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Abstract. We focus on the realizability problem of Message Sequence
Graphs (MSG), i.e. the problem whether a given MSG specification is
correctly distributable among parallel components communicating via
messages. This fundamental problem of MSG is known to be undecid-
able. We introduce a well motivated restricted class of MSG, so called
controllable-choice MSG, and show that all its models are realizable and
moreover it is decidable whether a given MSG model is a member of this
class. In more detail, this class of MSG specifications admits a deadlock-
free realization by overloading existing messages with additional bounded
control data. We also show that the presented class is the largest known
subclass of MSG that allows for deadlock-free realization.

1 Introduction

Message Sequence Chart (MSC) [15] is a popular formalism for specification of
distributed systems behaviors (e.g. communication protocols or multi-process
systems). Its simplicity and intuitiveness come from the fact that an MSC de-
scribes only exchange of messages between system components, while other as-
pects of the system (e.g. content of the messages and internal computation steps)
are abstracted away. The formalism consists of two types of charts: (1) basic Mes-
sage Sequence Charts (bMSC) that are suitable for designing finite communica-
tion patterns and (2) High-level Message Sequence Charts (HMSC) combining
bMSC patterns into more complex designs. In this paper, we focus on the fur-
ther type reformulated as Message Sequence Graphs (MSG) that has the same
expressive power as HMSC but a simpler structure, and hence it is often used
in theoretical computer science papers, see, e.g. [2,4,6,13,22].

Even such incomplete models as MSG can indicate serious errors in the de-
signed system. The errors can cause problems during implementation or even
make it impossible. Concerning verification of MSC models, researchers have
studied a presence of a race condition in an MSC [3,7,10,22], boundedness of
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the message channels [4], the possibility to reach a non-local branching node
[6,19,13,16,17,11,20], deadlocks, livelocks, and many more. For a recent overview
of current results see, e.g. [9].

In this paper, we focus on the realizability problem of MSG specifications,
i.e. implementation of the specification among parallel machines communicating
via messages. This problem has been studied in various settings reflecting pa-
rameters of the parallel machines, the environment providing message exchanges
as well as the type of equivalence considered between the MSG specification and
its implementation. Some authors restricted the communication to synchronous
handshake [13,12], needed several initial states in the synthesized machines [5], or
considered language equivalence with global accepting states in the implementa-
tion (the implementation accepts if the components are in specific combinations
of its states) [21]. From our point of view, the crucial aspect is the attitude to
non-accepted executions of the implementation. When language equivalence is
taken into account, an intentional deadlock can prevent a badly evolving exe-
cution from being accepted [13]. In our setting every partial execution can be
extended into an accepting one. Therefore, we focus on a deadlock-free imple-
mentation of a given MSG into Communicating Finite-State Machines (CFM)
with FIFO communicating channels and distributed acceptance condition, i.e. a
CFM accepts if each machine is in an accepting state. In [18], it has been shown
that existence of a CFM realizing a given MSG without deadlocks is undecid-
able. When restricted to bounded MSG (aka regular MSG, i.e. communicating
via finite/bounded channels, and so generating a regular language), the problem
is EXPSPACE-complete [18].

In later work [13,5], a finite data extension of messages was considered when
realizing MSG. This is a very natural concept because message labels in MSG
are understood as message types abstracting away from the full message con-
tent. Hence, during implementation, the message content can be refined with
additional (finite) data that helps to control the computation of the CFM in or-
der to achieve the communication sequences as specified in the given MSG. The
main obstacle when realizing MSG are nodes with multiple outgoing edges —
choice nodes. In a CFM realization, it is necessary to ensure that all Finite-State
Machines choose the same successor of each choice node. This can be hard to
achieve as the system is distributed.

In [13], a class of so called local-choice MSG [17,6] was shown to include
only MSG realizable in the above mentioned setting. Local-choice specifica-
tions have the communication after each choice node initiated by a single pro-
cess — the choice leader. Intuitively, whenever a local-choice node is reached,
the choice leader machine attaches to all its outgoing messages the information
about the chosen node. The other machines pass the information on. This con-
struction is sufficient to obtain a deadlock-free realization, for details see [13].
Another possible realization of local-choice MSG is presented in [16]. Due to [11],
it is also decidable to determine whether a given MSG is language equivalent
to some local-choice MSG and, moreover, each equivalent MSG can be algorith-
mically realized by a CFM. To the best of our knowledge, this is the largest
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class of deadlock-free realizable specifications in the standard setting, i.e. with
additional data, FIFO channels, and local accepting states.

