a

2. |= a kM → a k {[M]}a

19

3. |= a k {[M]}b → a k (M, b)

4. |= (a kM ∧ a kM ′)↔ a k (M,M ′)

5. |= (M ::Ca (φ→ φ′))→ ((M ::Ca φ)→M ::Ca φ
′)

6. |= (M ::Ca φ)→ (a kM → φ)

7. |=
∧

b∈C∪{a}(((M, b) ::Ca φ)→ {[M]}a ::
C∪{a}
b (a kM ∧M ::Ca φ))

8. |= (M ::C∪C
′

a φ)→M ::Ca φ

9. If |= φ then |= M ::Ca φ

10. If |= a kM ↔ a kM ′ then |= (M ::Ca φ)↔M ′ ::Ca φ.

Proof. 1–4 are immediate; 5 and 9 hold by the fact that LiiP has a standard
Kripke-semantics; 6 follows directly from the conditional reflexivity of ‘MRCa ’,
8 directly from the communal monotonicity of ‘MRCa ’, and 10 directly from the
conditional stability of ‘MRCa ’. Finally, 7 follows jointly from the signature and
the communal-transitivity property of ‘MRCa ’—as follows: let (S,V) designate
an arbitrary LiiP-model and let s ∈ S. First, let b ∈ C ∪ {a} and suppose that

(S,V), s |= (M, b) ::Ca φ. Second, let s′ ∈ S and suppose that s {[M]}aR
C∪{a}
b s′.

Hence M ∈ cls
′

a (∅) by the signature property, and thus (S,V), s′ |= a kM by
definition. Third, let s′′ ∈ S and suppose that s′ MRCa s′′. Hence, s (M,b)RCa s′′
by the first, second, and third supposition and communal transitivity. Hence
(S,V), s′′ |= φ by the first supposition. Thus (S,V), s′ |= M ::Ca φ by discharge of
the third supposition. Hence (S,V), s′ |= a kM ∧M ::Ca φ. Finally, consecutively

discharging the remaining three suppositions, (S,V), s |= {[M]}a ::
C∪{a}
b (a kM ∧

M ::Ca φ), then (S,V), s |= ((M, b) ::Ca φ) → {[M]}a ::
C∪{a}
b (a kM ∧M ::Ca φ), and

then (S,V), s |=
∧

b∈C∪{a}(((M, b) ::Ca φ)→ {[M]}a ::
C∪{a}
b (a kM ∧M ::Ca φ)).

A.2 Semantic completeness

For all φ ∈ L, if |= φ then `LiiP φ.

Proof. Let

• W designate the set of all maximally LiiP-consistent sets4

4* A set W of LiiP-formulas is maximally LiiP-consistent :iff W is LiiP-consistent and W
has no proper superset that is LiiP-consistent. A set W of LiiP-formulas is LiiP-consistent
:iff W is not LiiP-inconsistent. A set W of LiiP-formulas is LiiP-inconsistent :iff there is a
finite W ′ ⊆W such that ((

∧
W ′)→ ⊥) ∈ LiiP. Any LiiP-consistent set can be extended to a

maximally LiiP-consistent set by means of the Lindenbaum Construction [Fit07, Page 90]. A
set is maximally LiiP-consistent if and only if the set of logical-equivalence classes of the set is
an ultrafilter of the Lindenbaum-Tarski algebra of LiiP [Ven07, Page 351]. The canonical frame
is isomorphic to the ultrafilter frame of that Lindenbaum-Tarski algebra [Ven07, Page 352].

20

• for all w,w′ ∈ W, w MCCa w
′ :iff { φ ∈ L | M ::Ca φ ∈ w } ⊆ w′

• for all w ∈ W, w ∈ VC(P) :iff P ∈ w.

