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Abstract. We consider infinite-state turn-based stochastic games of two play-
ers,� and^, who aim at maximizing and minimizing the expected total reward
accumulated along a run, respectively. Since the total accumulated reward is un-
bounded, the determinacy of such games cannot be deduced directly from Mar-
tin’s determinacy result for Blackwell games. Nevertheless, we show that these
gamesare determined both for unrestricted (i.e., history-dependent and random-
ized) strategies and deterministic strategies, and the equilibrium value is the same.
Further, we show that these games are generallynot determined for memoryless
strategies. Then, we consider a subclass of^-finitely-branchinggames and show
that they are determined for all of the considered strategy types, where the equi-
librium value is always the same. We also examine the existence and type of
(ε-)optimal strategies for both players.

1 Introduction

Turn-based stochastic games of two players are a standard model of discrete systems
that exhibit both non-deterministic and randomized choice. One player (called� or
Max in this paper) corresponds to the controller who wishes to achieve/maximize some
desirable property of the system, and the other player (called^ or Min) models the
environment which aims at spoiling the property. Randomized choice is used to model
events such as system failures, bit-flips, or coin-tossing in randomized algorithms.

Technically, a turn-based stochastic game (SG) is defined asa directed graph where
every vertex is either stochastic or belongs to one of the twoplayers. Further, there is a
fixed probability distribution over the outgoing transitions of every stochastic vertex. A
playof the game is initiated by putting a token on some vertex. Then, the token is moved
from vertex to vertex by the players or randomly. Astrategyspecifies how a player
should play. In general, a strategy may depend on the sequence of vertices visited so
far (we say that the strategy ishistory-dependent (H)), and it may specify a probability
distribution over the outgoing transitions of the currently visited vertex rather than a
single outgoing transtion (we say that the strategy israndomized (R)). Strategies that
do not depend on the history of a play are calledmemoryless (M), and strategies that
do not randomize (i.e., select a single outgoing transition) are calleddeterminisctic (D).
Thus, we obtain the MD, MR, HD, and HR strategy classes, whereHR are unrestricted
strategies and MD are the most restricted memoryless deterministic strategies.

⋆ The authors are supported by the Czech Science Foundation, grant No. P202/12/G061.
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A game objectiveis usually specified by apayoff functionwhich assigns some real
value to every run (infinite path) in the game graph. The aim ofPlayer� is tomaximize
the expected payoff, while Player^ aims atminimizingit. It has been shown in [22]
that forboundedandBorelpayoff functions, Martin’s determinacy result for Blackwell
games [23] implies that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv [Payoff ] = inf
π∈HR^

sup
σ∈HR�

Eσ,πv [Payoff ] (1)

where HR� and HR̂ are the classes of HR strategies for Player� and Player̂ , respec-
tively. Hence, every vertexv has aHR valueValHR(v) specified by (1). A HR strategy is
optimal if it achieves the outcome ValHR(v) or better against every strategy of the other
player. In general, optimal strategies are not guaranteed to exist, but (1) implies that
both players haveε-optimalHR strategies for everyε > 0 (see Section 2 for precise
definitions).

The determinacy results of [23,22] cannot be applied tounboundedpayoff func-
tions, i.e., these results do not imply that (1) holds ifPayoff is unbounded, and they do
not say anything about the existence of a value for restricted strategy classes such as MD
or MR. In the context of performance analysis and controllersynthesis, these questions
rise naturally; in some cases, the players cannot randomizeor remember the history of a
play, and some of the studied payoff functions are not bounded. In this paper, we study
these issues for thetotal accumulated rewardpayoff function andinfinite-stategames.

The total accumulated reward payoff function, denoted byAcc, is defined as follows.
Assume that every vertexv is assigned a fixed non-negative rewardr(v). ThenAcc
assigns to every run the sum of rewards all vertices visited along the run. Obviously,
Acc is unbounded in general, and may even take the∞ value. A special case of total
accumulated reward istermination time, where all vertices are assigned reward 1, except
for terminal vertices that are assigned reward 0 (we also assume that the only outgoing
transition of every terminal vertext is a self-loop ont). Then,Eσ,πv [Acc] corresponds to
the expected termination time under the strategiesσ, π. Another special (and perhaps
simplest) case of total accumulated reward isreachability, where the target vertices
are assigned reward 1 and the other vertices have zero reward(here we assume that
every target vertex has a single outgoing transition to a special stateswith zero reward,
wheres→ s is the only outgoing transition ofs). Although the reachability payoff is
bounded, some of our negative results about the total accumulated reward hold even for
reachability (see below).

The reason for considering infinite-state games is that manyrecent works study
various algorithmic problems for games over classical automata-theoretic models, such
as pushdown automata [15,16,17,14,9,8], lossy channel systems [3,2], one-counter au-
tomata [7,5,6], or multicounter automata [18,11,10,21,12,4], which are finitely rep-
resentable but the underlying game graph is infinite and sometimes even infinitely-
branching (see, e.g., [11,10,21]). Since the properties offinite-state games donot carry
over to infinite-state games in general (see, e.g., [20]), the above issues need to be re-
visited and clarified explicitly, which is the main goal of this paper.

Our contribution: We consider general infinite-state games, which may contain
vertices with infinitely many outgoing transitions, and̂-finitely-branching games,
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where every vertex ofV^ has finitely many outgoing transitions, with the total accu-
mulated reward objective. Forgeneralgames, we show the following:

– Every vertex has both a HR and a HD value, and these values are equal1.
– There is a vertexv of a gameG with reachability objective such thatv has neither

MD nor MR value. Further, the gameG has only one vertex (belonging to Player^)
with infinitely many outgoing transitions.

It follows from previous works (see, e.g., [8,20]) that optimal strategies in general
games may not exist, and even if they do exist, they may require infinite memory. Inter-
estingly, we observe that an optimal strategy for Player� (if it exists) may also require
randomization in some cases.

For^-finitely-branchinggames, we prove the following results:

– Every vertex has a HR, HD, MR, and MD value, and all of these values are equal.
– Player^ has an optimal MD strategy in every vertex.

It follows from the previous works that Player� may not have an optimal strategy and
even if he has one, it may require infinite memory. Let us note that in finite-state games,
both players have optimal MD strategies (see, e.g., [19]).

Our results are obtained by generalizing the arguments for reachability objectives
presented in [8], but there are also some new observations based on original ideas and
new counterexamples. In particular, this applies to the existence of a HD value and the
non-existence of MD and MR values in general games.

