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Abstract. We consider infinite-state turn-based stochastic gamewmfptay-
ers,0 and ¢, who aim at maximizing and minimizing the expected totalasiv
accumulated along a run, respectively. Since the totalmatated reward is un-
bounded, the determinacy of such games cannot be dedueadydfrom Mar-
tin’s determinacy result for Blackwell games. Neverthslege show that these
gamesare determined both for unrestricted (i.e., history-depen@ea random-
ized) strategies and deterministic strategies, and thiilagum value is the same.
Further, we show that these games are genenaltyletermined for memoryless
strategies. Then, we consider a subclass-@ihitely-branchinggames and show
that they are determined for all of the considered stratgggd, where the equi-
librium value is always the same. We also examine the existemd type of
(e-)optimal strategies for both players.

1 Introduction

Turn-based stochastic games of two players are a standatdl mbdiscrete systems
that exhibit both non-deterministic and randomized cho@ee player (calleada or
Max in this paper) corresponds to the controller who wisbeschievgmaximize some
desirable property of the system, and the other playerg@all or Min) models the
environment which aims at spoiling the property. Randoohid®oice is used to model
events such as system failures, bit-flips, or coin-tossimgmndomized algorithms.
Technically, a turn-based stochastic game (SG) is definadlaected graph where
every vertex is either stochastic or belongs to one of thepglapers. Further, there is a
fixed probability distribution over the outgoing transit@of every stochastic vertex. A
play of the game is initiated by putting a token on some vertexnJtie token is moved
from vertex to vertex by the players or randomly.s&kategyspecifies how a player
should play. In general, a strategy may depend on the segqud#nertices visited so
far (we say that the strategyligstory-dependent (Bl)and it may specify a probability
distribution over the outgoing transitions of the currgntisited vertex rather than a
single outgoing transtion (we say that the strategsaredomized (R) Strategies that
do not depend on the history of a play are caiieemoryless (M)and strategies that
do notrandomize (i.e., select a single outgoing transjta calleddeterminisctic (D)
Thus, we obtain the MD, MR, HD, and HR strategy classes, wH&@are unrestricted
strategies and MD are the most restricted memoryless digtistio strategies.
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A game objectivés usually specified by paygf functionwhich assigns some real
value to every run (infinite path) in the game graph. The aiflajero is to maximize
the expected payf) while Player® aims atminimizingit. It has been shown in[22]
that forboundedandBorel paydt functions, Martin’s determinacy result for Blackwell
games|[283] implies that

sup inf EJ”"[Payqgf] = inf sup EJ”[Payqf] 1)
oeHRy meHR meHR, o0eHRy

where HR, and HR; are the classes of HR strategies for Playand Playek>, respec-
tively. Hence, every vertexhas aHR valueValpr(v) specified by[(IL). A HR strategy is
optimalif it achieves the outcome \gk(V) or better against every strategy of the other
player. In general, optimal strategies are not guaranteeist, but[(1) implies that
both players have-optimal HR strategies for every > 0 (see Sectiohl2 for precise
definitions).

The determinacy results of [23)22] cannot be appliedrniboundechaydf func-
tions, i.e., these results do not imply tHat (1) holdBafygf is unbounded, and they do
not say anything about the existence of a value for restfstimtegy classes such as MD
or MR. In the context of performance analysis and contrafethesis, these questions
rise naturally; in some cases, the players cannot randaniznember the history of a
play, and some of the studied pdl/functions are not bounded. In this paper, we study
these issues for thetal accumulated rewargaydt function andnfinite-stategames.

The total accumulated reward pdlfunction, denoted bycg, is defined as follows.
Assume that every vertex is assigned a fixed non-negative rewad). ThenAcc
assigns to every run the sum of rewards all vertices visitedgathe run. Obviously,
Accis unbounded in general, and may even takecthealue. A special case of total
accumulated reward termination timewhere all vertices are assigned reward 1, except
for terminal vertices that are assigned reward 0 (we alsanasghat the only outgoing
transition of every terminal vertedis a self-loop ort). Then,Ey"[Acd corresponds to
the expected termination time under the strategies Another special (and perhaps
simplest) case of total accumulated rewardedachability, where the target vertices
are assigned reward 1 and the other vertices have zero réherel we assume that
every target vertex has a single outgoing transition to aiapstates with zero reward,
wheres— sis the only outgoing transition of). Although the reachability paybis
bounded, some of our negative results about the total adeteadureward hold even for
reachability (see below).

The reason for considering infinite-state games is that nnaognt works study
various algorithmic problems for games over classical mat@a-theoretic models, such
as pushdown automata [15/16,17.14,9,8], lossy channeragq3,2], one-counter au-
tomata [7.5.6], or multicounter automafta [18[11,10,2l 2vhich are finitely rep-
resentable but the underlying game graph is infinite and sorae even infinitely-
branching (see, e.gl, [11]10/21]). Since the propertiésité-state games doot carry
over to infinite-state games in general (see, €.gl, [20§) atbove issues need to be re-
visited and clarified explicitly, which is the main goal ofdtpaper.

Our contribution: We consider general infinite-state games, which may contain
vertices with infinitely many outgoing transitions, ardfinitely-branching games,



where every vertex o/, has finitely many outgoing transitions, with the total accu-
mulated reward objective. Fgeneralgames, we show the following:

— Every vertex has both a HR and a HD value, and these valueqaﬂ.e

— There is a vertex of a gameG with reachability objective such thathas neither
MD nor MR value. Further, the gant&has only one vertex (belonging to Player
with infinitely many outgoing transitions.

It follows from previous works (see, e.gl,ll[8/20]) that opal strategies in general
games may not exist, and even if they do exist, they may regufinite memory. Inter-
estingly, we observe that an optimal strategy for Playéf it exists) may also require
randomization in some cases.

For ¢-finitely-branchinggames, we prove the following results:

— Every vertex has a HR, HD, MR, and MD value, and all of theseesre equal.
— Player< has an optimal MD strategy in every vertex.