In this paper, we introduce a new class of controllable-choice MSG that ex-
tends this large class of realizable MSG. The crucial idea of controllable-choice
MSG is that even some non-local-choice nodes can be implemented, if the pro-
cesses initiating the communication after the choice can agree on the successor
node in advance. This is achieved by exchanging bounded additional content
in existing messages. We call choice nodes where such an agreement is possible
controllable-choice nodes, and show that the class of MSG with these nodes is
more expressive than the class of MSG that are language equivalent to local-
choice MSG.

2 Preliminaries

In this section, we introduce the Message Sequence Chart (MSC) formalism
that was standardized by the International Telecommunications Union (ITU-T)
as Recommendation Z.120 [15]. It is used to model interactions among parallel
components in a distributed environment. First, we introduce the basic MSC.

basic Message Sequence Charts (bMSC) Intuitively, a bMSC identifies
a single finite execution of a message passing system. Processes are denoted as
vertical lines — instances. Message exchange is represented by an arrow from
the sending process to the receiving process. Every process identifies a sequence
of actions — sends and receives — that are to be executed in the order from
the top of the diagram. The communication among the instances is not syn-
chronous and can take arbitrarily long time.

Definition 1. A basic Message Sequence Chart (bMSC) M is defined by a tuple
(E,<,P, T , P,M, l) where:
– E is a finite set of events,
– < is a partial ordering on E called visual order,
– P is a finite set of processes,
– T : E → {send,receive} is a function dividing events into sends and receives,
– P : E → P is a mapping that associates each event with a process,
– M : T −1(send) → T −1(receive) is a bijective mapping, relating every send

with a unique receive, such that a process cannot send a message to itself,
we refer to a pair of events (e,M(e)) as a message, and

– l is a function associating with every message (e, f) a label m from a finite
set of message labels C, i.e. l(e, f) = m.

Visual order < is defined as the reflexive and transitive closure of M∪
⋃
p∈P <p

where <p is a total order on P−1(p).

We require the bMSC to be first-in-first-out (FIFO), i.e., the visual order satisfies
for all messages (e, f), (e′, f ′) and processes p, p′ the following condition

e <p e
′ ∧ P (f) = P (f ′) = p′ ⇒ f <p′ f

′.
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Every event of a bMSC can be represented by a letter from an alphabet

Σ = {p!q(m) | p, q ∈ P,m ∈ C} ∪ {q?p(m) | p, q ∈ P,m ∈ C}.

Intuitively, p!q(m) denotes a send event of a message with a label m from a pro-
cess p to a process q, and q?p(m) represents a receive event of a message with
a label m by q from a process p. We define a linearization as a word over Σ
representing a total order of events that is consistent with the partial order <.
For a given bMSC M , a language L(M) is the set of all linearizations of M .

Message Sequence Graphs It turns out that specifying finite communica-
tion patterns is not sufficient for modelling complex systems. Message Sequence
Graphs allow us to combine bMSCs into more complex systems using alternation
and iteration. An MSG is a directed graph with nodes labeled by bMSCs and
two special nodes, the initial and the terminal node. Applying the concept of
finite automata [14], the graph represents a set of paths from the initial node to
the terminal node. In MSG, every such a path identifies a sequence of bMSCs.
As every finite sequence of bMSCs can be composed into a single bMSC, an
MSG serves as a finite representation of an (infinite) set of bMSCs.

Definition 2. A Message Sequence Graph (MSG) is defined by a tuple G =
(S, τ, s0, sf ,L), where S is a finite set of states, τ ⊆ S × S is an edge relation,
s0 ∈ S is the initial state, sf ∈ S is the terminal state, and L : S → bMSC is
a labeling function.

W.l.o.g., we assume that there is no incoming edge to s0 and no outgoing
edge from sf . Moreover, we assume that there are no nodes unreachable from
the initial node and the terminal node is reachable from every node in the graph.

Given an MSG G = (S, τ, s0, sf ,L), a path is a finite sequence of states
s1s2 . . . sk, where ∀ 1 ≤ i < k : (si, si+1) ∈ τ . A run is defined as a path with
s1 = s0 and sk = sf .

Intuitively, two bMSCs can be composed to a single bMSC by appending
events of every process from the latter bMSC at the end of the process from
the precedent bMSC. Formally, the sequential composition of two bMSCs M1 =
(E1, <1,P, T1, P1,M1, l1) and M2 = (E2, <2,P, T2, P2,M2, l2) such that the
sets E1 and E2 are disjoint (we can always rename events so that the sets become
disjoint), is the bMSC M1 ·M2 = (E1∪E2, <,P, T1∪T2, P1∪P2,M1∪M2, l1∪l2),
where < is a transitive closure of <1 ∪ <2 ∪

⋃
p∈P(P−11 (p)×P−12 (p)). Note that

we consider the weak concatenation, i.e. the events from the latter bMSC may
be executed even before some events from the precedent bMSC.

Now, we extend the MSG labeling function L to paths. Let σ = s1s2 . . . sn
be a path in MSG G, then L(σ) = L(s1) ·L(s2) · . . . ·L(sn). For a given MSG G,
the language L(G) is defined as

⋃
σ is a run inG

L(L(σ)). Hence, two MSG are said

to be language-equivalent if and only if they have the same languages.
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Communicating Finite-State Machines A natural formalism for imple-
menting bMSCs are Communicating Finite–State Machines (CFM) that are used
for example in [3,1,13]. The CFM consists of a finite number of finite-state ma-
chines that communicate with each other by passing messages via unbounded
FIFO channels.

Definition 3. Given a finite set P of processes and a finite set of message
labels C, the Communicating Finite-State Machine (CFM) A consists of Finite-
State Machines (FSMs) (Ap)p∈P . Every Ap is a tuple (Sp, Ap,→p, sp, Fp), where:
– Sp is a finite set of states,
– Ap ⊆ {p!q(m) | q ∈ P,m ∈ C} ∪ {p?q(m) | q ∈ P,m ∈ C} is a set of actions,
– →p⊆ Sp ×Ap × Sp is a transition relation,
– sp ∈ Sp is the initial state, and
– Fp ⊆ Sp is a set of local accepting states.

We associate an unbounded FIFO error-free channel Bp,q with each pair of FSMs
Ap,Aq. In every configuration, the content of the channel is a finite word over
the label alphabet C.

Whenever an FSM Ap wants to send a message with a label m ∈ C to Aq,
it enqueues the label m into channel Bp,q. We denote this action by p!q(m).
Provided there is a message with a label m in the head of channel Bp,q, the
FSM Aq can receive and dequeue the message with the label m. This action
is represented by q?p(m). A configuration of a CFM A = (Ap)p∈P is a tuple
C = (s,B), where s ∈

∏
p∈P(Sp) and B ∈ (C∗)P×P — local states of the FSMs

together with the contents of the channels. Whenever there is a configuration
transition Ci

ai→ Ci+1, there exists a process p ∈ P such that the FSM Ap
changes its local state by executing action ai ∈ Ap and modifies the content of
one of the channels.

The CFM execution starts in an initial configuration s0 =
∏
p∈P{sp} with

all the channels empty. The CFM is in an accepting configuration, if every FSM
is in some of its final states and all the channels are empty. We will say that
a configuration is a deadlock, if no accepting configuration is reachable from it.
A CFM is deadlock-free if no deadlock configuration is reachable from the initial
configuration. An accepting execution of a CFM A is a finite sequence of config-

urations C1
a1→ C2

a2→ . . .
an−1→ Cn such that C1 is the initial configuration and Cn

is an accepting configuration. The word a1a2 · · · an−1 is then an accepted word
of A. Given a CFM A, the language L(A) is defined as the set of all accepted
words of A.

3 Controllable-choice Message Sequence Graphs

For a given MSG we try to construct a CFM such that every execution specified
in the MSG specification can be executed by the CFM and the CFM does not
introduce any additional unspecified execution.

Definition 4 ([1]). An MSG G is realizable iff there exists a deadlock-free CFM
A such that L(G) = L(A).
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One of the most natural realizations are projections. A projection of a bMSC
M on a process p, denoted by M |p, is the sequence of events that are to be
executed by the process p in M . For every process p ∈ P, we construct a FSM
Ap that accepts a single word M |p. This construction is surprisingly powerful
and models all of the bMSC linearizations.