2 Preliminaries

In this paper, the sets of all positive integers, non-negative integers, rational numbers,
real numbers, and non-negative real numbers are denoted byN, N0, Q, R, andR≥0,
respectively. We also useR≥0

∞ to denote the setR≥0∪ {∞}, where∞ is treated according
to the standard conventions. For allc ∈ R≥0

∞ andε ∈ [0,∞), we define thelower and
upperε-approximation ofc, denoted byc⊖ ε andc⊕ ε, respectively, as follows:

c⊕ ε = c+ ε for all c ∈ R≥0
∞ andε ∈ [0,∞),

c⊖ ε = c− ε for all c ∈ R≥0 andε ∈ [0,∞),
∞⊖ ε = 1/ε for all ε ∈ (0,∞),
∞⊖ 0 = ∞ .

Given a setV, the elements of (R≥0
∞ )V are written as vectorsx, y, . . ., wherexv denotes

thev-component ofx for everyv ∈ V. The standard component-wise ordering on (R≥0
∞ )V

is denoted by⊑.
For every finite or countably infinite setM, a binary relation→ ⊆ M × M is total if

for everym ∈ M there is somen ∈ M such thatm→ n. A finite pathinM = (M,→)

1 For a given strategy typeT (such as MD or MR), we say that a vertexv has aT value if
supσ∈T� inf π∈T^ E

σ,π
v [Payoff ] = inf π∈T^ supσ∈T� E

σ,π
v [Payoff ], whereT� andT^ are the classes

of all T strategies for Player� and Player̂ , respectively.
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is a finite sequencew = m0, . . . ,mk such thatmi → mi+1 for everyi, where 0≤ i < k.
The lengthof w, i.e., the number of transitions performed alongw, is denoted by|w|. A
run inM is an infinite sequenceω = m0,m1, . . . every finite prefix of which is a path.
We also useω(i) to denote the elementmi of ω, andωi to denote the runmi ,mi+1, . . .

Givenm, n ∈ M, we say thatn is reachablefrom m, writtenm→∗ n, if there is a finite
path fromm to n. The sets of all finite paths and all runs inM are denoted byFpath(M)
andRun(M), respectively. For every finite pathw, we useRun(M,w) andFpath(M,w)
to denote the set of all runs and finite paths, respectively, prefixed byw. If M is clear
from the context, we write justRun, Run(w), FpathandFpath(w) instead ofRun(M),
Run(M,w), Fpath(M) andFpath(M,w), respectively.

Now we recall basic notions of probability theory. LetA be a finite or countably
infinite set. A probability distributionon A is a function f : A → R≥0 such that
∑

a∈A f (a) = 1. A distribution f is rational if f (a) ∈ Q for everya ∈ A, positive if
f (a) > 0 for everya ∈ A, Dirac if f (a) = 1 for somea ∈ A, anduniform if A is finite
and f (a) = 1

|A| for everya ∈ A. A σ-fieldover a setX is a setF ⊆ 2X that includesX and
is closed under complement and countable union. Ameasurable spaceis a pair (X,F )
whereX is a set calledsample spaceandF is aσ-field overX. A probability measure
over a measurable space (X,F ) is a functionP : F → R≥0 such that, for each countable
collection{Xi}i∈I of pairwise disjoint elements ofF ,P(

⋃

i∈I Xi) =
∑

i∈I P(Xi), and more-
overP(X) = 1. A probability spaceis a triple (X,F ,P) where (X,F ) is a measurable
space andP is a probability measure over (X,F ).

Definition 1. A stochastic gameis a tuple G= (V, → , (V�,V^,V©),Prob) where V is
a finite or countably infinite set ofvertices, → ⊆ V × V is a totaltransition relation,
(V�,V^,V©) is a partition of V, and Prob is aprobability assignmentwhich to each
v ∈ V© assigns a positive probability distribution on the set of its outgoing transitions.
We say that G iŝ -finitely-branchingif for each v∈ V^ there are only finitely many
u ∈ V such that v→u.

Strategies. A stochastic gameG is played by two players,� and^, who select the
moves in the vertices ofV� andV^, respectively. Let⊙ ∈ {�,^}. A strategyfor Player⊙
in G is a function which to each finite path inG ending a vertexv ∈ V⊙ assigns a
probability distribution on the set of outgoing transitions of v. We say that a strategyτ
is memoryless (M)if τ(w) depends just on the last vertex ofw, anddeterministic (D)
if it returns a Dirac distribution for every argument. Strategies that are not necessarily
memoryless are calledhistory-dependent (H), and strategies that are not necessarily
deterministic are calledrandomized (R). Thus, we obtain the MD, MR, HD, and HR
strategy types. The set of all strategies for Player⊙ of typeT in a gameG is denoted
by TG

⊙ , or just byT⊙ if G is understood (for example, MR� denotes the set of all MR
strategies for Player�).

Every pair of strategies (σ, π) ∈ HR� × HR^ and an initial vertexv determine a
unique probability space (Run(v),F ,Pσ,πv ), whereF is theσ-field overRun(v) gen-
erated by allRun(w) such thatw starts withv, andPσ,πv is the unique probability
measure such that for every finite pathw = v0, . . . , vk initiated in v we have that
P
σ,π
v (Run(w)) = Πk−1

i=0 xi , wherexi is the probability ofvi→ vi+1 assigned either by
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σ(v0, . . . , vi), π(v0, . . . , vi), or Prob(vi), depending on whethervi belongs toV�, V^,
or V©, respectively (in the case whenk = 0, i.e.,w = v, we putPσ,πv (Run(w)) = 1).

Determinacy, optimal strategies. In this paper, we consider games with thetotal accu-
mulated rewardobjective andreachabilityobjective, where the latter is understood as a
restricted form of the former (see below).

Let r : V → R≥0 be areward function, andAcc : Run→ R≥0
∞ a function which to

every runω assigns thetotal accumulated reward Acc(ω) =
∑∞

i=0 r(ω(i)). Let T be a
strategy type. We say that a vertexv ∈ V has a T-valuein G if

sup
σ∈T�

inf
π∈T^
Eσ,πv [Acc] = inf

π∈T^
sup
σ∈T�
Eσ,πv [Acc]

whereEσ,πv [Acc] denotes the expected value ofAcc in (Run(v),F ,Pσ,πv ). If v has a
T-value, then ValT(v, r,G) (or just ValT(v) if G and r are clear from the context) de-
notes theT-value of vdefined by this equality.

Let G be a class of games. If every vertex of everyG ∈ G has aT-value for every
reward function, we say thatG is T-determined. Note thatAccis generally not bounded,
and therefore we cannot directly apply the results of [23,22] to conclude that the class
of all games is HR-determined. Further, these results do notsay anything about deter-
minacy for the other strategy types even for bounded objective functions.

If a given vertexv has aT-value, we can define the notion ofε-optimalT strategy
for both players.

Definition 2. Let v be a vertex which has a T-value, and letε ≥ 0. We say that

– σ ∈ T� is ε-T-optimalin v if Eσ,πv [Acc] ≥ ValT(v) ⊖ ε for all π ∈ T^;
– π ∈ T^ is ε-T-optimalin v if Eσ,πv [Acc] ≤ ValT(v) ⊕ ε for all σ ∈ T�.