It follows from the previous works that Playermay not have an optimal strategy and
even if he has one, it may require infinite memory. Let us rfwdéin finite-state games,
both players have optimal MD strategies (see, €.al, [19]).

Our results are obtained by generalizing the argumentsfchability objectives
presented in[8], but there are also some new observaticesitem original ideas and
new counterexamples. In particular, this applies to theterice of a HD value and the
non-existence of MD and MR values in general games.

2 Preliminaries

In this paper, the sets of all positive integers, non-nggatitegers, rational numbers,
real numbers, and non-negative real numbers are denotéd by, Q, R, andR=°,
respectively. We also ugz? to denote the sé=° U {0}, where is treated according
to the standard conventions. For alk R0 ande € [0, ), we define thdower and
uppere-approximation ot, denoted by e ¢ andc @ ¢, respectively, as follows:

cde = c+¢ forallceR2%ande € [0, ),

coe = c—¢ forallce R0 andes € [0, ),
ooe = 1/e foralle e (0, ),
0060 = oo.

Given a seV, the elements ofRz%)V are written as vectors, y, .. ., wherex, denotes
thev-component ok for everyv € V. The standard component-wise ordering @z’
is denoted by.

For every finite or countably infinite s, a binary relation» € M x M is total if
for everym € M there is som& € M such thaim — n. A finite pathin M = (M, —)

1 For a given strategy typ& (such as MD or MR), we say that a vertexhas aT valueif
SURyct,, iNfrer, BV [Paygf] = infrer, SUR..r, BV [Paydf], whereT, andT,, are the classes
of all T strategies for Playen and Playek>, respectively.



is a finite sequenc® = m, ..., Mg such thaim — my; for everyi, where 0< i < k.
Thelengthof w, i.e., the number of transitions performed alands denoted byw|. A
runin M s an infinite sequence = my, my, ... every finite prefix of which is a path.
We also useu(i) to denote the elementy of w, andw; to denote the rum, m4, ...
Givenm,n € M, we say thah is reachablefrom m, writtenm —* n, if there is a finite
path frommto n. The sets of all finite paths and all runsin are denoted biFpath(M)
andRun(M), respectively. For every finite patty we useRun(M, w) andFpath(M, w)
to denote the set of all runs and finite paths, respectivedfixed byw. If M is clear
from the context, we write jufRun Rur(w), FpathandFpath(w) instead ofRun(M),
RunM, w), Fpath(M) andFpath(M, w), respectively.

Now we recall basic notions of probability theory. L&tbe a finite or countably
infinite set. A probability distributionon A is a functionf : A — R=% such that
>aea f(8) = 1. A distribution f is rational if f(a) € Q for everya € A, positiveif
f(a) > O for everya € A, Dirac if f(a) = 1 for somea € A, anduniformif A s finite
andf(a) = |_2§\ for everya e A. A o-fieldover a seK is a setF ¢ 2X that includesX and
is closed under complement and countable uniome@asurable spade a pair &, )
whereX is a set calledample spacand¥ is ac-field overX. A probability measure
over a measurable spacg ) is a function : ¥ — R=C such that, for each countable
collection{X;}ic| of pairwise disjoint elements &F, P(Uia Xi) = Xial P(Xi), and more-
overP(X) = 1. A probability spaces a triple X, ¥, #) where &, ¥) is a measurable
space ané is a probability measure oveX(¥).

Definition 1. A stochastic gamis a tuple G= (V, —, (Va, Vs, Vo), Prob) where V is
a finite or countably infinite set ofertices — < V x V is a totaltransition relation
(Va, Vo, Vo) is a partition of V, and Prob is grobability assignmenwhich to each
Vv € V> assigns a positive probability distribution on the set efautgoing transitions.
We say that G i>-finitely-branchingf for each ve V., there are only finitely many
u €V such that v- u.

Strategies. A stochastic gam& is played by two playersy and ¢, who select the
moves in the vertices &f; andV,,, respectively. Leb € {O, ¢}. A strategyfor Playero

in G is a function which to each finite path @ ending a vertexw € V. assigns a
probability distribution on the set of outgoing transitsoof v. We say that a strategy

is memoryless (Mif 7(w) depends just on the last vertexwf anddeterministic (D)

if it returns a Dirac distribution for every argument. Ségies that are not necessarily
memoryless are calledistory-dependent (H)and strategies that are not necessarily
deterministic are callecandomized (R)Thus, we obtain the MD, MR, HD, and HR
strategy typesThe set of all strategies for Playerof type T in a gameG is denoted
by TS, or just by T, if G is understood (for example, MRienotes the set of all MR
strategies for Playen).

Every pair of strategieso(n) € HR; x HR,, and an initial vertex determine a
unique probability spaceRun(v), ¥, Py”), where¥ is the o-field over Rurn(v) gen-
erated by allRur(w) such thatw starts withv, and#y”" is the unique probability
measure such that for every finite path = vy,..., initiated in v we have that

Py (Run(w)) = I7}x, wherex is the probability ofv; — vi.; assigned either by



o(Vo, ..., V), n(vo,...,V), or Prob(v;), depending on whether belongs toVg, V,,
or Vo, respectively (in the case whér= 0, i.e.,w = v, we putPy”(Rur(w)) = 1).

Determinacy, optimal strategies. In this paper, we consider games with tb&al accu-
mulated rewardbjective andeachabilityobjective, where the latter is understood as a
restricted form of the former (see below).

Letr : V — R=% be areward function andAcc : Run— R2° a function which to
every runw assigns theotal accumulated reward A¢@) = 2, r(w(i)). LetT be a
strategy type. We say that a vertex V has a T-valuén G if

supinf EJ"[Acd = inf supEJ"[Acd

€Ty neTy, €Ty o€Ty

where Ey”"[Acd denotes the expected value Atcin (Run(v), #,PJ”). If v has a
T-value, then Val(v,r,G) (or just Vak(v) if G andr are clear from the context) de-
notes theT -value of wdefined by this equality.