Proposition 1. Let M be a bMSC, then CFM A = (M |p)p∈P is a realization,
i.e. L(M) = L(A).

It turns out that the main obstacle when realizing MSG are nodes with
multiple outgoing edges — choice nodes. It is necessary to ensure that all FSMs
choose the same run through the MSG graph. This can be hard to achieve as
the system is distributed.

In what follows, we present a known class of local-choice MSG specifications
that admits a deadlock-free realization by adding control data into the messages.
Then, we define a new class of controllable-choice MSG and compare the expres-
sive power of the presented classes.

Local-choice MSG is a class studied by many authors [6,19,13,16,17,11]. Let
M be a bMSC, we say that a process p ∈ P initiates the bMSC M if there exists
an event e in M , such that P (e) = p and there is no other event e′ in bMSC M
such that e′ < e. For a given MSG, every node s ∈ S identifies a set triggers(s),
the set of processes initiating the communication after the node s. Note that it
may not be sufficient to check only the direct successor nodes in the MSG.

Definition 5. Let G = (S, τ, s0, sf ,L) be an MSG. For a node s ∈ S, the set
triggers(s) contains process p if and only if there exists a path σ = σ1σ2 . . . σn
in G such that (s, σ1) ∈ τ and p initiates bMSC L(σ).

Definition 6. A choice node u is a local-choice node iff triggers(u) is a sin-
gleton. An MSG specification G is local-choice iff every choice node of G is
local-choice.

Local-choice MSG specifications have the communication after every choice
node initiated by a single process — the choice leader. In [13] a deadlock-free
realization with additional data in messages is proposed. It is easy to see that ev-
ery MSG specification G is deadlock-free realizable if there is a local-choice MSG
G′ such that L(G) = L(G′). Note that the equivalence can be algorithmically
checked due to [11].

Controllable specifications. The difficulties when realizing MSG are intro-
duced by choice nodes. In local-choice MSG, the additional message content is
used to ensure a single run through the graph is executed by all FSMs. In case
of controllable-choice MSG, the additional content serves the same purpose but
besides informing about the node the FSMs are currently executing the FSMs
also attach a prediction about its future execution.
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This allows us to relax the restriction on choice nodes and allows certain non-
local choice nodes to be present in the specification. However, it is necessary to
be able to resolve every occurrence of the choice node, i.e. make the decision in
advance and inform all relevant processes.

Definition 7. Let M = (E,<,P, T , P,M, l) be a bMSC and P ′ ⊆ P be a subset
of processes. A send event e ∈ E is a resolving event for P ′ iff

∀p ∈ P ′ ∃ep ∈ P−1(p) such that e < ep.

Intuitively, resolving events of M for P ′ can distribute information to all
processes of P ′ while executing the rest of M , provided that other processes are
forwarding the information.

Definition 8. Let G = (S, τ, s0, sf ,L) be an MSG. A choice node u is said to
be controllable-choice iff it satisfies both of the following conditions:

– For every path σ from s0 to u there exists a resolving event in bMSC L(σ)
for triggers(u).

– For every path σ = s1s2 . . . u such that (u, s1) ∈ τ , there exists a resolving
event in bMSC L(σ) for triggers(u).

Intuitively, a choice node is controllable-choice, if every path from the ini-
tial node is labeled by a bMSC with a resolving event for all events initiat-
ing the communication after branching. Moreover, as it is necessary to attach
only bounded information, the same restriction is required to hold for all cy-
cles containing a controllable-choice node. In [8] we propose an algorithm that
determines whether a given choice node is a controllable-choice node.

Definition 9. An MSG specification G is controllable-choice iff every choice
node is either local-choice or controllable.

Note that there is no bound on the distance between the resolving event and
the choice node it is resolving.

Local-choice vs. controllable-choice MSG. In the following, we show that
the controllable-choice MSG are more expressive than local-choice MSG. It is
easy to see that every local-choice MSG is also a controllable-choice MSG and
that not every controllable-choice MSG is local-choice. In the following theorem,
we strengthen the result by stating that the class of MSG that are language
equivalent to some controllable-choice MSG is more expressive than the class of
MSG that are language-equivalent to some local-choice MSG.