Then MC := (W, {MCCa}M∈M,a∈A,C⊆A,VC) designates the canonical model for
LiiP. Following Fitting [Fit07, Section 2.2], the following useful property of MC,

for all φ ∈ L and w ∈ W, φ ∈ w if and only if MC, w |= φ,

the so-called Truth Lemma, can be proved by induction on the structure of φ:

1. Base case (φ := P for P ∈ P). For all w ∈ W, P ∈ w if and only if
MC, w |= P , by definition of VC.

2. Inductive step (φ := ¬φ′ for φ′ ∈ L). Suppose that for all w ∈ W, φ′ ∈ w
if and only if MC, w |= φ′. Further let w ∈ W. Then, ¬φ′ ∈ w if and
only if φ′ 6∈ w — w is consistent — if and only if MC, w 6|= φ′ — by the
induction hypothesis — if and only if MC, w |= ¬φ′.

3. Inductive step (φ := φ′ ∧ φ′′ for φ′, φ′′ ∈ L). Suppose that for all w ∈ W,
φ′ ∈ w if and only if MC, w |= φ′, and that for all w ∈ W, φ′′ ∈ w if
and only if MC, w |= φ′′. Further let w ∈ W. Then, φ′ ∧ φ′′ ∈ w if
and only if (φ′ ∈ w and φ′′ ∈ w), because w is maximal. Now suppose
that φ′ ∈ w and φ′′ ∈ w. Hence, MC, w |= φ′ and MC, w |= φ′′, by the
induction hypotheses, and thus MC, w |= φ′∧φ′′. Conversely, suppose that
MC, w |= φ′∧φ′′. Then, MC, w |= φ′ and MC, w |= φ′′. Hence, φ′ ∈ w and
φ′′ ∈ w, by the induction hypotheses. Thus, (φ′ ∈ w and φ′′ ∈ w) if and
only if (MC, w |= φ′ and MC, w |= φ′′). Whence φ′ ∧ φ′′ ∈ w if and only if
(MC, w |= φ′ and MC, w |= φ′′), by transitivity.

4. Inductive step (φ := M ::Ca φ
′ for M ∈M, a ∈ A, C ⊆ A, and φ′ ∈ L).

4.1 for all w ∈ W, φ′ ∈ w if and only if MC, w |= φ′ ind. hyp.

4.2 w ∈ W hyp.

4.3 M ::Ca φ
′ ∈ w hyp.

4.4 w′ ∈ W hyp.

4.5 w MCCa w
′ hyp.

4.6 { φ′′ ∈ L | M ::Ca φ
′′ ∈ w } ⊆ w′ 4.5

4.7 φ′ ∈ { φ′′ ∈ L | M ::Ca φ
′′ ∈ w } 4.3, 4.6

4.8 φ′ ∈ w′ 4.6, 4.7

4.9 MC, w
′ |= φ′ 4.1, 4.4, 4.8

4.10 if w MCCa w
′ then MC, w

′ |= φ′ 4.5–4.9

4.11 for all w′ ∈ W, if w MCCa w
′ then MC, w

′ |= φ′ 4.4–4.10

4.12 MC, w |= M ::Ca φ
′ 4.11

4.13 M ::Ca φ
′ 6∈ w hyp.

21

4.14 F = { φ′′ ∈ L | M ::Ca φ
′′ ∈ w } ∪ {¬φ′} hyp.

4.15 F is LiiP-inconsistent hyp.

4.16 there is {M ::Ca φ1, . . . ,M ::Ca φn} ⊆ w such that
`LiiP (φ1 ∧ . . . ∧ φn ∧ ¬φ′)→ ⊥ 4.14, 4.15

4.17 {M ::Ca φ1, . . . ,M ::Ca φn} ⊆ w and
`LiiP (φ1 ∧ . . . ∧ φn ∧ ¬φ′)→ ⊥ hyp.