Let G be a class of games. If every vertex of evére G has aT-value for every
reward function, we say thgtis T -determinedNote thatAccis generally not bounded,
and therefore we cannot directly apply the results ol [2Bt@2onclude that the class
of all games is HR-determined. Further, these results deayptnything about deter-
minacy for the other strategy types even for bounded objeftinctions.

If a given vertexv has aT-value, we can define the notion gfoptimal T strategy
for both players.

Definition 2. Let v be a vertex which has a T-value, anddet 0. We say that

— o € Tgise-T-optimalin v if Ej”"[Acqd > Valr(v) e eforall 7 € T,;
— m €T, ise-T-optimalin v if Ey"[Acd < Valt(v) @ ¢ for all o € Tp.

A O-T -optimal strategy is called -bptimal

In this paper we also considexachabilityobjectives, which can be seen as a re-
stricted form of the total accumulated reward objectivé®ihuced above. A “standard”
definition of the reachability paybfunction looks as follows: We fix a s&® C V of
target vertices, and define a functidReach: Run — {0, 1} which to every run as-
signs either 1 or 0 depending on whether or not the run visierget vertex. Note
thatEy”"[Reach is the probability of visiting a target vertex in the corresponding play
of G. Obviously, if we assign reward 1 to the target vertices atwltBe others, and re-
place all outgoing transitions of target vertices with aygrtransition leading to a fresh
stochastic vertex with reward 0 and only one transitian— u, thenEy"[Reachin the
original game is equal tB]"[Acd in the modified game. Further, if the original game
was ¢-finitely-branching or finite, then so is the modified gameei#iore, all “posi-
tive” results about the total accumulated reward objedivg., determinacy, existence
of T-optimal strategies, etc.) achieved in this paper carry twehe reachability ob-
jective, and all “negative” results about reachabilityrgasver to the total accumulated
reward.
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Fig. 1. Playero has an MR-optimal strategy ¥ but no HD-optimal strategy im. All vertices
are labelled by pairs of the formertex namaeward

3 Results

Our main results about the determinacy of general stochgatnes with the total ac-
cumulated reward paybfunction are summarized in the following theorem:

Theorem 3. LetG be the class of all games. Then

a) G is both HR-determined and HD-determined. Further, for gwaartex v of every
G € G and every reward function r we have thé&lyr(v) = Valyp (V).

b) G is neither MD-determined nor MR-determined, and theselte$wld even for
reachability objectives.

An optimal strategy for Playan does not necessarily exist, everGfis a game with

a reachability payf function such tha¥, = 0 and every vertex o¥/; has at most
two outgoing transitions (see, e.d.18,20]). In fact, iffisaes to consider the verterof
Fig.[2 where the depicted game is modified by replacing theexerwith a stochastic
vertexu’, whereu’ — U’ is the only outgoing transition af, andu’ is the only target
vertex (note that all vertices in the first two rows become=sacnhable and can be safely
deleted). Clearly, Vak(v) = 1, but Playeo has no optimal strategy.

Similarly, an optimal strategy for Player may not exist even ¥/ = 0 [8J20]. To
see this, consider the vertexf Fig.[2, wherd is the only target vertex and the depicted
game is modified by redirecting the only outgoing transitibip back tou (this makes
all vertices in the last two rows unreachable). We have tlahirp¢u) = 0, but Player>
has no optimal strategy.

One may be also tempted to think that if Plage¢or Playero) hassomeoptimal
strategy, then he also has an optimal MD strategy. Howepémal strategies generally
requireinfinite memoryeven for reachability objectives (this holds for both playe
Since the corresponding counterexamples are not comptetedl, we refer to[20] for
details. Interestingly, an optimal strategy for Plageanay also requireandomization
Consider the vertex of Fig.[d. Leto* € MRy be a strategy selecting— g, with
probability 1/2". SinceV,, = 0, we have that infyr, E] "[Acd = o = Valyr(V).
However, for everyr € HD, we have that infopr, Ev"[Acd < co.



For ¢-finitely-branching games, the situation is somewhéedent, as our second
main theorem reveals.

Theorem 4. Let G be the class of allo-finitely-branching games. Theg is
HR-determined, HD-determined, MR-determined, and M@meihed, and for every
vertex v of every G G and every reward function r we have that

VaIHR(v) = VaIHD(v) = Va'MR(V) = VaIMD(v) .

Further, for every Ge G there exists a MD strategy for Player which is optimal in
every vertex of G.

An optimal strategy for Player may not exist in0-finitely-branching games, and even
if it does exist, it may require infinite memory [20].

Theorem§&13 arld 4 are proven by a sequence of lemmas presetaedfor the rest
of this section, we fix a stochastic gaGe= (V, —, (Vu, Vo, Vo), Prob) and a reward
functionr: V — R20. We start with the first part of Theordm 3 (a), i.e., we show tha
every vertex has a HR-value. This is achieved by definingtalsiei Bellman operatdr
and proving that the least fixed-pointlofs the tuple of all HR-values. More precisely,
letL: (R2%)V — (R29)V, wherey = L(x) is defined as follows:

r(v) + SUp_ Xv if ve Vg
Y =41 (V) +infy_y Xy if ve Ve
r(\v) + Yvov Xv - Prob(v)(v,v) if ve Vp.

A proof of the following lemma can be found in Appendik A. Sopeats of this proof
are subtle, and we also need to make several observatidras¢haseful for proving the
other results.

Lemma 5. The operator L has the least fixed pokufw.r.t. C) and for every \e V we
have that

Ky = sup inf EJ"[Acd = inf supEJ”"[Acd = Valur(v).
oeHRy meHR neHR, oeHRy

Moreover, for every > 0 there isn, € HD,, such that for every ¥ V we have that
SUR,epr, Bv™ < Valur(V) ® &.