Theorem 1. The class of MSG that are language-equivalent to some local-
choice MSG, forms a proper subset of MSG that are language-equivalent to some
controllable-choice MSG.
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Proof. Consider a MSG G = (S, τ, s0, sf ,L) with three nodes s0, sf and s, such
that (s0, s), (s, s), (s, sf ) ∈ τ and the only non–empty bMSC is L(s) with two
processes p, q. The projection of events on p is p!q(m), p?q(m′) and similarly for q
the projection is q!p(m′), q?p(m). Note that the only choice node s is controllable
as both send events are resolving events for both of the processes.

The MSG G violates a necessary condition to be language equivalent to a
local-choice specification. Intuitively, the condition states that its language must
be a subset of a language of a generic local-choice equivalent MSG (for more
details see [11]).

4 Realizability of Controllable-choice MSG

In this section we present an algorithm for realization of controllable-choice MSG.
The class of local-choice specifications admits a natural deadlock-free realization
because every branching is controlled by a single process.

As the triggers set for controllable-choice nodes can contain multiple pro-
cesses, we need to ensure that all of them reach a consensus about which branch
to choose. To achieve this goal, we allow the FSMs in certain situations to add
a behavior prediction into its outgoing messages. Those predictions are stored
in the finite-state control units and are forwarded within the existing communi-
cation to other FSMs.

The length of the prediction should be bounded, as we can attach only
bounded information to the messages and we need to store it in the finite-state
control unit. Therefore, it may be necessary to generate the behavior predictions
multiple times. As the realization should be deadlock-free, we must ensure that
the predictions are not conflicting — generated concurrently by different FSMs.
To solve this we sometimes send together with the prediction also an event where
the next prediction should be generated.

Definition 10. A prediction for an MSG G = (S, τ, s0, sf ,L) is a pair (σ, e) ∈
S∗×(E∪⊥), where E is the set of all events of bMSCs assigned by L, the path σ
is called a prediction path, and e, called a control event, is an event from L(σ).
A prediction path must satisfy one of the following conditions:
– The prediction path σ is the longest common prefix of all MSG runs. This

special initial prediction path is named initialPath.
– The prediction path σ is the shortest path σ = σ1σ2 . . . σn in G satisfying

1. σn ∈ L, or
2. σn ∈ U ∧ ∃ 1 ≤ i < n : σi = σn, or
3. σn = sf ,

where L ⊆ S is the set of all local-choice nodes and U ⊆ S is the set of all
controllable-choice nodes.

We refer to the first node and to the last node of a prediction path σ by
firstNode(σ) and lastNode(σ), respectively.

Lemma 1. If the prediction path σ ends with a controllable-choice node u,
the bMSC L(σ) contains a resolving event for triggers(u) on L(σ).
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Proof. There are two cases to consider

– If σ = initialPath, then firstNode(σ) = s0 and as node u is controllable-
choice, the path σ contains a resolving event for triggers(u).

– Otherwise, the controllable-choice node u occurs twice in the path σ. As
every cycle containing a controllable-choice node has to contain a resolving
event for the node, there is a resolving event for triggers(u) on path σ.

As there are no outgoing edges allowed in sf , the terminal node sf 6∈ U . ut

Note, that the number of events in a given MSG is finite and the length of
each prediction path is bounded by 2 · |S|.

When the CFM execution starts, every FSM is initialized with an initial
prediction — (initialPath, ei) — and starts to execute the appropriate projec-
tion of L(initialPath). The value of ei depends on the initialPath. Let lastN-
ode(initialPath) = σn. In case of σn ∈ U , the event ei is an arbitrary resolving
event from L(initialPath) for triggers(σn). It follows from Lemma 1 that there
exists such an event. If σn ∈ L ∪ {sf}, we set ei = ⊥.

Every FSM stores two predictions, one that is being currently executed and
a future prediction that is to be executed after the current one. Depending on
the lastNode of the current prediction, there are the following possibilities where
to generate the future prediction.
– If lastNode of the current prediction is in L, the future prediction is generated

by the local-choice leader, while executing the first event after branching.
– If lastNode of the current prediction is in U , the future prediction is generated

by an FSM that executes the control event of the current prediction, while
executing the resolving event.

– If the lastNode of the current prediction is sf , no further execution is possible
and so no new prediction is generated.

When an FSM generates a new prediction, we require that there exists a tran-
sition in the MSG from the last node of the current prediction path to the first
node of the future prediction path, as the concatenation of prediction paths
should result in a path in the MSG. If an FSM generates a future prediction
ending with a controllable-choice node u, it chooses an arbitrary resolving event
for triggers(u) to be the resolving event in the prediction. The existence of such
an event follows from Lemma 1. To ensure that other FSMs are informed about
the decisions, both predictions are attached to every outgoing message. The
computation ends when no FSM is allowed to generate any future behavior.

4.1 Algorithm

In this section, we describe the realization algorithm. All the FSMs execute
the same algorithm, an implementation of the FSM Ap is described in Algo-
rithm 1. We use an auxiliary function path that returns a prediction path for
a given prediction. Every FSM stores a queue of events that it should execute
— eventQueue. The queue is filled with projections of bMSCs labeling projec-
tion paths — L(prediction path)|p for FSM Ap. The execution starts with filling
the queue with the projection of the initialPath.
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Algorithm 1 Process p implementation

1: Variables: currentPrediction, nextPrediction, eventQueue;
2: currentPrediction← (initialPath, ei);
3: nextPrediction← ⊥;
4: eventQueue←push(L(initialPath)|p);
5: while true do
6: if eventQueue is empty then
7: getNextNode();
8: e← pop(eventQueue);
9: if e is a send event then

10: if e is the resolving event in currentPrediction then
11: node← lastNode(path(currentPrediction));
12: nextPrediction← guessPrediction(node);
13: send(e, currentPrediction, nextPrediction);
14: if e is a receive event then
15: receive(e, cP, nP );
16: if nextPrediction = ⊥ then
17: nextPrediction← nP ;

Function 2 getNextNode function for process p

1: Function getNextNode()
2: node← lastNode(path(currentPrediction));
3: if node ∈ U ∧ p ∈ triggers(node) then
4: currentPrediction← nextPrediction;
5: nextPrediction← ⊥;
6: eventQueue←push(L(path(currentPrediction))|p);
7: else if node ∈ L ∧ p ∈ triggers(node) then
8: currentPrediction← guessPrediction(node);
9: nextPrediction← ⊥

10: eventQueue←push(L(path(currentPrediction))|p);
11: else
12: currentPrediction← ⊥;
13: nextPrediction← ⊥;
14: polling();
15: end function

Function 3 Polling function for process p

1: Function polling()
2: while true do
3: if p has a message in some of its input buffers then
4: receive(e, cP, nP );
5: currentPrediction← cP ;
6: nextPrediction← nP ;
7: eventQueue←push(L(path(currentPrediction))|p);
8: pop(eventQueue);
9: return;

10: end function
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The FSM executes a sequence of events according to its eventQueue. In order
to exchange information with other FSMs, it adds its knowledge of predictions to
every outgoing message, and improves its own predictions by receiving messages
from other FSMs.

When the FSM executes a control event of the current prediction, it is re-
sponsible for generating the next prediction. The function guessPrediction(u)
behaves as described in the previous section. It chooses a prediction (σ, e), such
that (u,firstNode(σ)) ∈ τ . If lastNode(σ) ∈ U , then e is a chosen resolving event
in bMSC L(σ) for the triggers set of the lastNode(σ). Otherwise, we leave e = ⊥.

If the eventQueue is empty, the FSM runs the getNextNode function to
determine the continuation of the execution. If the lastNode of the current pre-
diction is a controllable-choice node and p is in the triggers set of this node, it
uses the prediction from its variable nextPrediction as its currentPrediction.
The variable nextPrediction is set to ⊥.

If the lastNode of the currentPrediction is a local-choice node and p is
the leader of the choice, it guesses the prediction and assigns it to the appropriate
variables. Otherwise, the FSM forgets its predictions and enters a special polling
state. This state is represented by the Polling function. Whenever the FSM
receives a message, it sets its predictions according to the message. The pop
function on line 8 ensures the consistency of the eventQueue.

An execution is finished successfully if all the FSMs are in the polling state
and all the buffers are empty. The correctness proof of the following theorem is
attached in the Appendix A.

Theorem 2. Let G be a controllable-choice MSG. Then the CFM A constructed
by Algorithm 1 is a deadlock-free realization i.e. L(G) = L(A).