4.18 `LiiP (φ1 ∧ . . . ∧ φn)→ φ′ 4.17

4.19 `LiiP (M ::Ca (φ1 ∧ . . . ∧ φn))→M ::Ca φ
′ 4.18, regularity

4.20 `LiiP ((M ::Ca φ1) ∧ . . . ∧ (M ::Ca φn))→M ::Ca φ
′ 4.19

4.21 M ::Ca φ
′ ∈ w 4.17, 4.20, w is maximal

4.22 false 4.13, 4.21

4.23 false 4.16, 4.17–4.22

4.24 F is LiiP-consistent 4.15–4.23

4.25 there is w′ ⊇ F s.t. w′ is maximally LiiP-consistent 4.24

4.26 F ⊆ w′ and w′ is maximally LiiP-consistent hyp.

4.27 { φ′′ ∈ L | M ::Ca φ
′′ ∈ w } ⊆ F 4.14

4.28 { φ′′ ∈ L | M ::Ca φ
′′ ∈ w } ⊆ w′ 4.26, 4.27

4.29 w MCCa w
′ 4.28

4.30 w′ ∈ W 4.26

4.31 ¬φ′ ∈ F 4.14

4.32 ¬φ′ ∈ w′ 4.26, 4.31

4.33 φ′ 6∈ w′ 4.26 (w′ is LiiP-consistent), 4.32

4.34 MC, w
′ 6|= φ′ 4.1, 4.33

4.35 there is w′ ∈ W s.t. w MCCa w
′ and MC, w

′ 6|= φ′ 4.29, 4.34

4.36 MC, w 6|= M ::Ca φ
′ 4.35

4.37 MC, w 6|= M ::Ca φ
′ 4.25, 4.26–4.36

4.38 MC, w 6|= M ::Ca φ
′ 4.14–4.37

4.39 M ::Ca φ
′ ∈ w if and only if MC, w |= M ::Ca φ

′ 4.3–4.12, 4.13–4.38

4.40 for all w ∈ W, M ::Ca φ
′ ∈ w if and only if MC, w |= M ::Ca φ

′4.2–4.39

With the Truth Lemma we can now prove that for all φ ∈ L, if 6`LiiP φ then
6|= φ. Let φ ∈ L, and suppose that 6`LiiP φ. Thus, {¬φ} is LiiP-consistent, and
can be extended to a maximally LiiP-consistent set w, i.e., ¬φ ∈ w ∈ W. Hence
MC, w |= ¬φ, by the Truth Lemma. Thus: MC, w 6|= φ, MC 6|= φ, and 6|= φ.
That is, MC is a universal (for all φ ∈ L) counter-model (if φ is a non-theorem
then MC falsifies φ).

We are left to prove that MC is also an LiiP-model. So let us instantiate our
data mining operator cla (cf. Page 10) on W by letting for all w ∈ W

msgsa(w) := { M | a kM ∈ w },

22

and let us prove that:

1. if C ⊆ C′ then MCCa ⊆ MCC
′

a

2. if M ≡a M
′ then MCCa = M ′CCa

3. if M ∈ clwa (∅) then w MCCa w

4. if w {[M]}bC
C
a w
′ then M ∈ clw

′

b (∅)

5. for all b ∈ C ∪ {a}, ({[M]}aC
C∪{a}
b ◦MCCa) ⊆ (M,b)C

C
a .

For (1), let C′ ⊆ A and suppose that C ⊆ C′. That is, C ∪ C′ = C′. Further, let
w,w′ ∈ W and suppose that w MCCa w

′. That is, for all φ ∈ L, if M ::Ca φ ∈ w
then φ ∈ w′. Furthermore, let φ ∈ L and suppose that M ::C

′

a φ ∈ w. Thus
M ::C∪C

′

a φ ∈ w by the first supposition. Since w is maximal,

(M ::C∪C
′

a φ)→M ::Ca φ ∈ w (group decomposition).

Hence M ::Ca φ ∈ w by modus ponens, and thus φ ∈ w′ by the second supposition.
For (2), suppose that M ≡a M

′. That is, for all w ∈ W, M ∈ clwa (∅) if and
only if M ′ ∈ clwa (∅). Hence for all w ∈ W, a kM ∈ w if and only if a kM ′ ∈ w
due to the maximality of w′, which contains all the term axioms corresponding
to the defining clauses of clwa . Hence for all w ∈ W, MC, w |= a kM if and only if
MC, w |= a kM ′, by the Truth Lemma. Thus for all w ∈ W, MC, w |= a kM ↔
a kM ′. Hence for all w ∈ W, a kM ↔ a kM ′ ∈ w by the Truth Lemma. Hence
the following intermediate result, called IR,

for all w ∈ W and φ ∈ L, (M ::Ca φ)↔M ′ ::Ca φ ∈ w,

by epistemic bitonicity. Further, let w,w′ ∈ W. Hence,

• w MCCa w
′ by definition if and only if

• (for all φ ∈ L, if M ::Ca φ ∈ w then φ ∈ w′) by IR if and only if

• (for all φ ∈ L, if M ′ ::Ca φ ∈ w then φ ∈ w′) by definition if and only if

• w M ′CCa w
′.