To complete our proof of Theorefd 3 (a), we need to show theteais of a
HD-value in every vertex, and demonstrate that HR and HDeshre equal. Due to
Lemma5, for every > 0 there ist, € HD,, such thatr, is e-HR-optimal in every
vertex. Hence, it dtices to show the same for PlayerThe following lemma is proved
in AppendiXB.

Lemma 6. For everye > 0, there iso, € HDg such thato, is e-HR-optimal in every
vertex.

The next lemma proves Item (b) of Theorgm 3.



Lemma 7. Consider the vertex v of the game shown in Hg. 2, where t isihetarget
vertex and all probability distributions assigned to stastic states are uniform. Then

(@) SUR,emp,, infzemp, Ev'[Reach = SUR,emr,, infremr, By [Reach = 0;
(b) infremp,, SUR,evp, Bv [Reach = infrevr, SUR,aur, BV "[Reach = 1.

Proof. We start by proving item (a) for MD strategies. Let € MDg. We show that
infemp, E\T*’”[Reacﬂ! = 0. Let us fix an arbitrarily smakt > 0. We show that there

is a suitabler* € MD,, such thatE] ” [Reach < &. If the probability of reaching
the vertexu from v under the strategy™ is at moste, we are done. Otherwise, lgt

be the probability of visiting the vertexfrom v under the strategy without passing
through the verten. Note thatps > 0 andps does not depend on the strategy chosen by
Player¢. The strategyr™ selects a suitable successomuasuch that the probability:

of visiting the vertext from u without passing through the vertexsatisfiesp;/ps < &
(note thatp; can be arbitrarily small but positive). Then

EJ " [Reach < Z(l -p)p = d=pp
i=1 Ps
For MR strategies, the argument is the same.

Item (b) is proven similarly. We show that for af € MD,, and 0< ¢ < 1 there
exists a suitable™* € MD, such thaEJ ™ [Reach > 1 — . Let p; be the probability of
visiting t from u without passing through the vertexunder the strategy*. We choose
the strategy* so that the probabilitps of visiting the vertexs from v without passing
through the vertex satisfiesps/p: < €. Note almost all runs initiated ia eventually
visit eithersort under ¢, 7). Since the probability of visiting is bounded by (the
computation is similar to the one of item (a)), we obt&fn™ [Reach > 1 — &. For MR
strategies, the proof is almost the same. O

We continue by proving Theorei 4. This theorem follows imiatdy from
Lemmd5 and the following proposition:

Proposition 8. If G is ¢-finitely-branching, then

1. for allve V ande > 0, there iso, € MDg such thatr, is e-HR-optimal in v;
2. there ist € MD,, such thatr is HR-optimal in every vertex.

As an immediate corollary to Propositibh 8, we obtain théofeing result:

Corollary 9. If G is ¢-finitely-branching, ¥ is finite, and every vertex of\has finitely
many successors, then thereri€ MDg such thatr is HR-optimal in every vertex.

Proof. Due to Propositionl8, for every vertexand everg > 0, there isr, € MDg such
thato, is e-HR-optimal inv. SinceVy is finite and every vertex dfy has only finitely
many successors, there are only finitely many MD-stratefsiedlayer o. Hence,
there is a MD strategy that ise-HR-optimal inv for infinitely manye from the set
{1,1/2,1/4,...}. Such a strategy is clearly HR-optimalinNote thair- is HR-optimal
in every vertex which can be reached fremndero- and some strategyfor Playero.
For the remaining vertices, we can repeat the argument rarsdeventually produce a
MD strategy that is HR-optimal in every vertex. O
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Fig. 2. A game whose vertexhas neither MD-value nor MR-value.

Hence, if all non-stochastic vertices have finitely manycsissors ani; is finite,
then both players have HR-optimal MD strategies. This casdem as a (tight) gener-
alization of the corresponding result for finite-state gafi€l].

The rest of this section is devoted to a proof of Proposftiows8 start with Itenfi L.
The strategyr. is constructed by employing discounting. Assume, w.l,dhgt rewards
are bounded by 1 (if they are not, we may split every statgth a rewardr(v) into a
sequence ofr(v)] states, each with the rewar¢)/[r(v)]). Given € (0, 1), define
Acc' : Run— R0 to be a function which to every run assignsAccl(w) = Y20 A' -

r(w(i))-

Lemma 10. For A syficiently close to one we have that

sup inf ES"(Acc) > Valgr(V)o =
oeHRy meHR, 2

Proof. We show that for every > 0 there isn > 0 such that the expected reward that
Playera may accumulate up to steps iss-close to Valir(v) no matter what Playet

is doing. Formally, definécq : Run — R0 to be a function which to every run
assighAcq(w) = Z:(:o r(w(i)). The following lemma is proved in AppendiX C.

Lemma 11. If G is ¢-finitely-branching, then for every&/V there is ne N such that

sup inf EJ”"(Acg) > VaIHR(v)eE
oeHR, 7eHR, 4

Clearly, if 1 is close to one, then for every runwe have that

AcCl(w) > Acq(w)—z



Thus,

sup inf EJ"(Acc)) >  sup inf Eg’"(ACCh)—E > VaIHR(v)ef
oeHR, meHR, oeHR, meHR, 4 2

This proves Lemmal0. O
So, it sufices to find a MD strategy . satisfying

inf EJ*"(Acc') > sup inf E”(Accl)——
7eHR, oeHR, eHR,

We define such a strategy as follows. Let us fix s@neaN satisfying

¢ &
-1 r\r)e%xr(v) < 3

Intuitively, the discounted reward accumulated aftsteps can be at mo§t In a given
vertexv € Vg, the strategyr. chooses a fixed successor ventesatisfying

sup inf EJ"(Acc') > sup sup inf E”(Accl)——
oeHR, 7eHR, Vo oeHR, 7€H t-4

Now we show that

inf EJ>"(Acc') > sup inf E””(Ac&)——
7eHR, oeHRg meHR,

which finishes the proof of Itefd 1 of Propositidh 8.

For everyk € N we denote by a strategy for Playen defined as follows: For
the firstk steps the strategy makes the same choices. ase., chooses, in each state
V € Vg, a next state satisfying

sup inf EJ"(Acc) > sup sup |nf E‘”(Acdl)——

geHRy meHR,, v—Uu 0c€HRy neH

Fromk+1-st step on, say in a statethe strategy follows some strateggatisfying

it ES"(Acc) > sup it E”(Acc‘)——
neHR,

oeHR, 7€H
A simple induction reveals that satisfies

inf EJ"(Acc') >  sup inf E”(Acc*)—g 2)

oeHR, 7€H

(Intuitively, the error of each of the fir&tsteps is at mosg; and thus the total error of
the firstk steps is at most- (& = . The rest has the error at mgsand thus the total

error is at mos& )
We considek = ¢ (recall thatA~ - maxey r(v) < £). Then

H % 4 H Tk _f o _ &
ﬂelnLOEv (Acc) > nelﬂLOE" (Acc) 5 = sup |nf EJ™(Acc') 2

oeHR, 7€H

10



Here the first equality follows from the fact that behaves similarly to-. on the first
k = ¢ steps and the discounted reward accumulatedlagtps is at mos}. The second
inequality follows from Equatiori{2).

It remains to prove Iterl2 of Propositidh 8. The MD strategyan be easily con-
structed as follows: In every states V,,, the strategyr chooses a succesaominimiz-
ing Valyr(u) among all successors ef We show in AppendikD that this is indeed an
optimal strategy.

4 Conclusions

We have considered infinite-state stochastic games withotiaéaccumulated reward
objective, and clarified the determinacy questions for tRe HD, MR, and MD strat-
egy types. Our results are almost complete. One naturatiqneghich remains open
is whether Playen needs memory to plagrtHR-optimally in general games (it follows
from the previous works, e.gL,/[8,20], thaHR-optimal strategies for Player require
infinite memory in general).
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Technical Appendix

A Proof of Lemmal8

Lemmal5. The operator L has the least fixed pokit(w.r.t. C) and for every \e V we
have that
Ky = sup inf EJ"[Acd = inf sup EJ"[Acd = Valur(V).
oeHRy meHR meHR oeHRy

Moreover, for every > 0 there isn, € HD,, such that for every ¥ V we have that
SUR,epr, Bv™ < Valur(V) © &.

The partially ordered setgg%)V, ), whereC is a standard componentwise order-
ing, is a complete lattice. Moreover, from the definitiorLofre can easily see théatis
monotonic, i.eL(x) C L(x’) whenevex C x’. Thus, by the Knaster-Tarski theorem the
operatolL has the least fixed point, which we denotekoy

In order to prove thaK, = Valyr(v) for everyv € V, it suffices to prove the follow-
ing:

YweV: Ky< sup inf EJ™(Acg < inf  sup EJ"(Acg < K,. 3)
oeHR, meHR,, neHRy oceHRy
The second inequality holds trivially, so itffices to prove the remaining ones.

To prove the first inequality, it $ices to show that the vect8re (R2°)V defined by
S/ = SURepr, INfreHr, Ey”™(Acg is a fixed point olL. SinceK is the least fixed point of
L, the inequality then follows. So lete V be arbitrary. We will show thdt(S), = S,.

If v e Vg, then we have to show that

L(S)y =r(u) + sup sup inf EZ"(Acg = sup inf EJ"(Acq = S..
v—V 0€HRy neHR, oeHRy meHR,
Assume, for the sake of contradiction, that the equalitysduoat hold, i.e. that either
L(S)y < Sy orL(S)y > S,. If L(S)y > S, then there is a transition— V' and a strategy
o’ € HRg such thatr(u) + infreqr, Ey, “(ACQ > SUR g, iNfrenr, Ev™(ACQ. If we
denote by’ the strategy that moves from the initial vertexo v/ with probability 1
and then starts to behave exactly like the strategyhen we obtain
: o’ — : o’ H o, > o’

”€|an;{<> EJ "(Acg =r(u) + ”€|an;{<> E;, "(AcQ > JEEFED nlerI]ILo EJ"(Aco > ne'HEO EJ "(Aco,
a contradiction. So assume thg6), < S,. Then there is somg&> 0 and some function
f: HRy x V — HR,, such that for every transition— v’ and everyr € HR; we have
r(u) +E§;’f(""/) < S,©4. For any strategy- we denote by! the probability the strategy
o assigns to transitiom — V' in a game starting in. Then we can write

sup inf EJ”"(Acg =r(u)+ sup inf Z py - EZ"(AcO

oeHRy meHR,, oeHRy meHR,, VoV

<r(u)+ sup Z pr - EZV)(Acg < S, 06
oeHRy Vv

<S,= sup |rH]fR EJ™(Aco),

oeHR, T€ARo
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again a contradiction.
Forv € V, the proof is dual to the proof for € Vg, so we omit it. Finally, for
v e Vo we have

sy =rw+ Y Prob(v)(v,V)-( sup int Eg;ﬂ(Acq)

= sup inf [r(u)+ZProb(v)(v,\/)Eg’”(Acc)): sup inf EJ”(Aco = S..

oeHRy meHR,, yaRy) oeHRy meHR,,

This concludes the proof th&is a fixed point ofL and thus also the proof of the first
inequality in [3).

It remains to prove the third inequality ibl(3). To this end preve that for every
€ > O there is a strategy. € HD,, such that for every € V we have sup.,;z Ey™ <
Ky + &. Note that this will also prove the second part of the lemma.

If Ky = o0, then the desired inequality holds trivially for any stateof playerd
(and particularly for every € HD,). So assume that, is finite and fix arbitrary > 0.
We define the strategy. as follows: letwu be any finite path withu € V,,. SinceK is a
fixed point ofL, there must be a successoviof u such that (u) + Ky < K + g/2Wu+1,
We setr.(w) to be a Dirac distribution that selects the transitioe u” with probability
1.

We will now prove the following lemma, that not only showsttltfae strategyr,
has the desired property, but it will also be useful later.

Lemma 12. Lete > 0 be arbitrary and letr, be any deterministic strategy of player
¢ that has the following property: for every finite path wu $itag in v and ending in
u € V,, the transition u— u’ selected byr.(wu) satisfies (u) + Ky < Ky + g/2Wu+L,
Thensup,.pr, BV (AcQ < K, +&.

Proof. We will prove that for every, everyn € Ny and every strategy of playerc
we haveEy™ (3L, w(i)) < Ky + &. By the monotone convergence theorem this means
thatEy™ (Acg < K, + ¢ for everyo, and thus also syp,r_ Ev™(AcQ < K, +&.

So let us fix arbitrary, n and o. Recall thatE]”[X|Y] denotes the conditional

expectation of random variabk given the evenY. We show that for every & k < n
and every finite pathv = vy, .. ., vk we have

B0 o) |Rur@)] < Ky + Y /2%
i=k i=k

In particular, this means th&{™ (3L, w(i)) = Ev ™[ 2Ly r(w(i)) | Run(v)] < Ky + &.
We proceed by downward induction &nlf n = k, then we trivially have

n
E&"”‘?[Z r(w(®) | Rurw)] = r(vi) < L(K)y, = Ky,
i=k
where the inequality follows from the definition bf
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Now suppose that < n. We distinguish two cases. ¥ € V., denote byu the
successor ofi chosen byr.. Then we have

Byl r(w() | Rurtw)] = r(v) + E7[ 3, r(w(i) | Rurwi)]
i=k

i=k+1

n
<r(vi) + Ky + Z g2+t
i=k+1

n
<Ky + Y &/2",
i=k

where the inequality on the second line follows from indoicthypothesis and the in-
equality on the third line follows from the definition of.

If W € Vo U Vo, then we can see thaky™[>, r(w()) | Runw)] =
Yviou Pu - B[ XL, T (w(i)) | Rur(wu)] for some sequence of real numbepg)(, .,
s.t. p, = 0 for everyu and },,,,pu = 1. By induction hypothesis we have
E7%[ 3N, o r(w(i)) | Runwy)] < Ky + 3, &/2 for everyv— u. Finally, from
the definition ofL we obtainK,, = L(K)y, > >\, _,, Pu- Ky (the inequality can be strict
only if v e V). Together, we have

ES’”S[ZI; r(w(@) | RUMW)] < Ky + " 8/2*1 < Ky, + Z_I(:s/zi+1.

i=k+1

This finishes the proof of Lemnia 5.

B Proof of Lemmalg

Lemmal8. For everye > 0, there iso, € HDy such thaio, is e-HR-optimal in every
vertex.

Lete > O be arbitrary. It sffices to fix an arbitrary initial vertex, define choices
of the strategyr, only on the finite paths starting mand verify, that the resulting
strategy iss-HR-optimal inv. By repeating this construction for every V we obtain
a strategy that is-HR-optimal in every vertex.

For the sake of better readability, we first present the etaionstruction of the
deterministice-HR-optimal strategyr, for games in which the HR-value is finite in
every vertex. Almost identical construction can be usedyfomes with arbitrary HR-
values; there are some subtle technicledences that will be presented in the second
part of the proof.

We already know that the least fixed pokof the operatot is equal to the vector
of HR-values. Moreover, from the standard results of thedfigeint theory (see, e.g.,
Theorem 5.1 in[[13]) we know that = L*(0) for some ordinal number (where0O
is the vector of zeros and where the transfinite iteratioh & defined in a standard
way, i.e. we pul?(0) = sup,. L7(0) for every limit ordinalg). The following lemma
is instrumental in the construction of.
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Lemma 13. Let ¢ > 0 be arbitrary. Denote byr the ordinal number such that
L?(0)y, = Valyr(v) and denote by Ordthe set of all ordinal numbers lesser than or
equal toa. Then there is a labeling function d~path(v) — Ord, satisfying the follow-
ing conditions:

(a) d(v) = a.
(b) For every wue Fpath(v) it holds either qw) = 0 or d(wu) < d(w).
(c) For every wue Fpath(v), we have

r(u) + LYWu(Q),, for some u— U’ ifue Vg
r(u) + inf_, LYW (0),, ifue Ve
r(u) + Yy Prob(u)(u, u’) - LI @©),  ifue V.

dwiygy _ _ &
| dwu (O)U oW+ <

Proof. We define the labelind inductively, proceeding from the shorter paths to the
longer ones. Obviously we sdfv) = a. Now suppose thad(wu) has already been
defined. We will defined(wuu) for all successors’ of u simultaneously. First let us
assume thatl(wu) is a successor ordinal of the forf+ 1. Then it siffices to put
d(wuu) = g for all successorg’ of u. From the definition oL we can easily see that
for everys > 0 it then holds

r(u) + L?(0)y, for someu— u if ue Vg
LA0)y — 6 < {r(U) +inf,_y LAO)y if ue Ve
r(u) + 3y Probu)(u,u) - LA(0)y if ue Vo,

so in particular the inequality in (c) holds famu.