A 0-T-optimal strategy is called T-optimal.

In this paper we also considerreachabilityobjectives, which can be seen as a re-
stricted form of the total accumulated reward objectives introduced above. A “standard”
definition of the reachability payoff function looks as follows: We fix a setR ⊆ V of
target vertices, and define a functionReach : Run→ {0, 1} which to every run as-
signs either 1 or 0 depending on whether or not the run visits atarget vertex. Note
thatEσ,πv [Reach] is theprobability of visiting a target vertex in the corresponding play
of G. Obviously, if we assign reward 1 to the target vertices and 0to the others, and re-
place all outgoing transitions of target vertices with a single transition leading to a fresh
stochastic vertexu with reward 0 and only one transitionu→u, thenEσ,πv [Reach] in the
original game is equal toEσ,πv [Acc] in the modified game. Further, if the original game
was^-finitely-branching or finite, then so is the modified game. Therefore, all “posi-
tive” results about the total accumulated reward objective(e.g., determinacy, existence
of T-optimal strategies, etc.) achieved in this paper carry over to the reachability ob-
jective, and all “negative” results about reachability carry over to the total accumulated
reward.
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v : 0

q1 : 2 q2 : 4 q3 : 8 q4 : 16

t : 0

Fig. 1. Player� has an MR-optimal strategy inv, but no HD-optimal strategy inv. All vertices
are labelled by pairs of the formvertex name:reward.

3 Results

Our main results about the determinacy of general stochastic games with the total ac-
cumulated reward payoff function are summarized in the following theorem:

Theorem 3. LetG be the class of all games. Then

a) G is both HR-determined and HD-determined. Further, for every vertex v of every
G ∈ G and every reward function r we have thatValHR(v) = ValHD(v).

b) G is neither MD-determined nor MR-determined, and these results hold even for
reachability objectives.

An optimal strategy for Player� does not necessarily exist, even ifG is a game with
a reachability payoff function such thatV^ = ∅ and every vertex ofV� has at most
two outgoing transitions (see, e.g., [8,20]). In fact, it suffices to consider the vertexv of
Fig. 2 where the depicted game is modified by replacing the vertex u with a stochastic
vertexu′, whereu′→ u′ is the only outgoing transition ofu′, andu′ is the only target
vertex (note that all vertices in the first two rows become unreachable and can be safely
deleted). Clearly, ValHR(v) = 1, but Player� has no optimal strategy.

Similarly, an optimal strategy for Player̂ may not exist even ifV� = ∅ [8,20]. To
see this, consider the vertexu of Fig. 2, wheret is the only target vertex and the depicted
game is modified by redirecting the only outgoing transitionof p back tou (this makes
all vertices in the last two rows unreachable). We have that ValHR(u) = 0, but Player̂
has no optimal strategy.

One may be also tempted to think that if Player� (or Player̂ ) hassomeoptimal
strategy, then he also has an optimal MD strategy. However, optimal strategies generally
requireinfinite memoryeven for reachability objectives (this holds for both players).
Since the corresponding counterexamples are not completely trivial, we refer to [20] for
details. Interestingly, an optimal strategy for Player� may also requirerandomization.
Consider the vertexv of Fig. 1. Letσ∗ ∈ MR� be a strategy selectingv→qn with
probability 1/2n. SinceV^ = ∅, we have that infπ∈HR^ E

σ∗,π
v [Acc] = ∞ = ValHR(v).

However, for everyσ ∈ HD� we have that infπ∈HR^ E
σ,π
v [Acc] < ∞.
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For^-finitely-branching games, the situation is somewhat different, as our second
main theorem reveals.

Theorem 4. Let G be the class of all^-finitely-branching games. ThenG is
HR-determined, HD-determined, MR-determined, and MD-determined, and for every
vertex v of every G∈ G and every reward function r we have that

ValHR(v) = ValHD(v) = ValMR(v) = ValMD(v) .

Further, for every G∈ G there exists a MD strategy for Player̂ which is optimal in
every vertex of G.

An optimal strategy for Player�may not exist in̂ -finitely-branching games, and even
if it does exist, it may require infinite memory [20].

Theorems 3 and 4 are proven by a sequence of lemmas presented below. For the rest
of this section, we fix a stochastic gameG = (V, → , (V�,V^,V©),Prob) and a reward
function r : V → R≥0. We start with the first part of Theorem 3 (a), i.e., we show that
every vertex has a HR-value. This is achieved by defining a suitable Bellman operatorL
and proving that the least fixed-point ofL is the tuple of all HR-values. More precisely,
let L : (R≥0

∞ )V → (R≥0
∞ )V, wherey = L(x) is defined as follows:

yv =



























r(v) + supv→v′ xv′ if v ∈ V�
r(v) + inf v→v′ xv′ if v ∈ V^
r(v) +

∑

v→v′ xv′ · Prob(v)(v, v′) if v ∈ V©.

A proof of the following lemma can be found in Appendix A. Someparts of this proof
are subtle, and we also need to make several observations that are useful for proving the
other results.

Lemma 5. The operator L has the least fixed pointK (w.r.t.⊑) and for every v∈ V we
have that

Kv = sup
σ∈HR�

inf
π∈HR^

Eσ,πv [Acc] = inf
π∈HR^

sup
σ∈HR�

Eσ,πv [Acc] = ValHR(v).

Moreover, for everyε > 0 there isπε ∈ HD^ such that for every v∈ V we have that
supσ∈HR� E

σ,πε
v ≤ ValHR(v) ⊕ ε.

To complete our proof of Theorem 3 (a), we need to show the existence of a
HD-value in every vertex, and demonstrate that HR and HD values are equal. Due to
Lemma 5, for everyε > 0 there isπε ∈ HD^ such thatπε is ε-HR-optimal in every
vertex. Hence, it suffices to show the same for Player�. The following lemma is proved
in Appendix B.

Lemma 6. For everyε > 0, there isσε ∈ HD� such thatσε is ε-HR-optimal in every
vertex.

The next lemma proves Item (b) of Theorem 3.
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Lemma 7. Consider the vertex v of the game shown in Fig. 2, where t is theonly target
vertex and all probability distributions assigned to stochastic states are uniform. Then

(a) supσ∈MD� infπ∈MD^ E
σ,π
v [Reach] = supσ∈MR� infπ∈MR^ E

σ,π
v [Reach] = 0;

(b) infπ∈MD^ supσ∈MD� E
σ,π
v [Reach] = infπ∈MR^ supσ∈MR� E

σ,π
v [Reach] = 1.

Proof. We start by proving item (a) for MD strategies. Letσ∗ ∈ MD�. We show that
infπ∈MD^ E

σ∗ ,π
v [Reach] = 0. Let us fix an arbitrarily smallε > 0. We show that there

is a suitableπ∗ ∈ MD^ such thatEσ
∗ ,π∗

v [Reach] ≤ ε. If the probability of reaching
the vertexu from v under the strategyσ∗ is at mostε, we are done. Otherwise, letps

be the probability of visiting the vertexs from v under the strategyσ withoutpassing
through the vertexu. Note thatps > 0 andps does not depend on the strategy chosen by
Player^. The strategyπ∗ selects a suitable successor ofu such that the probabilitypt

of visiting the vertext from u without passing through the vertexv satisfiespt/ps < ε

(note thatpt can be arbitrarily small but positive). Then

Eσ
∗ ,π∗

v [Reach] ≤

∞
∑

i=1

(1− ps)i pt =
(1− ps)pt

ps
≤ ε

For MR strategies, the argument is the same.
Item (b) is proven similarly. We show that for allπ∗ ∈ MD^ and 0< ε < 1 there

exists a suitableσ∗ ∈ MD� such thatEσ
∗ ,π∗

v [Reach] ≥ 1− ε. Let pt be the probability of
visiting t from u without passing through the vertexv under the strategyπ∗. We choose
the strategyσ∗ so that the probabilityps of visiting the vertexs from v without passing
through the vertexu satisfiesps/pt < ε. Note almost all runs initiated inv eventually
visit eithers or t under (σ∗, π∗). Since the probability of visitings is bounded byε (the
computation is similar to the one of item (a)), we obtainEσ

∗ ,π∗

v [Reach] ≥ 1− ε. For MR
strategies, the proof is almost the same. ⊓⊔

We continue by proving Theorem 4. This theorem follows immediately from
Lemma 5 and the following proposition:

Proposition 8. If G is^-finitely-branching, then

1. for all v ∈ V andε > 0, there isσε ∈ MD� such thatσε is ε-HR-optimal in v;
2. there isπ ∈ MD^ such thatπ is HR-optimal in every vertex.

As an immediate corollary to Proposition 8, we obtain the following result:

Corollary 9. If G is^-finitely-branching,V� is finite, and every vertex of V� has finitely
many successors, then there isσ ∈ MD� such thatσ is HR-optimal in every vertex.

Proof. Due to Proposition 8, for every vertexv and everyε > 0, there isσε ∈ MD� such
thatσε is ε-HR-optimal inv. SinceV� is finite and every vertex ofV� has only finitely
many successors, there are only finitely many MD-strategiesfor Player�. Hence,
there is a MD strategyσ that isε-HR-optimal inv for infinitely manyε from the set
{1, 1/2, 1/4, . . . }. Such a strategy is clearly HR-optimal inv. Note thatσ is HR-optimal
in every vertex which can be reached fromv underσ and some strategyπ for Player^.
For the remaining vertices, we can repeat the argument, and thus eventually produce a
MD strategy that is HR-optimal in every vertex. ⊓⊔

8



v

s

u

t

p

Fig. 2.A game whose vertexv has neither MD-value nor MR-value.

Hence, if all non-stochastic vertices have finitely many successors andV� is finite,
then both players have HR-optimal MD strategies. This can beseen as a (tight) gener-
alization of the corresponding result for finite-state games [19].

The rest of this section is devoted to a proof of Proposition 8. We start with Item 1.
The strategyσε is constructed by employing discounting. Assume, w.l.o.g., that rewards
are bounded by 1 (if they are not, we may split every statev with a rewardr(v) into a
sequence of⌈r(v)⌉ states, each with the rewardr(v)/⌈r(v)⌉). Givenλ ∈ (0, 1), define
Accλ : Run→ R≥0 to be a function which to every runω assignsAccλ(ω) =

∑∞
i=0 λ

i ·

r(ω(i)).

Lemma 10. For λ sufficiently close to one we have that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) ≥ ValHR(v) ⊖
ε

2

Proof. We show that for everyε > 0 there isn ≥ 0 such that the expected reward that
Player� may accumulate up ton steps isε-close to ValHR(v) no matter what Player̂
is doing. Formally, defineAcck : Run→ R≥0 to be a function which to every runω
assignsAcck(ω) =

∑k
i=0 r(ω(i)). The following lemma is proved in Appendix C.

Lemma 11. If G is^-finitely-branching, then for every v∈ V there is n∈ N such that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accn) > ValHR(v) ⊖
ε

4

Clearly, if λ is close to one, then for every runω we have that

Accλ(ω) ≥ Accn(ω) −
ε

4
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Thus,

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) ≥ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accn) −
ε

4
≥ ValHR(v) ⊖

ε

2

This proves Lemma 10. ⊓⊔

So, it suffices to find a MD strategyσε satisfying

inf
π∈HR^

Eσε ,πv (Accλ) ≥ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) −
ε

2
.

We define such a strategy as follows. Let us fix someℓ ∈ N satisfying

λℓ

1− λ
·max

v∈V
r(v) <

ε

8
.

Intuitively, the discounted reward accumulated afterℓ steps can be at mostε8. In a given
vertexv ∈ V�, the strategyσε chooses a fixed successor vertexu satisfying

sup
σ∈HR�

inf
π∈HR^

Eσ,πu (Accλ) ≥ sup
v→u′

sup
σ∈HR�

inf
π∈HR^

E
σ,π
u′ (Accλ) −

ε

ℓ · 4

Now we show that

inf
π∈HR^

Eσε ,πv (Accλ) ≥ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) −
ε

2
.

which finishes the proof of Item 1 of Proposition 8.
For everyk ∈ N we denote byσk a strategy for Player� defined as follows: For

the firstk steps the strategy makes the same choices asσε, i.e., chooses, in each state
v ∈ V�, a next stateu satisfying

sup
σ∈HR�

inf
π∈HR^

Eσ,πu (Accλ) ≥ sup
v→u′

sup
σ∈HR�

inf
π∈HR^

E
σ,π
u′ (Accλ) −

ε

k · 4

Fromk+1-st step on, say in a stateu, the strategy follows some strategyζ satisfying

inf
π∈HR^

E
ζ,π
u (Accλ) ≥ sup

σ∈HR�
inf
π∈HR^

Eσ,πu (Accλ) −
ε

8

A simple induction reveals thatσk satisfies

inf
π∈HR^

Eσk,π
v (Accλ) ≥ sup

σ∈HR�
inf
π∈HR^

Eσ,πv (Accλ) −
3ε
8

(2)

(Intuitively, the error of each of the firstk steps is at mostεk·4 and thus the total error of
the firstk steps is at mostk · εk·4 =

ε
4. The rest has the error at mostε8 and thus the total

error is at most3ε8 .)

We considerk = ℓ (recall that λ
ℓ

1−λ ·maxv∈V r(v) < ε8). Then

inf
π∈HR^

Eσε,πv (Accλ) ≥ inf
π∈HR^

Eσk,π
v (Accλ) −

ε

8
≥ sup

σ∈HR�
inf
π∈HR^

Eσ,πv (Accλ) −
ε

2
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Here the first equality follows from the fact thatσk behaves similarly toσε on the first
k = ℓ steps and the discounted reward accumulated afterk steps is at mostε8. The second
inequality follows from Equation (2).