For (3), let w ∈ W and suppose that M ∈ clwa (∅). Hence a kM ∈ w due to
the maximality of w, which contains all the term axioms corresponding to the
defining clauses of clwa . Further suppose that M ::Ca φ ∈ w. Since w is maximal,

(M ::Ca φ)→ (a kM → φ) ∈ w (epistemic truthfulness).

Hence, a kM → φ ∈ w, and φ ∈ w, by consecutive modus ponens.
For (4), let w,w′ ∈ W and suppose that w {[M]}bC

C
a w
′. That is, for all φ ∈ L,

if {[M]}b ::Ca φ ∈ w then φ ∈ w′. Since w is maximal,

{[M]}b ::C∪{b}a b kM ∈ w (authentic knowledge)

23

and

({[M]}b ::C∪{b}a b kM)→ {[M]}b ::Ca b kM ∈ w (group decomposition).

Hence, {[M]}b ::Ca b kM ∈ w by modus ponens, b kM ∈ w′ by particularisation of

the supposition, and thus M ∈ clw
′

b (∅) by the definition of clw
′

b .
For (5), suppose that b ∈ C ∪ {a} and let w,w′, w′′ ∈ S. Further suppose

that w {[M]}aC
C∪{a}
b w′ (i.e., for all φ ∈ L, if {[M]}a ::

C∪{a}
b φ ∈ w then φ ∈ w′)

and w′ MCCa w
′′ (i.e., for all φ ∈ L, if M ::Ca φ ∈ w′ then φ ∈ w′′). Furthermore

suppose that (M, b) ::Ca φ ∈ w. Since w is maximal,

((M, b) ::Ca φ)→ {[M]}a ::
C∪{a}
b (M ::Ca φ) ∈ w,

as a direct consequence of nominal peer review and then the first supposition.

Hence, applying modus ponens consecutively, {[M]}a ::
C∪{a}
b (M ::Ca φ) ∈ w by the

fourth supposition, M ::Ca φ ∈ w′ by particularisation of the second supposition,
and finally φ ∈ w′′ by the third supposition.

B Application examples

With the simple but powerful language of LiiP, we can concisely express other-
wise difficult to formalise security requirements such as those arising in Access
Control (cf. [And08, Chapter 4]) and Data-Base Privacy (cf. [And08, Chap-
ter 9]).

B.1 Access Control

According to [And08, Chapter 4]:

Access control is the traditional center of gravity of computer
security. It is where security engineering meets computer science.
Its function is to control which principals (persons, processes, ma-
chines. . .) have access to which resources in the system — which
files they can read, which programs they can execute, how they share
data with other principals, and so on.

“Principals” and “resources” mean “agents” in our terminology. Access rights
can be specified by application-specific access-control policies Φ; and specific
access is then granted when certain access-authorisation credentials C are pre-
sented. These credentials are examples of application-specific base data B
(cf. Definition 1), whose validity typically is, first, temporary and thus non-
monotonic as in the case of one-time credentials and credentials revokable by
other, so-called revocation credentials, and, second, restricted to certain agent
communities C ⊆ A. Conceptually, an access-control policy can be understood
as a set Φ of implicational laws φ that together with elementary access-right
facts P constitutes a Horn-logical (cf. Prolog) or even an efficiently decidable

24

Datalog theory. In LiiP, we can formalise each elementary access-right fact as
an application-specific atomic proposition P ∈ P. An example of such a fact
is that an agent a may write-access resource r guarded by a different agent
b (acting thus as a reference monitor), which we can formalise as an atomic
proposition P1 := maywrite(a, r, b). Thus we can let C := {a, b} ⊂ {a, r, b} ⊆ A.
Naturally, agent a may then also read resource r guarded by agent b, i.e.,
φ1 := (maywrite(a, r, b) → mayread(a, r, b)). Et cetera up to φm and Pn for
some natural numbers m,n ∈ N. Now, define the resulting access-control policy
as Φ := {φi}1≤i≤m , the resulting access-control LiiP-theory over Φ as

LiiPΦ := Cl(Φ)

(where Cl is as in Definition 2), and `LiiPΦ
similarly to `LiiP. Whence the

following instance of a direct consequence of nominal peer review

`LiiPΦ ((C, b) ::Ca maywrite(a, r, b))→ {[C]}a ::Cb maywrite(a, r, b)

and the following instance of epistemic truthfulness

`LiiPΦ
({[C]}a ::Cb maywrite(a, r, b))→ (b k {[C]}a → maywrite(a, r, b)) .

Hence by transitivity of logical implication,

`LiiPΦ
((C, b) ::Ca maywrite(a, r, b))→ (b k {[C]}a → maywrite(a, r, b)) .

This means that if it is commonly accepted in C that (C, b) can prove to (and
thus inform) a that a may write-access r guarded by b, then if further b knows
{[C]}a (through a presenting {[C]}a to b, since only a can generate her own
signature), then indeed a may write-access r—and the guard b knows that (due
to Fact 1) and thus will grant a the requested access. Actually b will also grant
a read-access since according to the policy Φ, write access implies read access:

`LiiPΦ ((C, b) ::Ca maywrite(a, r, b))→ (b k {[C]}a →
(maywrite(a, r, b) ∧mayread(a, r, b))) .

Note that we could refine our arguably rough policy Φ with respect to agent
roles and thus specify a refined policy Φ′. For example, we could specify that
Φ ⊆ Φ′ and that for all x, y ∈ C, guest(x) ∈ P and host(y) ∈ P as well as
((guest(x) ∧ host(y)) → mayread(x, r, y)) ∈ Φ′, (host(y) → maywrite(y, r, y)) ∈
Φ′. Et cetera. Orthogonally to agent roles, we could refine Φ with respect
to agent clearances and corresponding resource classifications (cf. Information
Flow Control [And08, Section 8.3.1–2]) and thus specify a refined policy Φ′′.
For example we could specify that Φ ⊆ Φ′′ and that for all a ∈ A (and thus
for all resources r), topsecret(a), secret(a), confidential(a), unclassified(a) ∈ P as
well as (topsecret(a) → secret(a)) ∈ Φ′′, (secret(a) → confidential(a)) ∈ Φ′′,
((topsecret(a)
∧ topsecret(r)) → maywrite(a, r, b)) ∈ Φ′′, and ((topsecret(a) ∧ (secret(r) ∨
confidential(r) ∨ unclassified(r))) → mayread(a, r, b)) ∈ Φ′′. Et cetera for other,
so-called no-read-up and no-write-down/up requirements.

25

B.2 Data-Base Privacy

An important example of a resource is a relational data-base, say a medical
data-base d, over application-specific atomic pieces of content data B (cf. Defi-
nition 1). Note that d typically evolves, whence the point of non-monotonicity.
Then, each unary relation in the data-base d can be understood as a finite
(sub)set of content data B, each binary relation as a finite set of ordered pairs
(B,B′) of data B and B′, each relation of higher finite arity as a finite set of
such pairs of pairs, and the content of d as a finite set of such relations (finite
sets). Finally, finite sets can be coded as data pairs and thus the entire content
D of d can be understood as a subset of M over the atomic data B. Now,
data-base privacy with respect to the data-base d means that certain agents a
must not be able to infer certain facts φ from d (cf. Inference Control [And08,
Section 9.3]). In order to meet this privacy requirement, certain atomic data B
in D are blinded (e.g., replaced by some dummy datum), resulting in a new, par-
tially blinded content D′ ⊆M′. The privacy requirement can now be formalised
in the language of LiiP by simply stipulating that for all M ∈M′,

¬(M ::∅a φ) .

The requirement could be proved by induction over the well-structured data.

26