Now let us assume tha{wu) is a limit ordinal. TherL4")(0), = sup, g L?(O)u.
This means that therejs< d(wu) such that.%"¥(0), — £/2"4+2 < L7(0),. Clearly, we
can assume that = B8 + 1 fore some ordings. Now we again sed(wuu) = g for all
successorg’ of u. Using the argument from the previous paragraph with g/2\W!+2
we obtain

r(u) + L#(0),, for someu— u’ if ue Vg
r(u) +inf,_, L)y if ueV,
r(u) + Yusy Prob(u)(u, u) - LP(Q)y  if ue Vo,

&

d(wu) -z
L (0)u 2lwui+1

so (c) again holds fowu.
Finally, if d(wu) = 0, then we setl(wuu) = 0O for all successong’ of u. In this way,
we eventually defind(w) for every finite path starting iw. It is obvious that satisfies

(a)—(c). O

We use the labelind provided by the previous lemma to define #&lR-optimal
HD strategyr,. of playero. For a given finite pativuthe strategyr, selects a transition
u— " such thatL4"¥(0), — g/2"4+1 < r(u) + LIWU)(0),. Such a transition always
exists due to the previous lemma. We now prove that the giratg is e-HD-optimal
in v. We will actually prove a more general statement, that wérilse later.
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Lemma 14. For every runw denote byr(w) the least k such that(eh(0), . . ., w(K)) =
0 and denote by Sthe random variable defined byi@) = X7 r(w(i)). Then the
following holds for every wia Fpath(v):

|nf E(f& n[s | RUF(WU)] > Ld(wu)(o)u

meHR

(4)

lwul

2|wu|
In particular, we have

inf ES*"(AcQ > inf EZ[ST|Rur(v)] = L%(0) — & = Valur(V) - &.
neHR, neHR,

Proof. We proceed by transfinite induction dfwu). If d(wu) = 0, then the inequality
(@) clearly holds. Now suppose thdfwu) > 0 and that the inequality(4) holds for
everyB < d(wu). We distinguish three cases depending on the type of

(1.) u e Vg. Denote by the successor af selected byr.(wu). Then we have

|nf BV [Sgy | Rurwu)] = r(u) + |nf BV [Sfyuy | Ruriwuu)]

&

> I’(u) + Ld(Wud)(o)u/ - W

d(wu)
>L wu (0) 2|WU| y
where the second line follows from the induction hypothasid from the fact that
d(wuu) < d(wu), and the third line follows from the definition of,.
(2.) ue V,. Then we have

|nf ]E”f”[S|Wu| | Run(wu)] = r(u) + inf |nf BV [Sfyuy | Runwuu)]
u—

&

> r(u) + inf Ld(""””)(O)u/ = el

d(wu)
> L wu (0) Z‘Wu‘ s
where the first line is easy, the second line again followsfthe induction hy-
pothesis and the third line follows from Leming 13.
(3.) u€ Vp. We denote by 5 U’ the fact thaProb(u)(u, u') = x. We have

mf EJ"[Shy | Runwu)] = r(u) + Z ( inf E"é”[SIwuulRur(WUL()])
: r<u>+(Z L0 - i

> Ld(wu) (O)u

2lwul’

where again the second and the third line follows from inigdunchypothesis and

LemmdI3, respectively.
O
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It remains to show how to handle the case when there are @eniith infinite
HR-values. The idea is the same, but the proof is more teahie need to slightly
generalize the previous two lemmas. The following lemmaegalizes LemmBa13. We
denote by last(w) the last vertex on a nonempty path

Lemma 15. Under the assumptions of Lemrhal 13 there exists a labelingtitum
d: Fpath(v) — Ord, satisfying the following conditions:

(a) d(v) = a.

(b) For every wue Fpath(v) it holds either qw) = 0 or d(wu) < d(w).

(c) For every wue Fpath(v), such that EW9(0), < o, we have

r(u) + LYWu(Q),, for some u— W’ ifue Vg
r(u) + inf_, LYW (0),, ifue Ve
r(u) + Yy Prob(u)(u, u’) - LAWUD©),  ifu e Vo,

dwiygy _ _ &
| dwu (O)U oW+ <

and for every wie Fpath(v), such that E"Y(0), = oo, we have

L r(u) + LW (), for some u- U’ ifue Vg
—+e (Iwul + 1) + F(W) < {r(u) + inf_,, LIWDQ), ifueV,
r(u) + Xy Prob(u)(u, u’) - LI ©Q),  ifu e Vo,

where Aw) = LI (0)iastw)  if W is nonempty and 1% (0)jastw) < oo
1o otherwise

Proof. We again define the functiothinductively, starting by puttingl(v) = a. Now
let wu be an arbitrary finite path such that¥(0), = co. If d(wu) = 8 + 1 for some
ordinalg, then we can puti(wuu) = g for all successorg’ of u. From the definition of
L it then easily follows that the inequality in (c) holds feu. (For example, i € Vg,
then we haveo = r(u) + sup,_,, L’(0)v and there is surely — U’ s.t.r(u) + L4(0)y >
1/e +&- (Iwu + 1) + F(w). Itis of course possible thaf(0), = .)

If d(wu) is an limit ordinal, then there is a successor ordpial 1 < d(wu) s.t.
LAY0)y > 2/ + & - (wu + 1) + F(w). We setd(wuu) = g for all successors’ of
u. If L#+1(0), = oo, then from the previous paragraph we get that (c) holdsviorlf
L#*1(0), < oo, then the same argument as in the proof of Lerimia 13 showsfahat
everys > 0 the right-hand side of the inequality in (c)dsclose toL#*1(0)o. If we set
¢ = 1/¢, we get that (c) holds fawu.

Forwu with LY9(0), < co we can use the same construction as in the Lefmma 13.

O

For everywu let us set
w _ |_d(wu)(0)u - W if Ld(wu)(o)u < oo
° % +¢&-(wu + 1)+ F(w) otherwise

and
g _ LD (Q),, — o if LAWY(0), < oo
¢ I+e-lwu+F(w) otherwise
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Note thatA™ — § > B! for every 0< § < &/2"U*1, We now define the-HR-optimal
deterministic strategy-. as follows: for a giverwu € Fpathv), the o-(wu) selects a
transitionu— u’ such thatA™ < r(u) + LI™(0),. It remains to prove that, is

e-HR-optimal inv. We generalize Lemniall4 as follows:
Lemma 16. The following holds for every wa Fpath(v):
inf EJ="[S},, | Run(wu)] > BM. (5)
neHR,

wul

Proof. The proof again proceeds by transfinite inductiondgwu). The base case is
the same as in Lemniall4, becausd(ifu) = 0, thenB" = —%=. So assume that
d(wu) > 0 and that[(5) hols for atk < d(wu). If L4Y9(0), < o, then we can basically
proceed in exactly the same way as in the Leminla 14. The offsrélince here is the
case when € V,, LY"I(0), < co andLIWU)(0), = oo for someu— u’. But in this
case we hav&y""[S] | Ruwuu)] > By > 1/e + F(wu) = 1/g + LY(0), >
1/ + inf,_,, LIWY)(0),, so the computation in part (2.) of the proof of Lemima 14 is
still valid.

