Skip to main content

Theoretical Distributed Computing Meets Biology: A Review

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7753))

Abstract

In recent years, several works have demonstrated how the study of biology can benefit from an algorithmic perspective. Since biological systems are often distributed in nature, this approach may be particularly useful in the context of distributed computing. As the study of algorithms is traditionally motivated by an engineering and technological point of view, the adaptation of ideas from theoretical distributed computing to biological systems is highly non-trivial and requires a delicate and careful treatment. In this review, we discuss some of the recent research within this framework and suggest several challenging future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a Maximal Independent Set. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 32–50. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamentaldistributed computing problem. Science 331(6014), 183–185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)

    Article  Google Scholar 

  4. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)

    Article  Google Scholar 

  5. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European Association for Theoretical Computer Science, Distributed Computing Column 93, 98–117 (2007); An updated and extended version appears in Middleware for Network Eccentric and Mobile Applications. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.): pp. 97–120. Springer (2009)

    Google Scholar 

  6. Bialek, W.: Physical limits to sensation and perception. Annual Review of Biophysics and Biophysical Chemistry 16, 455–478 (1987)

    Article  Google Scholar 

  7. Biallek, W., Cavagnab, A., Giardinab, I., Morad, T., Silvestrib, E., Vialeb, M., Walczake, A.M.: Statistical mechanics for natural flocks of birds. PNAS 109(13), 4786–4791 (2012)

    Article  Google Scholar 

  8. Branson, K., Robie, A.A., Bender, J., Perona, P., Dickinson, M.H.: High-throughput ethomics in large groups of Drosophila. Nature Methods 6, 451–457 (2009)

    Article  Google Scholar 

  9. Bruckstein, A.M.: Why the ant trails look so straight and nice. The Mathematical Intelligencer 15(2), 58–62 (1993)

    Article  Google Scholar 

  10. Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., Moore, C.I.: Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 5, 247–254 (2010)

    Article  Google Scholar 

  11. de Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. CRC Press (2006)

    Google Scholar 

  12. de Castro, L.N., Von Zuben, F.J.: Recent developments in biologically inspired computing. Idea Group Publishing (2004)

    Google Scholar 

  13. Chazelle, B.: Natural algorithms. In: Proc. 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 422–431 (2009)

    Google Scholar 

  14. Chaintreau, A., Fraigniaud, P., Lebhar, E.: Networks Become Navigable as Nodes Move and Forget. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 133–144. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Cucker, F., Smale, S.: Emergent behavior in ßocks. IEEE Trans. Automatic Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  16. Dorigo, M., Stutzle, T.: Ant colony optimization. MIT Press (2004)

    Google Scholar 

  17. Dorigo, M., Sahin, E.: Swarm Robotics - Special Issue. Autonomous Robots 17, 111–113 (2004)

    Article  Google Scholar 

  18. Emek, Y., Smula, J., Wattenhofer, R.: Stone Age Distributed Computing. Arxiv (2012)

    Google Scholar 

  19. Feder, T.: Statistical physics is for the birds. Physics Today 60(10), 28–30 (2007)

    Article  Google Scholar 

  20. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the Plane without Communication. In: Proc. 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 77–86 (2012)

    Google Scholar 

  22. Feinerman, O., Veiga, J., Dorfman, J.R., Germain, R.N., Altan-Bonnet, G.: Variability and robustness in T Cell activation from regulated heterogeneity in protein levels. Science 321(5892), 1081–1084 (2008)

    Article  Google Scholar 

  23. Fraigniaud, P.: Small Worlds as Navigable Augmented Networks: Model, Analysis, and Validation. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 2–11. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Fraigniaud, P., Giakkoupis, G.: On the searchability of small-world networks with arbitrary underlying structure. In: Proc. 42th ACM Symposium on Theory of Computing (STOC), pp. 389–398 (2010)

    Google Scholar 

  25. Fraigniaud, P., Lebhar, E., Lotker, Z.: A Lower Bound for Network Navigability. SIAM J. Discrete Math. 24(1), 72–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLOS Computational Biology 3(10), e189 (2007)

    Google Scholar 

  27. Herzenberg, L.A., De Rosa, S.C.: Monoclonal antibodies and the FACS: complementary tools for immunobiology and medicine. Immunology Today 21(8), 383–390 (2000)

    Article  Google Scholar 

  28. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. PNAS 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  29. Ishii, T., Ishii, M.: Intravital two-photon imaging: a versatile tool for dissecting the immune system. Ann. Rheum. Dis. 70, 113–115 (2011)