5 Conclusion

In this work we studied the message sequence graph realizability problem, i.e.,
the possibility to make an efficient and correct distributed implementation of
the specified system. In general, the problem of determining whether a given
specification is realizable is undecidable. Therefore, restricted classes of realizable
specifications are in a great interest of software designers.

In recent years, a promissing research direction is to study deadlock-free
realizability allowing to attach bounded control data into existing messages. This
concept turns out to be possible to realize reasonable specifications that are not
realizable in the very original setting. In this work we introduced a new class of
so called controllable-choice message sequence graphs that admits a deadlock-
free realization with additional control data in messages. In other words, we have
sucesfully extended the class of MSG conforming in the established setting of
realizability. Moreover, we have presented an algorithm producing realization for
a given controllable-choice message sequence graphs.
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A Correctness

Definition 11 ([1]). A word w ∈ Σ∗ is well-formed iff for every prefix v of w,
every receive event in v has a matching send in v. A word w ∈ Σ∗ is complete
iff every send event in w has a matching receive event in w.

Lemma 2. Let A be a CFM and w ∈ L(A), then there exists a bMSC M such
that w ∈ L(M).

Proof. Every w ∈ L(A) is a well-formed and complete word. Using results from
[1] a word w is a bMSC (potentially non-FIFO) linearization iff it is well-
formed and complete. So there exists a potentially non-FIFO bMSC M , such
that w ∈ L(M). It remains to show, that the bMSC M satisfies the FIFO
condition to fulfill our bMSC definition, but that follows directly from using
FIFO buffers in the CFM. ut

Next, we make a few observations of the algorithm execution. For a given
controllable-choice MSG G we construct a CFM A = (Ap)p∈P according to
Algorithm 1.

Lemma 3. Let (σ, ei) be a prediction. FSM Ap enters the polling function after
executing L(σ) iff

p 6∈ triggers(lastNode(σ)).

Proof. It holds for every prediction path σ that lastNode(σ) ∈ U ∪ L ∪ {sf}.
Note that triggers(sf ) = ∅ because no outgoing edge is allowed in the terminal
state of an MSG. In case of p ∈ triggers, then lastNode(σ) ∈ U ∪ L and one of
the two branches in Function 2 getNextNode is evaluated to true and polling
function is skipped. ut

It is not necessarily true that every FSM executes an event in every predic-
tion. In fact multiple predictions can be executed by the CFM, while a particular
FSM Ap executes the polling function and is not aware of predictions executed
by other FSMs.

However, when a prediction path ends with a controllable-choice node, all
the processes in the triggers set are active in the prediction.

Lemma 4. Let (σ, ei) be a prediction, such that lastNode(σ) ∈ U , then

p ∈ triggers(lastNode(σ))⇒ L(σ)|p 6= ∅

Proof. Let lastNode(σ) = u. According to Lemma 1, there exists a resolving
event for triggers(u) in the bMSC L(σ). Hence, there exists an event on process
p that is dependent on the resolving event, therefore L(σ)|p 6= ∅. ut

Another interesting observation is that it is possible to uniquely partition
every MSG run into a sequence of prediction paths:

Proposition 2. Every run σ in G can be uniquely partitioned into a sequence
of prediction paths such that σ = initialPath w2 . . . wn.
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The following theorem shows that in fact it is not possible to execute simul-
taneously different predictions by different FSMs.

Theorem 3. Let σ = initialPath w2 . . . wn such that every wi is a prediction
path. Then every FSM Ap for p ∈ triggers(lastNode(wn)) possesses the same
future prediction (wn+1, en+1), after executing the last event from L(σ).

Proof. We will prove the theorem by induction with respect to the length of
path σ (measured by the number of prediction paths):

Base case Let the length of σ be 1, then σ = initialPath. We have to consider
three options, depending on the type of the lastNode(initialPath):
– Let lastNode(initialPath) = sf , then triggers(initialPath) = ∅ and there

is nothing to prove.
– Let lastNode(initialPath) ∈ L, then there exists a single leader process

in the triggers set. The FSM representing the leader process may choose
prediction (w2, e2).

– The last option is that lastNode(initialPath) ∈ U . Then the resolving event
ei in the initial prediction is not equal to ⊥. The FSM executing the event
guesses the next prediction (w2, e2).
Let p ∈ triggers(lastNode(initialPath))). In case the FSM Ap is not guess-
ing the prediction, we need to show that it receives the prediction in some
of its incoming messages. As ei is a resolving event, there exists a dependent
event on process p. Let us denote the minimal of such events ep. Then ep is
a receive event and it is easy to see that the prediction (w2, e2) is attached to
the incoming message. Hence, for every p ∈ triggers(lastNode(initialPath))),
FSM Ap has its variable nextPrediction set to (w2, e2).

It follows from Lemma 3 that for every p not in the triggers set, the FSM Ap is
in the polling state having its variable nextPrediction set to ⊥.

Induction step Let the length of σ be n. As in the base case, we have to consider
multiple options:

– Let lastNode(wn) ∈ {sf} ∪ L, then the argument is the same as in the base
case.

– So let lastNode(wn) ∈ U . From induction hypothesis, it follows that all
FSMs Ap for p ∈ triggers(wn−1), start to execute prediction path wn and all
the others are in the polling state.
Let p ∈ triggers(wn). We show that FSMAp executes the projection L(wn)|p.
It follows from Lemma 4 that this projection is non-empty. We have already
shown that this is true for FSMs Ap, such that p ∈ triggers(wn−1). In case
of p 6∈ triggers(wn−1), the FSM Ap is in the polling state. As it is not in
the triggers set, its first action is a receive event. It is easy to see that
the incoming message already contains the current prediction (wn, en) and
FSM Ap starts to execute L(wn)|p.
The rest of the proof is similar to the base case. During the execution of
the resolving event en a new prediction (wn+1, en+1) is guessed and dis-
tributed to all FSMs Ap for p ∈ triggers(wn).
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ut

To show that Algorithm 1 is a deadlock-free realization of the class of control-
lable-choice MSG we need to show that L(G) = L(A). We will divide the proof
into two parts, first showing that L(G) ⊆ L(A) and finishing with L(A) ⊆ L(G).

A.1 L(G) ⊆ L(A)

We show that for all w ∈ L(G) also holds that w ∈ L(A). For every w ∈ L(G)
there exists a run σ in G such that w ∈ L(L(σ)).

We need to find a CFM execution, such that every FSM Ap executes the pro-
jection L(σ)|p and ends in a polling state with the CFM having all the channels
empty. Then using Proposition 1, follows L(M) ⊆ L(A) and especially w ∈ L(A).

According to Proposition 2 we can partition every run σ uniquely into a se-
quence of prediction paths — initialPath w2 . . . wn. This sequence is a natural
candidate for prediction paths that should be guessed during the CFM execution.

Every CFM execution starts with an initial prediction (initialPath, ei). The
guessed future prediction paths are w2, w3 . . .. The guessing continues until
the last prediction path wn is executed. As σ is a run in MSG G, lastNode(wn) =
sf . Therefore, triggers(lastNode(wn)) = ∅. It follows from Lemma 3 that all
the FSMs are in the polling state. All the channels are empty because of the well-
formedness and the completeness of the bMSC linearizations.

A.2 L(A) ⊆ L(G)

We show that for every w ∈ L(A) also w ∈ L(G). According to Lemma 2, every
w ∈ L(A) identifies a bMSC M . To conclude this part of the proof, we find a run
σ in G, such that M = L(σ). As L(M) ⊆ L(G) we get w ∈ L(G).

The σ run in G is defined inductively. Every FSM starts with executing
the initialPath prediction path. So it is safe to start the run σ with this predic-
tion path.

According to Theorem 3 whenever some prediction wi is executed, all FSMs
Ap for p ∈ triggers(lastNode(wi)) agree on some future prediction wi+1 and all
Ap such that p executes an event in bMSC L(wi+1), execute the projections
L(wi+1)|p. All the other FSMs are in the polling state and are awakened only if
needed.

The predictions are guessed in such a way that the following condition holds:

(lastNode(wi),firstNode(wi+1)) ∈ τ

So it is safe to append wi+1 at the end of σ. Next we show that σ ends with
a terminal node. The CFM accepts when all the channels are empty and all
the FSMs are in the polling state. Hence, the last prediction that was executed
ended with a node with an empty triggers set. In general it is possible that this is
may not be the terminal node, but every path from this node reaches sf without
executing any event. So we can safely extend σ with a path to a terminal node.
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