If LYY(0), = oo, then we consider the following cases:

(1.) u e Vg. Denote by the successor af selected byr.(wu). Then
neian;{O EJ*"[S[,, | Rur(wu)] = r(u) + neirHlfRo By [Shyuy | RUMwWuU)]

lwul
> r(u) + BYY,

where the second line comes from the induction hypothesisrélare two possi-
bilities. Either

B = 1/g+&-|wu + &+ F(W) > 1/ + - |wu + F(w) = B", (6)
or e e
rU) + B = () + L) - s 2 A - s 2 B ()

where the second inequality follows from Lemima 15 and froend&finition ofc-,.
In both cases the equatidd (5) holds.
(2.) ue V. Then we have

inf EJ*"[Sy,y | Runwu)] = r(u) + inf inf E7-"[S{,,, | Run(wuu)]
neHR, u—uw meHRe

> inf (r(u) + B&Y).
u—-u
Exactly the same computation as in the case (1.) reveal{@har (4) holds for
all u— ', and thus for all these transitions we hayg) + B*Y > B". Thus,

inf,_ (r(u) + B*Y) > B™ and [3) holds fowu.
(3.) ue Vu. Then again from the induction hypothesis it follows that

ﬂeimeo Ey-"[Shyy | Runwu)] = r(u) + Z X- (ﬂeierfRO Ey="[Shyuy | Ruriwuu)]
u—-u

> Z X (r(u) + BI"Y) > B,

X
u—-u
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where the last inequality can be justified in exactly the sarmgas in the previous
two cases.
]

C Proof of Lemmalll

Lemmal[Il.If G is ¢-finitely-branching, then for every&V there is ne N such that

sup inf ES"(AcG) > Valwr(W)ol (8)
oeHRy meHR 4

Letv € V be arbitrary. Without loss of generality, we can assumehad and
thatv has only one outgoing transition. If this is not the case, aegimply add a new
stochastic vertex' with a zero reward and a single new transitiop V. It is clear, that
if the statement of the lemma holds f@rin this new game, then it holds farin the
original game.

Observe that if every vertex of playerhas only finitely many successors, then the
operatolL is Scott-continuous.

Lemma 17. Let D ¢ (R2%)V be an arbitrary directed set (i.e. such a set that each pair
of elements in D has an upper bound in D.) Thésup,. d) = supp L(d).

Proof. The inequality> follows immediately from the monotonicity df. So it suf-
fices to prove that for every directed $2tand every vertex we haveL(sup,.p d)v <
SUPRyp L(d)y. Note that (sup.p d)v = supp dv. We consider three cases:

(1.) v € Vg. Then we trivially have

L(supd), = supsupd,, = sup supd, = supL(d)y.

deD v—V deD deD v—v deD

(2) v e V.. Assume, for the sake of contradiction, that,inf suppdv >
Supyp infy_ dv. Then for each of the finitely many transitioms» v’ there is a
vectord(v’) € D such thatd(v')y > supp inf,_ dy. But since the seb is di-
rected and there are only finitely many- v/, there is a vectod* € D such that
d(v') c d* for every successof of v. We thus have

supinf dy > inf d, > inf d(v')y > inf supinf d, = supinf dy,
deD v—v nd'd nd'd v—V deD V=V deD v—v/
a contradiction. (Above, the second inequality followsnfrthe fact thatd(v') C
d* for everyVv and the first inequality and the last equality are trivialeThird
inequality is strict because there are only finitely manycsssors of.)
(3.) ve V. Then we again trivially have

L(supd), = Z Prob(v)(v, V') - iqud\,, = ﬁuDZ Prob(v)(v,V) - dy = zquL(d)\,.

deD VoV D VoV

O
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From the Kleene fixed-point theorem it follows that(0) = K, i.e. that the ordinal
numbera from Lemmag 1B and 15 can be assumed to be equalfix a labelingd of
finite paths starting in that satisfies the conditions (a)—(c) in Lemima 13 (or Leanmba 15
if there are some vertices with infinite HR-value). Theis labeled byw and all other
elements ofpath(v) are labeled with nonnegative integers. Recall tt{af) denotes
the leask such thatd(w(0), ..., w(k)) = 0.

Now let u be the unique successor wfWe setn = d(vu) + 1. To see that this
satisfies[(B), consider the deterministig&)-HR-optimal strategyr.;s constructed in
the proof of Lemma&l6. From Lemniall3 (or Lemima 15) it follows tha

7(w)

. Tg/8,TT . f
nf By [; r(w(®) | Rur(v)] = Valr © 5.

But now we clearly have(w) < n = d(vu) + 1 for all runsw starting inv. Thus, we
have

7(w)

: Oesg T : O e/8. : € €
KE'EEO E,"*"(Acg) = ”€|an;{<> Ey [; r(w(i)) | Runv)] > Valur © g~ Valyr © 7

This finishes the proof of Lemnialll.

D MD-optimal strategies for player ¢

We prove lteni 2 of PropositidQ 8, i.e. the fact that for everfinitely-branching game
G there ist € MD,, such thatr is HR-optimal in every vertex. We have already defined
n as follows: In every state € V., the strategyr chooses a successeminimizing
Valyr(u) among all successors wfBut the HR-optimality of this strategy immediately
follows from LemmdIPR (note that this lemma works foe 0) and Lemmals (which
says that the least fixed-poiktof L is equal to the vector of HR-values).

21



	Determinacy in Stochastic Games with Unbounded Payoff Functions