It remains to prove Item 2 of Proposition 8. The MD strategyπ can be easily con-
structed as follows: In every statev ∈ V^, the strategyπ chooses a successoru minimiz-
ing ValHR(u) among all successors ofv. We show in Appendix D that this is indeed an
optimal strategy.

4 Conclusions

We have considered infinite-state stochastic games with thetotal accumulated reward
objective, and clarified the determinacy questions for the HR, HD, MR, and MD strat-
egy types. Our results are almost complete. One natural question which remains open
is whether Player� needs memory to playε-HR-optimally in general games (it follows
from the previous works, e.g., [8,20], thatε-HR-optimal strategies for Player̂ require
infinite memory in general).
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Technical Appendix
A Proof of Lemma 5

Lemma 5.The operator L has the least fixed pointK (w.r.t.⊑) and for every v∈ V we
have that

Kv = sup
σ∈HR�

inf
π∈HR^

Eσ,πv [Acc] = inf
π∈HR^

sup
σ∈HR�

Eσ,πv [Acc] = ValHR(v).

Moreover, for everyε > 0 there isπε ∈ HD^ such that for every v∈ V we have that
supσ∈HR� E

σ,πε
v ≤ ValHR(v) ⊕ ε.

The partially ordered set ((R≥0
∞ )V,⊑), where⊑ is a standard componentwise order-

ing, is a complete lattice. Moreover, from the definition ofL we can easily see thatL is
monotonic, i.e.L(x) ⊑ L(x′) wheneverx ⊑ x′. Thus, by the Knaster-Tarski theorem the
operatorL has the least fixed point, which we denote byK.

In order to prove thatKv = ValHR(v) for everyv ∈ V, it suffices to prove the follow-
ing:

∀v ∈ V : Kv ≤ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) ≤ inf
π∈HR^

sup
σ∈HR�

Eσ,πv (Acc) ≤ Kv. (3)

The second inequality holds trivially, so it suffices to prove the remaining ones.
To prove the first inequality, it suffices to show that the vectorS ∈ (R≥0

∞ )V defined by
Sv = supσ∈HR� infπ∈HR^ E

σ,π
v (Acc) is a fixed point ofL. SinceK is the least fixed point of

L, the inequality then follows. So letv ∈ V be arbitrary. We will show thatL(S)v = Sv.
If v ∈ V�, then we have to show that

L(S)v = r(u) + sup
v→v′

sup
σ∈HR�

inf
π∈HR^

E
σ,π
v′ (Acc) = sup

σ∈HR�
inf
π∈HR^

Eσ,πv (Acc) = Sv.

Assume, for the sake of contradiction, that the equality does not hold, i.e. that either
L(S)v < Sv or L(S)v > Sv. If L(S)v > Sv, then there is a transitionv→ v′ and a strategy
σ′ ∈ HR� such thatr(u) + infπ∈HR^ E

σ′ ,π
v′ (Acc) > supσ∈HR� infπ∈HR^ E

σ,π
v (Acc). If we

denote byσ′′ the strategy that moves from the initial vertexv to v′ with probability 1
and then starts to behave exactly like the strategyσ′, then we obtain

inf
π∈HR^

Eσ
′′ ,π

v (Acc) = r(u) + inf
π∈HR^

E
σ′ ,π
v′ (Acc) > sup

σ∈HR�
inf
π∈HR^

Eσ,πv (Acc) ≥ inf
π∈HR^

Eσ
′′ ,π

v (Acc),

a contradiction. So assume thatL(S)v < Sv. Then there is someδ > 0 and some function
f : HR� × V → HR^ such that for every transitionv→ v′ and everyσ ∈ HR� we have
r(u)+Eσ, f (σ,v

′)
v′ < Sv⊖δ. For any strategyσwe denote bypv′

σ the probability the strategy
σ assigns to transitionv→ v′ in a game starting inv. Then we can write

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) = r(u) + sup
σ∈HR�

inf
π∈HR^

∑

v→v′

pv′
σ · E

σ,π
v′ (Acc)

≤ r(u) + sup
σ∈HR�

∑

v→v′

pv′
σ · E

σ, f (σ,v′)
v′ (Acc) < Sv ⊖ δ

≤ Sv = sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc),
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again a contradiction.
For v ∈ V^ the proof is dual to the proof forv ∈ V�, so we omit it. Finally, for

v ∈ V© we have

L(Sv) = r(u) +
∑

v→v′

Prob(v)(v, v′) ·













sup
σ∈HR�

inf
π∈HR^

E
σ,π
v′ (Acc)













= sup
σ∈HR�

inf
π∈HR^

















r(u) +
∑

v→v′

Prob(v)(v, v′) · Eσ,πv′ (Acc)

















= sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) = Sv.

This concludes the proof thatS is a fixed point ofL and thus also the proof of the first
inequality in (3).

It remains to prove the third inequality in (3). To this end weprove that for every
ε > 0 there is a strategyπε ∈ HD^ such that for everyv ∈ V we have supσ∈HR� E

σ,πε
v ≤

Kv + ε. Note that this will also prove the second part of the lemma.
If Kv = ∞, then the desired inequality holds trivially for any strategy of player^

(and particularly for everyπ ∈ HD^). So assume thatKv is finite and fix arbitraryε > 0.
We define the strategyπε as follows: letwube any finite path withu ∈ V^. SinceK is a
fixed point ofL, there must be a successoru′ of u such thatr(u)+ Ku′ ≤ Ku + ε/2|wu|+1.
We setπε(w) to be a Dirac distribution that selects the transitionu→u′ with probability
1.

We will now prove the following lemma, that not only shows that the strategyπε
has the desired property, but it will also be useful later.

Lemma 12. Let ε ≥ 0 be arbitrary and letπε be any deterministic strategy of player
^ that has the following property: for every finite path wu starting in v and ending in
u ∈ V^, the transition u→u′ selected byπε(wu) satisfies r(u) + Ku′ ≤ Ku + ε/2|wu|+1.
Thensupσ∈HR� E

σ,πε
v (Acc) ≤ Kv + ε.

Proof. We will prove that for everyv, everyn ∈ N0 and every strategyσ of player�
we haveEσ,πεv (

∑n
i=0ω(i)) ≤ Kv + ε. By the monotone convergence theorem this means

thatEσ,πεv (Acc) ≤ Kv + ε for everyσ, and thus also supσ∈HR� E
σ,πε
v (Acc) ≤ Kv + ε.

So let us fix arbitraryv, n andσ. Recall thatEσ,πv [X|Y] denotes the conditional
expectation of random variableX given the eventY. We show that for every 0≤ k ≤ n
and every finite pathw = v0, . . . , vk we have

Eσ,πεv [
n

∑

i=k

r(ω(i)) | Run(w)] ≤ Kvk +

n
∑

i=k

ε/2k+1.

In particular, this means thatEσ,πεv (
∑n

i=0ω(i)) = Eσ,πεv [
∑n

i=0 r(ω(i)) | Run(v)] ≤ Kv + ε.
We proceed by downward induction onk. If n = k, then we trivially have

Eσ,πεv [
n

∑

i=k

r(ω(i)) | Run(w)] = r(vk) ≤ L(K)vk = Kvk ,

where the inequality follows from the definition ofL.

14



Now suppose thatk < n. We distinguish two cases. Ifvk ∈ V^, denote byu the
successor ofvk chosen byπε. Then we have

Eσ,πεv [
n

∑

i=k

r(ω(i)) | Run(w)] = r(vk) + Eσ,πε [
n

∑

i=k+1

r(ω(i)) | Run(wu)]

≤ r(vk) + Ku +

n
∑

i=k+1

ε/2i+1

≤ Kvk +

n
∑

i=k

ε/2i+1,

where the inequality on the second line follows from induction hypothesis and the in-
equality on the third line follows from the definition ofπε.

If vk ∈ V� ∪ V©, then we can see thatEσ,πεv [
∑n

i=k r(ω(i)) | Run(w)] =
∑

vk→u pu · E
σ,πε [

∑n
i=k+1 r(ω(i)) | Run(wu)] for some sequence of real numbers (pu)vk→u

s.t. pu ≥ 0 for every u and
∑

vk→u pu = 1. By induction hypothesis we have
Eσ,πε [

∑n
i=k+1 r(ω(i)) | Run(wu)] ≤ Ku +

∑n
i=k+1 ε/2

i+1 for everyvk→u. Finally, from
the definition ofL we obtainKvk = L(K)vk ≥

∑

vk→u pu · Ku (the inequality can be strict
only if v ∈ V�). Together, we have

Eσ,πεv [
n

∑

i=k

r(ω(i)) | Run(w)] ≤ Kvk +

n
∑

i=k+1

ε/2i+1 < Kvk +

n
∑

i=k

ε/2i+1.

⊓⊔

This finishes the proof of Lemma 5.

B Proof of Lemma 6

Lemma 6.For everyε > 0, there isσε ∈ HD� such thatσε is ε-HR-optimal in every
vertex.

Let ε > 0 be arbitrary. It suffices to fix an arbitrary initial vertexv, define choices
of the strategyσε only on the finite paths starting inv and verify, that the resulting
strategy isε-HR-optimal inv. By repeating this construction for everyv ∈ V we obtain
a strategy that isε-HR-optimal in every vertex.

For the sake of better readability, we first present the detailed construction of the
deterministicε-HR-optimal strategyσε for games in which the HR-value is finite in
every vertex. Almost identical construction can be used forgames with arbitrary HR-
values; there are some subtle technical differences that will be presented in the second
part of the proof.

We already know that the least fixed pointK of the operatorL is equal to the vector
of HR-values. Moreover, from the standard results of the fixed-point theory (see, e.g.,
Theorem 5.1 in [13]) we know thatK = Lα(0) for some ordinal numberα (where0
is the vector of zeros and where the transfinite iteration ofL is defined in a standard
way, i.e. we putLβ(0) = supγ<β Lγ(0) for every limit ordinalβ). The following lemma
is instrumental in the construction ofσε.
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Lemma 13. Let ε > 0 be arbitrary. Denote byα the ordinal numberα such that
Lα(0)v = ValHR(v) and denote by Ordα the set of all ordinal numbers lesser than or
equal toα. Then there is a labeling function d: Fpath(v)→ Ordα satisfying the follow-
ing conditions:

(a) d(v) = α.
(b) For every wu∈ Fpath(v) it holds either d(w) = 0 or d(wu) < d(w).
(c) For every wu∈ Fpath(v), we have

Ld(wu)(0)u −
ε

2|wu|+1
≤



























r(u) + Ld(wuu′)(0)u′ , for some u→u′ if u ∈ V�
r(u) + infu→u′ Ld(wuu′)(0)u′ if u ∈ V^
r(u) +

∑

u→u′ Prob(u)(u, u′) · Ld(wuu′)(0)u′ if u ∈ V©.

Proof. We define the labelingd inductively, proceeding from the shorter paths to the
longer ones. Obviously we setd(v) = α. Now suppose thatd(wu) has already been
defined. We will defined(wuu′) for all successorsu′ of u simultaneously. First let us
assume thatd(wu) is a successor ordinal of the formβ + 1. Then it suffices to put
d(wuu′) = β for all successorsu′ of u. From the definition ofL we can easily see that
for everyδ > 0 it then holds

Lβ+1(0)u − δ ≤



























r(u) + Lβ(0)u′ , for someu→u′ if u ∈ V�
r(u) + infu→u′ Lβ(0)u′ if u ∈ V^
r(u) +

∑

u→u′ Prob(u)(u, u′) · Lβ(0)u′ if u ∈ V©,

so in particular the inequality in (c) holds forwu.
Now let us assume thatd(wu) is a limit ordinal. ThenLd(wu)(0)u = supγ<d(wu) Lγ(0)u.

This means that there isγ < d(wu) such thatLd(wu)(0)u− ε/2|wu|+2 ≤ Lγ(0)u. Clearly, we
can assume thatγ = β + 1 fore some ordinalβ. Now we again setd(wuu′) = β for all
successorsu′ of u. Using the argument from the previous paragraph withδ = ε/2|wu|+2

we obtain

Ld(wu)(0)u−
ε

2|wu|+1
≤ Lγ(0)u−

ε

2|wu|+2
≤



























r(u) + Lβ(0)u′ , for someu→ u′ if u ∈ V�
r(u) + infu→u′ L

β(0)u′ if u ∈ V^
r(u) +

∑

u→u′ Prob(u)(u, u′) · Lβ(0)u′ if u ∈ V©,

so (c) again holds forwu.
Finally, if d(wu) = 0, then we setd(wuu′) = 0 for all successorsu′ of u. In this way,

we eventually defined(w) for every finite path starting inv. It is obvious thatd satisfies
(a)–(c). ⊓⊔

We use the labelingd provided by the previous lemma to define theε-HR-optimal
HD strategyσε of player�. For a given finite pathwu the strategyσε selects a transition
u→u′ such thatLd(wu)(0)u − ε/2|wu|+1 ≤ r(u) + Ld(wuu′)(0)u′ . Such a transition always
exists due to the previous lemma. We now prove that the strategy σε is ε-HD-optimal
in v. We will actually prove a more general statement, that we will reuse later.

16



Lemma 14. For every runω denote byτ(ω) the least k such that d(ω(0), . . . , ω(k)) =
0 and denote by Sτk the random variable defined by Sτk(ω) =

∑τ(ω)
i=k r(ω(i)). Then the

following holds for every wu∈ Fpath(v):

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] ≥ Ld(wu)(0)u −
ε

2|wu|
. (4)

In particular, we have

inf
π∈HR^

Eσε ,πv (Acc) ≥ inf
π∈HR^

Eσε,πv [Sτ0 | Run(v)] ≥ Lα(0)v − ε = ValHR(v) − ε.

Proof. We proceed by transfinite induction ond(wu). If d(wu) = 0, then the inequality
(4) clearly holds. Now suppose thatd(wu) > 0 and that the inequality (4) holds for
everyβ < d(wu). We distinguish three cases depending on the type ofu.

(1.) u ∈ V�. Denote byu′ the successor ofu selected byσε(wu). Then we have

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] = r(u) + inf
π∈HR^

Eσε,πv [Sτ|wuu′ | | Run(wuu′)]

≥ r(u) + Ld(wuu′)(0)u′ −
ε

2|wu|+1

≥ Ld(wu)(0)u −
ε

2|wu|
,

where the second line follows from the induction hypothesisand from the fact that
d(wuu′) < d(wu), and the third line follows from the definition ofσε.

(2.) u ∈ V^. Then we have

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] = r(u) + inf
u→u′

inf
π∈HR^

Eσε ,πv [Sτ|wuu′| | Run(wuu′)]

≥ r(u) + inf
u→u′

Ld(wuu′)(0)u′ −
ε

2|wu|+1

≥ Ld(wu)(0)u −
ε

2|wu|
,

where the first line is easy, the second line again follows from the induction hy-
pothesis and the third line follows from Lemma 13.

(3.) u ∈ V©. We denote byu x
→ u′ the fact thatProb(u)(u, u′) = x. We have

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] = r(u) +
∑

u
x
→u′

x ·

(

inf
π∈HR^

Eσε,πv [Sτ|wuu′ | | Run(wuu′)]

)

≥ r(u) +
(

∑

u
x
→u′

x · Ld(wuu′)(0)u′

)

−
ε

2|wu|+1

≥ Ld(wu)(0)u −
ε

2|wu|
,

where again the second and the third line follows from induction hypothesis and
Lemma 13, respectively.

⊓⊔
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It remains to show how to handle the case when there are vertices with infinite
HR-values. The idea is the same, but the proof is more technical. We need to slightly
generalize the previous two lemmas. The following lemma generalizes Lemma 13. We
denote by last(w) the last vertex on a nonempty pathw.

Lemma 15. Under the assumptions of Lemma 13 there exists a labeling function
d: Fpath(v)→ Ordα satisfying the following conditions:

(a) d(v) = α.
(b) For every wu∈ Fpath(v) it holds either d(w) = 0 or d(wu) < d(w).
(c) For every wu∈ Fpath(v), such that Ld(wu)(0)u < ∞, we have

Ld(wu)(0)u −
ε

2|wu|+1
≤



























r(u) + Ld(wuu′)(0)u′ , for some u→u′ if u ∈ V�
r(u) + infu→u′ Ld(wuu′)(0)u′ if u ∈ V^
r(u) +

∑

u→u′ Prob(u)(u, u′) · Ld(wuu′)(0)u′ if u ∈ V©,

and for every wu∈ Fpath(v), such that Ld(wu)(0)u = ∞, we have

1
ε
+ ε · (|wu| + 1)+ F(w) ≤



























r(u) + Ld(wuu′)(0)u′ , for some u→u′ if u ∈ V�
r(u) + infu→u′ Ld(wuu′)(0)u′ if u ∈ V^
r(u) +

∑

u→u′ Prob(u)(u, u′) · Ld(wuu′)(0)u′ if u ∈ V©,

where F(w) =















Ld(w)(0)last(w) if w is nonempty and Ld(w)(0)last(w) < ∞

0 otherwise.

Proof. We again define the functiond inductively, starting by puttingd(v) = α. Now
let wu be an arbitrary finite path such thatLd(wu)(0)u = ∞. If d(wu) = β + 1 for some
ordinalβ, then we can putd(wuu′) = β for all successorsu′ of u. From the definition of
L it then easily follows that the inequality in (c) holds forwu. (For example, ifu ∈ V�,
then we have∞ = r(u) + supu→u′ L

β(0)u′ and there is surelyu→u′ s.t.r(u) + Lβ(0)u′ ≥

1/ε + ε · (|wu| + 1)+ F(w). It is of course possible thatLβ(0)u′ = ∞.)
If d(wu) is an limit ordinal, then there is a successor ordinalβ + 1 < d(wu) s.t.

Lβ+1(0)u ≥ 2/ε + ε · (|wu| + 1) + F(w). We setd(wuu′) = β for all successorsu′ of
u. If Lβ+1(0)u = ∞, then from the previous paragraph we get that (c) holds forwu. If
Lβ+1(0)u < ∞, then the same argument as in the proof of Lemma 13 shows, thatfor
everyδ > 0 the right-hand side of the inequality in (c) isδ-close toLβ+1(0)0. If we set
δ = 1/ε, we get that (c) holds forwu.

Forwu with Ld(wu)(0)u < ∞ we can use the same construction as in the Lemma 13.
⊓⊔

For everywu let us set

Awu
ε =















Ld(wu)(0)u −
ε

2|wu|+1 if Ld(wu)(0)u < ∞
1
ε
+ ε · (|wu| + 1)+ F(w) otherwise,

and

Bwu
ε =















Ld(wu)(0)u −
ε

2|wu| if Ld(wu)(0)u < ∞
1
ε
+ ε · |wu| + F(w) otherwise.
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Note thatAwu
ε − δ ≥ Bwu

ε for every 0≤ δ ≤ ε/2|wu|+1. We now define theε-HR-optimal
deterministic strategyσε as follows: for a givenwu ∈ Fpath(v), theσ(wu) selects a
transitionu→u′ such thatAwu

ε ≤ r(u) + Ld(wuu′)(0)u′ . It remains to prove thatσε is
ε-HR-optimal inv. We generalize Lemma 14 as follows:

Lemma 16. The following holds for every wu∈ Fpath(v):

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] ≥ Bwu
ε . (5)

Proof. The proof again proceeds by transfinite induction ond(wu). The base case is
the same as in Lemma 14, because ifd(wu) = 0, thenBwu

ε = −
ε

2|wu|+1 . So assume that
d(wu) > 0 and that (5) hols for allα < d(wu). If Ld(wu)(0)u < ∞, then we can basically
proceed in exactly the same way as in the Lemma 14. The only difference here is the
case whenu ∈ V^, Ld(wu)(0)u < ∞ andLd(wuu′)(0)u′ = ∞ for someu→ u′. But in this
case we haveEσε,πv [Sτ

|wuu′ | | Run(wuu′)] ≥ Bwuu′
ε > 1/ε + F(wu) = 1/ε + Ld(wu)(0)u ≥

1/ε + infu→u′ Ld(wuu′)(0)u′ , so the computation in part (2.) of the proof of Lemma 14 is
still valid.

If Ld(wu)(0)u = ∞, then we consider the following cases:

(1.) u ∈ V�. Denote byu′ the successor ofu selected byσε(wu). Then

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] = r(u) + inf
π∈HR^

Eσε,πv [Sτ|wuu′ | | Run(wuu′)]

≥ r(u) + Bwuu′
ε ,

where the second line comes from the induction hypothesis. There are two possi-
bilities. Either

Bwuu′
ε = 1/ε + ε · |wu| + ε + F(w) > 1/ε + ε · |wu| + F(w) = Bwu

ε , (6)

or
r(u) + Bwuu′

ε = r(u) + Ld(wuu′)(0)u′ −
ε

2|wu|+1
≥ Awu

ε −
ε

2|wu|+1
≥ Bwu

ε , (7)

where the second inequality follows from Lemma 15 and from the definition ofσε.
In both cases the equation (5) holds.

(2.) u ∈ V^. Then we have

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] = r(u) + inf
u→u′

inf
π∈HR^

Eσε ,πv [Sτ|wuu′| | Run(wuu′)]

≥ inf
u→u′

(

r(u) + Bwuu′
ε

)

.

Exactly the same computation as in the case (1.) reveals that(6) or (7) holds for
all u→u′, and thus for all these transitions we haver(u) + Bwuu′

ε ≥ Bwu
ε . Thus,

infu→u′
(

r(u) + Bwuu′
ε

)

≥ Bwu
ε and (5) holds forwu.

(3.) u ∈ V©. Then again from the induction hypothesis it follows that

inf
π∈HR^

Eσε,πv [Sτ|wu| | Run(wu)] = r(u) +
∑

u
x
→u′

x ·

(

inf
π∈HR^

Eσε,πv [Sτ|wuu′ | | Run(wuu′)]

)

≥
∑

u
x
→u′

x ·
(

r(u) + Bwuu′
ε

)

≥ Bwu
ε ,
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where the last inequality can be justified in exactly the sameway as in the previous
two cases.

⊓⊔

C Proof of Lemma 11

Lemma 11.If G is^-finitely-branching, then for every v∈ V there is n∈ N such that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accn) > ValHR(v) ⊖
ε

4
(8)

Let v ∈ V be arbitrary. Without loss of generality, we can assume thatv ∈ V© and
thatv has only one outgoing transition. If this is not the case, we can simply add a new
stochastic vertexv′ with a zero reward and a single new transitionv→ v′. It is clear, that
if the statement of the lemma holds forv′ in this new game, then it holds forv in the
original game.

Observe that if every vertex of player̂has only finitely many successors, then the
operatorL is Scott-continuous.

Lemma 17. Let D ⊆ (R≥0
∞ )V be an arbitrary directed set (i.e. such a set that each pair

of elements in D has an upper bound in D.) Then L(supd∈D d) = supd∈D L(d).

Proof. The inequality≥ follows immediately from the monotonicity ofL. So it suf-
fices to prove that for every directed setD and every vertexv we haveL(supd∈D d)v ≤

supd∈D L(d)v. Note that (supd∈D d)v = supd∈D dv. We consider three cases:

(1.) v ∈ V�. Then we trivially have

L(sup
d∈D

d)v = sup
v→v′

sup
d∈D

dv′ = sup
d∈D

sup
v→v′

dv′ = sup
d∈D

L(d)v.

(2.) v ∈ V^. Assume, for the sake of contradiction, that infv→v′ supd∈D dv′ >

supd∈D infv→v′ dv′ . Then for each of the finitely many transitionsv→ v′ there is a
vectord(v′) ∈ D such thatd(v′)v′ > supd∈D infv→v′ dv′ . But since the setD is di-
rected and there are only finitely manyv→ v′, there is a vectord∗ ∈ D such that
d(v′) ⊑ d∗ for every successorv′ of v. We thus have

sup
d∈D

inf
v→v′

dv′ ≥ inf
v→v′

d∗v′ ≥ inf
v→v′

d(v′)v′ > inf
v→v′

sup
d∈D

inf
v→v′

dv′ = sup
d∈D

inf
v→v′

dv′ ,

a contradiction. (Above, the second inequality follows from the fact thatd(v′) ⊑
d∗ for everyv′ and the first inequality and the last equality are trivial. The third
inequality is strict because there are only finitely many successors ofv.)

(3.) v ∈ V©. Then we again trivially have

L(sup
d∈D

d)v =
∑

v→v′

Prob(v)(v, v′) · sup
d∈D

dv′ = sup
d∈D

∑

v→v′

Prob(v)(v, v′) · dv′ = sup
d∈D

L(d)v.

⊓⊔
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From the Kleene fixed-point theorem it follows thatLω(0) = K , i.e. that the ordinal
numberα from Lemmas 13 and 15 can be assumed to be equal toω. Fix a labelingd of
finite paths starting inv that satisfies the conditions (a)–(c) in Lemma 13 (or Lemma 15,
if there are some vertices with infinite HR-value). Thenv is labeled byω and all other
elements ofFpath(v) are labeled with nonnegative integers. Recall thatτ(ω) denotes
the leastk such thatd(ω(0), . . . , ω(k)) = 0.

Now let u be the unique successor ofv. We setn = d(vu) + 1. To see that thisn
satisfies (8), consider the deterministic (ε/8)-HR-optimal strategyσε/8 constructed in
the proof of Lemma 6. From Lemma 13 (or Lemma 15) it follows that

inf
π∈HR^

E
σε/8,π
v [

τ(ω)
∑

i=0

r(ω(i)) | Run(v)] ≥ ValHR ⊖
ε

8
.

But now we clearly haveτ(ω) ≤ n = d(vu) + 1 for all runsω starting inv. Thus, we
have

inf
π∈HR^

E
σε/8,π
v (Accn) ≥ inf

π∈HR^
E
σε/8,π
v [

τ(ω)
∑

i=0

r(ω(i)) | Run(v)] ≥ ValHR ⊖
ε

8
> ValHR ⊖

ε

4
.

This finishes the proof of Lemma 11.

D MD-optimal strategies for player ^

We prove Item 2 of Proposition 8, i.e. the fact that for every^-finitely-branching game
G there isπ ∈ MD^ such thatπ is HR-optimal in every vertex. We have already defined
π as follows: In every statev ∈ V^, the strategyπ chooses a successoru minimizing
ValHR(u) among all successors ofv. But the HR-optimality of this strategy immediately
follows from Lemma 12 (note that this lemma works forε = 0) and Lemma 5 (which
says that the least fixed-pointK of L is equal to the vector of HR-values).
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