    Article  Google Scholar 

  30. Jablonka, E., Lamb, M.J.: Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press (2005)

    Google Scholar 

  31. Kleinberg, J.M.: Navigation in a small world. Nature 406(6798), 845 (2000)

    Article  Google Scholar 

  32. Kuramoto, T., Yamagishi, H.: Physiological anatomy, burst formation, and burst frequency of the cardiac ganglion of crustaceans. Physiol. Zool. 63, 102–116 (1990)

    Google Scholar 

  33. Olarius, S., Zomaya, A.Y.: Handbook of Bioinspired Algorithms and Applications. Chapman & Hall/CRC (2005)

    Google Scholar 

  34. Lachmann, M., Sella, G.: The Computationally Complete Ant Colony: Global Coordination in a System with No Hierarchy. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 784–800. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  35. Lenzen, C., Locher, T., Wattenhofer, R.: Tight bounds for clock synchronization. J. ACM 57(2) (2010)

    Google Scholar 

  36. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)

    MATH  Google Scholar 

  37. Mange, D., Tomassini, M.: Bio-inspired computing machines: towards novel computational architecture. Presses Polytechniques et Universitaires Romandes (1998)

    Google Scholar 

  38. Milgram, S.: The small-world problem. Psychol. Today 1, 61–67 (1967)

    Google Scholar 

  39. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Applied Math 50, 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Navlakha, S., Bar-Joseph, Z.: Algorithms in nature: the convergence of systems biology and computational thinking. Nature-EMBO Molecular Systems Biology 7, 546 (2011)

    Google Scholar 

  41. Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: SIGGRAPH 1987: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)

    Google Scholar 

  42. Robinson, E.J.H., Richardson, T.O., Sendova-Franks, A.B., Feinerman, O., Franks, N.R.: Radio tagging reveals the roles of corpulence, experience and social information in ant decision making. Behavioral Ecology and Sociobiology 63(5), 627–636 (2009)

    Article  Google Scholar 

  43. Robinson, E.J.H., Feinerman, O., Franks, N.R.: Experience, corpulence and decision making in ant foraging. Journal of Experimental Biology 215, 2653–2659 (2012)

    Article  Google Scholar 

  44. Schlaepfer, M.A., Runge, M.C., Sherman, P.W.: Ecological and evolutionary traps. Trends in Ecology and Evolution 17(10), 474–480 (2002)

    Article  Google Scholar 

  45. Sena, G., Frentz, Z., Birnbaum, K.D., Leibler, S.: Quantitation of Cellular Dynamics in Growing Arabidopsis Roots with Light Sheet Microscopy. PLOS1 (2011)

    Google Scholar 

  46. Shiloni, A., Agmon, N., Kaminka, G.A.: Of Robot Ants and Elephants: A Computational Comparison. Theoretical Computer Science 412, 5771–5788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Siegelmann, H.T., Sontag, E.D.: On the Computational Power of Neural Nets. Journal of Computer and System Sciences 50, 132–150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Simeone, O., Spagnolini, U., Bar-Ness, Y., Strogatz, S.: Distributed synchronization in wireless networks. IEEE Signal Process. Mag. 25, 81–97 (2008)

    Article  Google Scholar 

  49. Sole, R.V., Delgado, J.: Universal Computation in Fluid Neural Networks. Complexity 2(2), 49–56 (1996)

    Article  Google Scholar 

  50. Paton, R.: Computing with biological metaphors. Chapman & Hall (1994)

    Google Scholar 

  51. Valiant, L.G.: Evolvability. J. ACM 56(1) (2009)

    Google Scholar 

  52. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75, 1226–1229 (1995)

    Article  Google Scholar 

  53. Viventi, J., Kim, D., Vigeland, L., Frechette, E.S., Blanco, J.A., Kim, Y., Avrin, A.E., Tiruvadi, V.R., Hwang, S., Vanleer, A.C., Wulsin, D.F., Davis, K., Gelber, C.E., Palmer, L., Spiegel, J., Wu, J., Xiao, J., Huang, Y., Contreras, D., Rogers, J.A., Litt, B.: Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience 14, 1599–1605 (2011)

    Article  Google Scholar 

  54. Wagner, I., Bruckstein, A.: Special Issue on Ant Robotics. Annals of Mathematics and Artificial Intelligence 31(1-4) (2001)

    Google Scholar 

  55. Westhus, C., Kleineidam, C.J., Roces, F., Weidenmuller, A.: Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change.Animal Behavior (in press, 2012)

    Google Scholar 

  56. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biololgy 16, 15–42 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feinerman, O., Korman, A. (2013). Theoretical Distributed Computing Meets Biology: A Review. In: Hota, C., Srimani, P.K. (eds) Distributed Computing and Internet Technology. ICDCIT 2013. Lecture Notes in Computer Science, vol 7753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36071-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36071-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36070-1

  • Online ISBN: 978-3-642-36071-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics