N

N

Temporal Constraint Support for OCL

Bilal Kanso, Safouan Taha

» To cite this version:

Bilal Kanso, Safouan Taha. Temporal Constraint Support for OCL. SLE2012, Sep 2012, Dresden,
Germany. pp.83-103. hal-00762150

HAL Id: hal-00762150
https://centralesupelec.hal.science/hal-00762150
Submitted on 6 Dec 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://centralesupelec.hal.science/hal-00762150
https://hal.archives-ouvertes.fr

Temporal constraint Support for OCL *

Bilal Kanso and Safouan Taha

SUPELEC Systems Sciences (E3S) - Computer Science Department
3 rue Joliot-Curie, F-91192 Gif-sur-Yvette cedex, France

{Bilal.Kanso, Safouan.Taha}@supelec.fr

Abstract. The Object Constraint Language is widely used to express
precise and unambiguous constraints on models and object oriented pro-
grams. However, the notion of temporal constraints, controlling the sys-
tem behavior over time, has not been natively supported. Such temporal
constraints are necessary to model reactive and real-time systems. Al-
though there are works addressing temporal extensions of OCL, they
only bring syntactic extensions without any concrete implementation
conforming to the OCL standard. On top of that, all of them are based
on temporal logics that require particular skills to be used in practice.
In this paper, we propose to fill in both gaps. We first enrich OCL by a
pattern-based temporal layer which is then integrated into the current
Eclipse’s OCL plug-in. Moreover, the temporal constraint support for
OCL, that we define using formal scenario-based semantics, connects to
automatic test generators and forms the first step towards creating a
bridge linking model driven engineering and usual formal methods.

Keywords: OCL, Object-oriented Programming, Temporal con-
straints, Eclipse/MDT, Model-Driven Engineering, Formal Methods

1 Introduction

The Object Constraint Language (OCL) is an expression-based language used to
specify constraints in the context of object-oriented models [2]. It is equivalent
to a first-order predicate logic over objects, but it offers a formal notation similar
to programming languages. OCL may complete the specification of all object-
oriented models, even if it is mostly used within UML diagrams.

The OCL constraints may be invariants that rule each single system state,
or preconditions and postconditions that control a one-step transition from a
pre-state to a post-state upon the call of some operation. Thus, it is not possible
to express constraints of dynamic behavior that involve different states of the
model at different instants. This is essentially due to the absence of the notion
of time and events in OCL. This limitation seems to form the main obstacle
which the use of OCL faces today in the verification and validation areas. The
standard OCL published in [2] does not provide any means of featuring temporal
quantification, nor of expressing temporal properties such as safety or liveness.

* This work was funded by the French ANR TASCCC project (ANR-09-SEGI-014) [1]

2 S. Taha et al.

Adding a temporal layer to the OCL language forms a primordial step towards
supporting the automatic verification and validation of object-oriented systems.

In this paper, we propose a temporal extension of OCL that enables mod-
elers/developers to specify temporal constraints on object-oriented models. We
do so by relying on Dwyers’s patterns [3]. A temporal constraint consists in a
pattern combined with a scope. A pattern specifies the behavior that one wants
to exhibit/avoid, while a scope defines the piece of execution trace to which a
given pattern applies. This allows us to write temporal OCL constraints with-
out any technical knowledge of formalisms commonly used to describe temporal
properties such as LTL or CTL logics. We integrated this extension into the
Eclipse/MDT current OCL plug-in.

In this work, we are also interested in formal methods applied to oriented-
object systems for guiding software testing. Indeed, we will use the temporal
properties that were formally written in our OCL temporal extension, as test
purposes. Test purposes are commonly used to focus on testing particular as-
pects of models, avoiding other irrelevant ones [4, 5]. Thinking of functional and
security properties when writing test purposes is a common practice, but it has
not been automated. Despite the interest of test purposes in the process of test
case derivation, the lack of formal methods for their description and tools for
their automatic generation forms one of the serious obstacles which the use of
testing techniques faces today in the industrial areas.

To support test purposes specification, we enrich our language with formal
scenario-based semantics; the behavior to be tested is expressed as a temporal
OCL expression, and then automatically translated into a regular expression.
This latter is generic enough to be used by a large family of generation tech-
niques of test cases from object-oriented models. After its integration into the
Eclipse/MDT current OCL plug-in, our language provides a framework not only
to constrain dynamic behavior of object-oriented systems, but other to generate
functional tests for objects and verify their properties. The language is indeed
used in the validation of smart card product security [1]. It provides a means
to express security properties (provided by Gemalto) on UML specification of
the GlobalPlatform, the latest generation smart card operating system. In this
work [6], the test requirements are expressed as OCL temporal constraints de-
scribed in our proposed language and then transformed into test scenarios. These
are then animated using the Certifylt tool, provided by the Smartesting com-
pany to generate test cases.!

This paper is organized as follows. Section 2 presents the OCL language
while Section 3 discusses its limitations on the expression of temporal aspects.
Section 4 recalls the related works. Section 5 describes our proposal for extending
OCL to support time and events. Section 6 provides the formal scenario-based
semantics of our language. Section 7 describes the implementation of the pro-
posed extension in the Eclipse’s OCL plug-in and Section 8 presents the use of
our proposal as a test purpose framework within the TASCCC project. Finally,
Section 9 concludes and presents the future work.

! www.globalplatform.org, www.gemalto.com, www.smartesting.com

Temporal constraint Support for OCL 3

2 Object Constraint Language (OCL)

OCL is a formal assertion language, easy to use, with precise and unambiguous
semantics [2]. It allows the annotation of any object-oriented model, even if it is
most used within UML diagrams. OCL is very rich, it includes fairly complete
support for:

— Nawvigation operators to navigate within the object-oriented model,
— Set/Sequence operations to manipulate sets and sequences of objects,
— Unigversal/Existential Quantifiers to build first order (logic) statements.

We briefly recall these OCL capabilities by means of an example. The UML
class diagram in Figure 1 represents the structure of a simple software system.
This system has a free_memory attribute corresponding to the amount of free
memory that is still available, and the following three operations:

— load(app: Application): downloads the application app given as a parameter.

— install(): installs interdependent applications already loaded. Different ap-
plications can be loaded before a single call of install(), but only applications
having all their dependencies already loaded are installed.

— run(app: Application): runs the application app given as a parameter that
should be both already loaded and installed.

A system keeps references to the previously installed applications using the as-
sociation end-point installed_apps. An Application has a size attribute and keeps
references to the set of applications it depends on using the association end-point
dependencies. We will use this illustrative example along this work.

B System .
2 free_memory : EInt) H Application dependencies
@ load(Application) installed_apps |~ Elnt 0.*
@ install(l)ap 0.5 [
run(Application) [

Fig. 1. A model example

Exp 1 describes three typical OCL expressions. The first expression
all_apps_dependencies_installed verifies that every installed application has its
dependencies installed as well. The all_dependencies expression is a recursive
function that builds the transitive closure of the (noncyclic) dependencies asso-
ciation. The may_install_on expression is a boolean function which has a system
as parameter and verifies that installing the application with its dependencies
fits into the system’s free memory.

1| context System

2| def: all_apps-dependencies_installed: Boolean =
self.installed_apps—>forAll(app: Application | self.installed_apps—>
includesAll (app.dependencies))

4 S. Taha et al.

context Application
def: all_dependencies: Set(Application) =
self.dependencies.all_dependencies—>asSet()—>including(self)

def: may_install_on(sys: System): Boolean =
(self.all_dependencies — sys.installed_apps).size—>sum() < sys.free_memory

Exp. 1. OCL Expressions

Exp 1 illustrates the OCL ability to navigate the model (self.installed_apps,
app.dependencies), select collections of objects and manipulate them with func-
tions (including(), sum()), predicates (includesAll()) and universal/existential
quantifiers (forAll()) to build boolean expressions.

3 OCL Limitations
3.1 OCIL is a First-Order Predicate Logic

OCL boolean expressions are first order predicate logic statements over a model
state. They are written with a syntax which is similar to programming languages.
Such OCL expressions are evaluated over a single system state, which is a kind of
a snapshot given as an object diagram at some point in time. An object diagram
is a particular set of objects (class instances), slots (attribute values), and links
(association instances) between objects. For example, an equivalent first order
statement of all_apps_dependencies_installed expression is:

Vs € Sys,Va,b € App, (s,a) € Ins A (a,b) € Dep = (s,b) € Ins
where a state (object diagram) is a tuple (Sys, App, Ins, Dep, free, size)

— Sys is the set of System objects

— App is the set of Application objects

— Ins C Sysx App is the set installed_apps links, (s, a) € Ins iff the Application
instance a is installed on the System instance s

— Dep C App x App is the set dependencies links, (a,b) € Dep iff the Applica-
tion instance a depends on the Application instance b

— free : Sys — N is the function that associates each System instance s to
the amount of free memory available

— size : App — N is the function that associates each Application instance a
to its memory size.

The first order logic allows quantification over finite and infinite domains?

contrary to the OCL language which has no free quantification over infinite do-
mains such as Z or N. Indeed, in OCL, one distinguishes three kinds of domains:

— Set of objects.

— Set of some Primitive Type values.

— Time that is the set of all instants of the model’s life. It corresponds to N if
time is discrete, Q if time is dense or R if time is continuous.

2 Note that the first order logic over the set theory (with possibly many infinite sets)
is undecidable.

Temporal constraint Support for OCL 5

The OCL expressions presented in Exp 1 are typical examples of OCL quantifi-
cation (forAll(), exists()) over sets of objects (e.g. self.dependencies) and sets of
primitive type values (e.g. self.all_dependencies.size of PrimitiveType::Integer).
Since these sets are selections/subsets of an object diagram, they are finite by
construction. Hence, there is no limitation to use OCL quantifiers over them.
However, since Time is intrinsically infinite, quantification over it is restricted
within OCL. This last point will be detailed in the next subsections.

3.2 Temporal dimension

As previously mentioned, the OCL expressions are evaluated over a single system
state at some point in time. But, the OCL language also provides some implicit
quantification over time by means of OCL rules. An OCL rule is a temporal
quantification applied to an OCL boolean expression, and may be an invariant
of a class, a pre- or a post-condition of an operation.

The expression within an invariant rule has be to be satisfied throughout
the whole life-time of all instances of the context class. The first expression in
Exp 2 specifies the invariant which requires, in all system states, a nonempty
free memory and the installation of dependencies of all installed applications.
The precondition and postcondition are used to specify operation contracts. A
precondition has to be true each time the corresponding operation is called, and
a postcondition has to be true each time right after the corresponding operation
execution has terminated. The second expression in Exp 2 describes the rule
that provides the load(app: Application) contract. It requires that the applica-
tion given as a parameter is not already installed and there is enough memory
available to load it. Then, it ensures that the free_memory attribute is updated
using the @pre OCL feature.

context System
inv : self.free_memory > 0 and all_apps_-dependencies_installed = true

context System::load(app: Application):

5| pre : self.installed_apps—>excludes(app) and self.free_memory > app.size

;| post: self.free_memory = self.free_memory@pre — app.size

Exp. 2. OCL rules

The operation parameters can be used within a pre or a post-condition rule,
but the @pre OCL feature is only used within a post-condition rule. When @pre
is used within the boolean expression of a post-condition rule, it is evaluated
over two system states, one right before the operation call and one right after
its execution. In other words, OCL expressions describe a single system state
or a one-step transition from a previous state to a new state upon the call of
some operation. Therefore, there is no way to make OCL expressions involving
different states of the model at different points in time. OCL has a very limited
temporal dimension.

To illustrate the temporal limits of OCL, let us consider the following tem-
poral properties for the example presented in Figure 1:

safety_1: each application can be loaded at most one time

6 S. Taha et al.

safety_2: an application load must precede its run
safety_3: there is an install between an application loading and its run
liveness: each loaded application is installed afterwards

Such temporal properties are impossible to specify in OCL without at least
enriching the model structure with state variables. In temporal logics [7], we for-
mally distinguish the safety properties from the liveness ones. Safety properties
for bad events/states that must not happen and liveness properties for good
events/states that should happen. As safety properties consider finite behaviors,
they can be handled by modifying the model and adding variables which save
the system history. If we consider the first safety property, one solution is to save
within a new attribute loaded_apps the set of applications already loaded, but
not yet installed and then check in the load(app: Application) precondition that
the loaded application is neither installed, nor loaded:

context System::load(app: Application):
| pre : self.installed_apps—>excludes(app) and self.loaded_apps—>excludes(app)
and self.free_memory > app.size

Even if specifying complementary temporal OCL constraints must not alter
the model, such case-by-case techniques are of no use when specifying liveness
properties that handle infinite behaviors.

In this work, we are mainly interested in temporal constraints from the tem-
poral logics point of view, when they are ruling the dynamic behavior of systems.
They specify absence, presence and ordering of the system life-time steps. A step
may be a state that holds for a while or an event occuring at some point of time.

3.3 Events

An event is a predicate that holds at different instants of time. It can be seen
as a function P : Time — {true, false} which indicates at each instant, if the
event is triggered. The subset {t € Time | P(t)} C Time stands then for all time
instants at which the event P occurs. When quantifying time, we need to select
such subsets of T'ime that correspond to events. We commonly distinguish five
kinds of events in the object-oriented paradigm:

Operation call instants when a sender calls an operation of a receiver object

Operation start instants when a receiver object starts executing an operation

Operation end instants when the execution of an operation is finished

Time-triggered event that occurs when a specified instant is reached

State change that occurs each time the system state changes (e.g when the
value of an attribute changes). Such an event may have an OCL expression
as a parameter and occurs each time the OCL expression value changes.

OCL only provides an implicit universal quantification over operation call events
within pre-conditions and a universal quantification over operation end events
within post-conditions. However, it lacks the finest type of events which is state
change. State change events are very simple, but powerful construct. It can
replace other types of events. Suppose we add a chronometric clock that is now

Temporal constraint Support for OCL 7

a part of our system. This common practice will create a new object clock within
our system that has a time attribute. Each change of that attribute will generate
a state-change event. A time-triggered event of some specified instant will be
then one particular state-change in which the OCL boolean expression clock.time
= instant becomes true.

To replace operation call, start and end events using the state-change event,
we need to integrate the stack structure within the system model. We do not
recommend this technique that is in contradiction to the model-driven engi-
neering approach because it pollutes the system model with platform specific
information and ruins all the abstraction effort.

3.4 Quantification

OCL has no existential quantification over time or events. For example, the
second safety property we previously proposed needs existential quantification:
it exists a load() operation call that precedes a run() operation call.

The other quantification limitation we identified is that OCL sets its few
temporal quantification constructs within OCL rules, prior to the quantifica-
tion over objects within the OCL expressions. Again, the second safety property
needs quantifying over objects prior to quantifying over time: for all applica-
tion instance app, it exists a load(app) operation call that precedes a run(app)
operation call. We intend to relate the load event of the particular application
app with its run. This quantification order is the way to define the relations we
may need between events.

4 Related work

Several extensions have been proposed to add temporal constraints to the OCL
language. [8] presents an extension of OCL, called TOCL, with the basic opera-
tors of the common linear temporal logic (LTL). Both future and past temporal
operators are considered. This paper only provides a formal description of the
extension based on Richters’s OCL semantics [9]. It gives no explanation of how
all presented formal notions can be implemented. In [10, 11], authors propose an
extension of OCL for modeling real-time and reactive systems. A general notion
of time and event is introduced, providing a means to describe the temporal
behavior of UML models. Then, OCL is enriched by (1) the temporal operator
@event (inspired by the OCL operator @pre) to refer to the expression value
at the instant when an event occurs, and (2) the time modal operators always
and sometime. [12] proposes a version of CTL logic, called BOTL, and shows
how to map a part of OCL expressions into this logic. Indeed, there is no ex-
tension of OCL by temporal operators, but a theoretical precise mapping of a
part of OCL into BOTL. [13] provides an OCL extension, called EOCL, with
CTL temporal operators. This extension is strongly inspired by BOTL [12],
and allows model checking EOCL properties on UML models expressed as ab-
stract state machines. A tool (SOCLE), implementing this extension, is briefly
presented with verification issues in mind; however, there is no tool available

8 S. Taha et al.

at the project site [14]. Similarly, Flake et al. [15] formalize UML Statechart
within the Richters’s OCL semantics and extend OCL with Clocked CTL in
order to provide a sound basis for model-checking. [16] proposes templates (e.g.
after/eventually template) to specify liveness properties. A template is defined
by two clauses: a cause and a consequence. A cause is the keyword after followed
by a boolean expression, while a consequence is an OCL expression prefixed by
keywords like eventually, immediately, infinitely, etc. These templates are formally
translated into observational p-calculus logic. This paper gave no means to OCL
developers to implement such templates. It only formally addresses some liveness
properties; other liveness and safety properties are not considered. [17] adds to
OCL unary and binary temporal operators such as until and always and [18] pro-
poses past/future temporal operators to specify business components. Both [17]
and [18]’proposals are far from being used in the context of concrete implemen-
tation conforming to the standard OCL [2]. For instance, in [18], an operator
may be followed by user-defined operations (with possible side effects) that are
not concretely in conformance with the standard OCL. Table 1 summarizes the
state of the art and emphasizes the need for a complete approach.

Temporal Event Quantification Formal
Approach Layer Constructs |Order Tooling Semantics
Ziemann et al. [8] LTL + past no no no trace semantics
Calegari et al. [10,11] [future/past yes no not conforming |trace

modal operators to OCL standard|semantics
Distefano et al. [12] CTL no no no BOTL
Mullins et al. [13] CTL no no not conforming |inspired

to OCL standard|by BOTL

Bradfield et al. [16] template clauses |no no no observational

(response pattern) p-calculus
Ramakrishnan et al. [17][future/past no no no no
Conrad et al. [18] modal operators
Flake et al [15] Clocked CTL state-oriented|no no trace semantics

Table 1. Related work

Among temporal constraints we have the particular case of timings proper-
ties that are commonly used within the real-time systems development. Timings
are static duration constraints between event occurrences, they are necessary to
specify WCETs (Worst Case Execution Time), deadlines, periods. .. There are
surprisingly many efforts to annotate statically this kind of constraints using
UML profiles. MARTE [19] is an UML extension defining stereotypes (RTSpec-
ification, RTFeature, RTAction) that annotate classes and operations to specify
their timings.

5 OCL Temporal Extension

After identifying the OCL limitations that are absences of temporal operators,
event constructs and free quantification (see Section 3), and after reviewing most
existing OCL temporal extensions (see Section 4), we give in the following our
contribution about OCL temporal extension:

Temporal constraint Support for OCL 9

— A pattern-based language contrary to most of OCL temporal extensions that
are based on temporal logics such as LTL or CTL (see Section 4). The techni-
cality and the complexity of these formalisms give rise naturally to difficulties
even to the impossibility, in some cases, of using them in practice [3];

— Enrichment of OCL by the notion of events that is completely missing in
the existing temporal extensions of OCL;

— A user-friendly syntax and formal scenario-based semantics of our OCL tem-
poral extension (see Section 6);

— A concrete implementation conforming to the standard OCL [2]. In fact, all
the works mentioned in Section 4 only address the way OCL has to be ex-
tended to deal with temporal constraints. The main purpose behind them
was to use OCL in verification areas such as model checking. However, they
did not reach this last step, at least not in practice, due to the absence of con-
crete implementations conforming to the standard OCL [2] of the proposed
extensions.

5.1 Temporal patterns

Formalisms such as linear temporal logic (LTL) and tree logic (CTL) have re-
ceived a lot of attention in the formal methods community in order to describe
temporal properties of systems. However, most engineers are unfamiliar with
such formal languages. It requires a lot of effort to bridge the semantic gap be-
tween the formal definitions of temporal operators and practice. To shed light on
this obstacle, let us consider the safety_3 property, its equivalent LTL formula
looks like:
O(load A =run = ((—run U (install A =run)) V = o run))

It means that each time () we have a load, this implies that there will be no
run at least until (U) the install happens or there will be no run at all in the
future (—orun). To avoid such error-prone formulas, Dwyer et al. have proposed
a pattern-based approach [3]. This approach uses specification patterns that, at
a higher abstraction level, capture recurring temporal properties. The main idea
is that a temporal property is a combination of one pattern and one scope. A
scope is the part of the system execution path over which a pattern holds.

Patterns [3] proposes 8 patterns that are organized under a semantics classifi-
cation (left side of Figure 2). One distinguishes occurrence (or non-occurrence)
patterns from order patterns.

Occurrence patterns are: (i) Absence: an event never occurs, (i7) Existence: an
event occurs at least once, (ii¢) BoundedExistence has 3 variants: an event occurs
k times, at least k times or at most k times, and (iv) Universality: a state is
permanent.

Order patterns are: (i) Precedence: an event P is always preceded by an event @,
(77) Response: an event P is always followed by an event @, (éi7) ChainPrecedence:

a sequence of events Pi,..., P, is always preceded by a sequence Q1,...,Qn
(it is a generalization of the Precedence pattern), and (iv) ChainResponse: a
sequence of events Py, ..., P, is always followed by a sequence Q1,...,Q, (it is

a generalization of the Response pattern as well).

10 S. Taha et al.

Scopes [3] proposes 5 kinds of scopes (right side of Figure 2): (i) Globally covers
the entire execution, (ii) Before Q covers the system execution up to the first
occurrence of @, (iii) After Q covers the system execution after the first occur-
rence of @, (iv) Between Q and R covers time intervals of the system execution
from an occurrence of @) to the next occurrence of R, and (v) After Q until R is
same as the Between scope in which R may not occur.

Property Patterns Q R Q Q R Q
/ \ globally I
Occurrence Order before Q IS

Precedence

Absence Bounded
Existence between Q and R == i

Chain Chain

Universality Existence
4 Precedence Response after Q until R s e

Fig. 2. Dwyer’s patterns and scopes

Back to our temporal property safety_3 : there is an install between an appli-
cation loading and its run. It simply corresponds to the Existence pattern (exists
install) combined with the Between scope (between load and run). It is clear that
the patterns of Dwyer et al. dramatically simplify the specification of temporal
properties, with a fairly complete coverage. Indeed, they collected hundreds of
specifications and they observed that 92% of them fall into this small set of pat-
terns/scopes [3]. Furthermore, a complete library is provided [20], mapping each
pattern/scope combination to the corresponding formula in many formalisms
(e.g. LTL, CTL, QREs, p-calculus).

For these reasons, we adopt this pattern-based approach for the temporal part
of our OCL extension and we bring enhancements to improve the expressiveness:

— Duwyer et al. have chosen to define scopes as right-open intervals that include
the event marking the beginning of the scope, but do not include the event
marking the end of the scope. We extend scopes with support to open the
scope on the left or close it on the right. This adds one variant for both the
Before and After scopes and three supplementary variants for the Between
and After. .. until scopes. We have chosen open intervals as default semantics.

— In Dwyer et al. work, Between and After. .. until scopes are interpreted rel-
ative to the first occurrence of the designated event marking the beginning
of the scope (Figure 2). We kept this as default semantics and we provide
an option to select the last occurrence semantics.

— To respect the classical semantical conventions of temporal logics, we re-
named the After...until scope as After...unless. Then to improve the us-
ability, we added the scope When that has an OCL boolean expression as a
parameter and that covers the execution intervals in which this OCL expres-
sion is evaluated to true. The When scope is derived from the After. .. unless
scope as follows:

When P = After becomesTrue(P) unless becomesTrue(not P)

The becomesTrue event is introduced in Subsection 5.2.

Temporal constraint Support for OCL 11

— Order patterns describe sequencing relationships between events and/or
chains of events. The Dwyer et al. semantics adopt non strict sequencing.
For example, A, B (is) preceding B, C in both A, B,C and A, B, B, C execu-
tions. We add features to specify strict sequencing for an order pattern. For
example, A, B (is) preceding strictly B, C only in the A, B, B, C execution.
We provide same constructs to have strict sequencing within one chain of
events, A, B to denote a non strict sequencing and A; B for a strict one.

— In Dwyer et al. work, there is no construct equivalent to the temporal op-
erator Next. For example, A (is) preceding C in both A;C and A; B; C exe-
cutions. We add features to specify the Next temporal operator for an order
pattern. For example, A (is) preceding directly C only in the A; C execution.
The directly feature is a particular case of strict sequencing.

These enhancements are inspired by our needs within the TASCCC project
[1] and the Dwyer’s notes about the temporal properties that were not sup-
ported [20]. It is obvious that these enhancements improve the requirement cov-
erage (i.e. 92%) shown by Dwyer, but we did not measure it precisely.

5.2 Events

Events are predicates to specify sets of instants within the time line. We discussed
in Section 3 the different types of events in the object-oriented approach. There
are operation (call/start/end) events, time-triggered events and state change
events. We have seen that when integrating the clock into the system, time-
triggered events are particular state change events. Hence, we only need to extend
OCL with the necessary construct for both operation and state change events.

We aim to connect our OCL temporal extension to formal methods such as
model-checking and test scenario generation. Formal methods are mainly based
on the synchronous paradigm that has well-founded mathematical semantics and
that allows formal verification of the programs and automatic code generation.
The essence of the synchronous paradigm is the atomicity of reactions (operation
calls) where all the occurring events during such a reaction are considered si-
multaneous. In our work, we will adopt the synchronous paradigm, and we then
merge the operation (call/start/end) events into one call event, named isCalled,
that leads the system from a pre-state to a post-state without considering neither
observing intermediate change states.

isCalled: is a generic event construct that unifies both operation events and
state change events. It has three optional parameters:

— op: is the called operation. The keyword anyOp is used if no operation is
specified

— pre: is an OCL expression that is a guard over the system pre-state and/or
the operation parameters. The operation invocation will lead to a call event
only if this guard is satisfied by the pre-state of the call. If it is not satisfied,
the event will not occur even if the operation is invoked.

12 S. Taha et al.

— post: is an OCL expression that is a guard over the system post-state and/or
the return value. The operation invocation will lead to a call event only if
this guard is satisfied by the post-state of the call.

becomesTrue: is a state change event that is parameterized by an OCL boolean
expression P, and designates a step in which P becomes true, i.e. P was evaluated
to false in the previous state. In the object-oriented paradigm, a state change is
necessarily a consequence of some operation call, therefore the becomesTrue
construct is a syntactic sugar and stands for any operation call switching P to
true (see Figure 3):

becomesTrue(P) = isCalled(op : anyOp, pre : not P, post : P)

pre / post +/ P X P/
O \O"Wé o> O \Oyoié O -

isCalled(op, pre, post) / becomesTrue(P) /

Fig. 3. Events

We also define two generic operators/constructors over events:
Disjunction: evl | ev2 occurs when evl occurs or ev2 occurs
Exclusion: evl \ ev2 occurs when evl occurs and ev2 does not

Other operators (Negation, Conjunction, ...) can be easily derived:

not(event) = isCalled(anyOp, true, true) \ event

becomesTrue(P;) A becomesTrue(P;) = isCalled(anyOp, =Py A —Po, Py A P»)
becomesTrue(Py A P»)

5.3 Quantification

Our OCL extension supports universal quantification over objects prior to quan-
tification over time. The OCL feature let Variables in can be used within our
OCL extension on the top of temporal expressions (see Section 7.3).

6 Semantics

Several formal semantics have been provided to describe the OCL language.
These are not given in this paper, only the semantics of our OCL temporal
extension are defined. Interested readers may refer to [2,9].

A test case is a scenario/sequence of operations calls. Since we are inter-
ested in test cases generation, we adopt a scenario-based semantics over the
synchronous paradigm to formally describe our temporal extension. The essence

Temporal constraint Support for OCL 13

of that paradigm is the atomicity of reactions (operation calls) where all the
events occurring during such a reaction are considered as simultaneous. A reac-
tion is one atomic call event, that leads the system directly from a pre-state to
a post-state without going through intermediate states.

6.1 Events

We define the set of all atomic events of a given object model as follows:

Definition 1 (Alphabet of Atomic Events). Let QO be the set of all op-
erations and E be the set of all OCL expressions of an object model M. The
alphabet 3. of atomic events is defined by the set O x E x E.

An atomic event e € X then takes the form: e = (op, pre,post). It stands
for a call of the operation op in a context where pre stands for the precondition
satisfied in the pre-state and post for the postcondition satisfied in the post-state.

We now give the formal meaning of the notion of events introduced in the
grammar presented in Figure 5.

Definition 2 (Events). Let X be the alphabet of atomic events, O be the set
of all operations and E the set of all OCL expressions. An event is either an
isCalled(op, pre, post) or becomesTrue(P) where:

isCalled(op, pre, post) = {(op, pre’, post’) € X' | pre’ = pre, post’ = post} and
becomesTrue(P) = {(op, pre,post) € X | op € O, pre = —P, post = P}

Definition 2 calls for the following three comments:

— In our language, the operation op can be replaced by anyOp the set of all
operations as follows:
isCalled(anyOp, pre,post) = U {(op,p,q) € X'| p=pre, ¢ = post}

opeO

— becomesTrue(P) is equivalentpto isCalled(anyOp, —P, P). We keep this prim-
itive to make our language easier to use.

— An event does not represent a single atomic event, but a specific subset
of atomic events. It is intuitively the set of all atomic events in which the
operation op is invoked, in a pre-state which implies the expression pre and
leading to a post-state which implies the expression post. The set of all events
is then defined® as the set 2.

A disjunction (resp. exclusion) of events is an event. By considering events
as subsets of X, the semantics of the disjunction (resp. exclusion) constructor |
(resp. \) over events is given as a simple union (resp. minus) over sets.

Definition 3 (Operators over Events). Let X be the alphabet of atomic
events. The disjunction operator | and the exclusion operator \ over ¥
are defined as follows:
| 2% x2¥ = 2% \ 2% x2¥ 2%
(El, EQ) — El U E2 (El, EQ) (g E1 — E2

3 2% denotes the set of all subsets of X

14 S. Taha et al.

6.2 Scenarios

We introduce the notion of a scenario, which allows us to interpret our OCL tem-
poral expressions. A scenario o in a model M is a finite sequence (e, ..., e,) €
27* of atomic events. Such a scenario embodies the temporal order between
atomic event triggering, where the notion of time is implicitly specified. In a
scenario (eg,...,e,), there is a logical time associated to the atomic event e
which precedes the logical time associated to the atomic event e;, and so on.

In the following, for every scenario ¢ € X* of length n, we write ¢ =
(¢(0),...,0(n—1)). Thus, o(i) denotes the atomic event at index ¢ and o (i : j
the part of o containing the sequence of atomic events between i and j.

~—

6.3 Temporal Expressions

We define here the semantics for our temporal expressions that are evaluated
over event-based scenarios.

Definition 4 (Scopes). Let S be the set of scopes defined in the grammar pre-
sented in Figure 5. The semantics of a scope s € S is given by the function
[s]]° : &% — 2% defined for every o € X* of length n as follows:

[[globally]]*(c) = {o}
Hbefore Ell*(c) ={c(0:i—1) | 0(i) € E and Vk,0 <k <i,0(k) ¢ E}
|

After E|]*(0) ={o(i+1:n—1) | o(i) € E ande 0<k<iolk)¢gE}
between E; and Es]]*(0) = {o(ix +1:jx — 1) |

Vk > 0,0, < ji < ik+1,0(i;€) S El,U(jk) € Es,

Ym, iy < m < ji,o(m) € Ey and Vi, ji, <1 <ixs1,0(l) € Er}
— [[after E4 unless Es]|*(0) =
{O’(ik +1: 5k — 1) ‘ VEk > 0,0, < jJi < ’ik+1,0(ik) S E170'(jk) € FEsy,

Ym, i <m < jg,o(m) € Ey and Vi, ji, <1 <igy1,0(l) &€ E1}

U{o(i:n—1)|0(i) € E1,Ym >i,0(m) & Ex}

Definition 5 (Patterns). Let P be the set of patterns defined in the grammar
presented in Figure 5. The semantics of a pattern p € P is given by the
function [[p]]P : X* — {true, false} defined for every o € X* as follows:

[never E||P(0) & Vi>0,0(i) ¢ E
[[always P]?(o) < [[never(isCalled(anyOp, _, —P))]P(o)
— [[E4 preceding Es]]P(0) < Vi > 0,(0(i) € Ex = 3k <i,0(k) € Ey)
[[E4 following Es)|P(0) < Vi > 0,(0(i) € By = 3k > i,0(k) € Ey)
=kifa=k
[leventually E o times]]P(o) < card({i | o(i) € E}) § >k if a = at least k
< k if « = at most k

Definition 6 (OCL temporal expressions). The semantics of an OCL
temporal expression (pattern,scope) € P xS over a scenario o € X*, denoted
by o E (pattern, scope), is defined by:

o £ (pattern, scope) <= Vo' € [[scope]|®(o), [[pattern]]P(c”)

Temporal constraint Support for OCL 15

Due to the lack of space in this paper, we do not provide the semantics of
all variants of patterns and scopes that we defined in our temporal extension,
interested readers may refer to [21].

7 Integration within the Eclipse/MDT tool-chain
7.1 Structure of Eclipse’s OCL Plug-in

The Eclipse/MDT OCL Plug-in [22] provides an implementation of the OCL
OMG standard for EMF-based models. It provides a complete support for OCL,
but we will only focus on some capabilities that are represented and highlighted
in red within Figure 4.

‘ ‘
|

 tir > |

! |
/ |

‘ |

CST ! ‘ 1 |
| |

‘ |

|

|

|

|

|

inputs concrete tree abstract tree tools

Fig. 4. Eclipse MDT/OCL 4.x with Temporal extension

On the left of Figure 4, there are two Xtext editors that support different as-
pects of OCL usage. The completeOCL editor for *.ocl documents that contain
OCL constraints, and the OCLstdlib editor for *.oclstdlib documents that facili-
tates development of the OCL standard library. This latter is primarily intended
for specifying new functions and predicates to use within OCL expressions.

In the middle of Figure 4, the architecture of the OCL plug-in is based around
a pivot model. The pivot model isolates OCL from the details of any particular
UML or Ecore (or EMOF or CMOF or etc.) meta-model representation. OCL
expressions can therefore be defined, analyzed and evaluated for any EMF-based
meta-model. Notice that most object-oriented meta-models (e.g. UML) are al-
ready specified within EMF.

From left to right, the Xtext framework [23] is used to transform the OCL
constraints document to a corresponding Concrete Syntax Tree (CST). Then,
using a Model to Model transformation (M2M), it generates the pivot model
which corresponds to the Abstract Syntax Tree (AST). Notice that the CST
and the AST are both defined within the OMG standard [2]. Finally on the
right of Figure 4, the OCL plug-in provides interactive support to validate OCL
expressions through their pivot model and evaluate them on model instances.

As highlighted in blue in Figure 4, we integrated our temporal extension
within the Eclipse/MDT OCL tool-chain with respect to its architecture. We
first extended the OCL concrete grammar to parse *.tocl documents that con-
tain temporal OCL properties. After that, we extended in Ecore both comple-
teOCLCST and pivot meta-models with all the temporal constructs we defined.

16 S. Taha et al.

We kept both Xtext and M2M frameworks. Finally, in a join work with our
partner LIFC within the TASCCC project, we developed a tool to transform
temporal properties to test scenarios [1, 6] (see Section 8).

Due to the lack of space in this paper, we do not give the implementation
details on the temporalOCLCST structure and the pivot extension, but the
temporal OCL plug-in is published with documentation under a free/open-source
license [21].

7.2 Concrete Syntax

We extended the OCL concrete grammar defined within the OMG standard [2]
and implemented it within the Eclipse/MDT plug-in. The syntax of our language
for *.tocl documents is summarized in Figure 5.

TempOCL ::= temp (name)? ‘" TempSpec Scope ::= globally

TempSpec ::= Quantif ? Pattern Scope I b;zfore([Eﬁe'f]lt)g[-' [)7
—— A « after (‘' | ‘]")? Event
Quantif ::= let Variable (*,” Variable)* in | between (‘" | ")? last? Event and Event (‘[| |")?
| after (‘[|]")? last? Event unless Event (‘[|]")?
|

Pattern ::= always OclExpression
| never Event
| eventually Event ((at least | at most)? integer times)?
| EventChain preceding(directly | strictly)? EventChain
| EventChain following (directly | strictly)? FventChain

when OclExpression

Buent = CallEvent (‘|' Event)? CallEvent ::= isCalled ‘(’ (anyOp | op : Operation)

| ChangeBEvent (‘| Event)? (¢, pre : OclExpression)?
EventChain ::= Event (‘, Event)* (‘) post : OclExpression)? ‘)’
| Event (‘) Event)* ChangeEvent ::= becomesTrue ‘(" OclExpression ‘)’

Fig. 5. Grammar of the OCL temporal extension

In this figure, non-terminals are designated in italics and terminals in bold.
(...)? designates an optional part and (...)* a repetitive part. Finally, the non-
terminals imported from the standard OCL grammar (e.g. OclExpression) are
underlined. This grammar represents the temporal layer we added to OCL ex-
pressions (temporal patterns, events constructs and support of quantification).
Taking advantage of the integration within the Eclipse/MDT OCL, we devel-
oped, with the help of the Xtext framework, a temporal OCL editor which pro-
vides syntax coloring, code formatting, code completion, static validation (well
formedness, type conformance...) and custom quick fixes, etc. Furthermore,
there is an outline view that shows the concrete syntax tree of the temporal
OCL property on-the-fly (while typing). Figure 6 illustrates a snapshot of the
outline view.

7.3 Examples of temporal properties

In Exp 3, the temporal properties we identified in Section 3 are written us-
ing our OCL temporal extension. Due to our grammar, the temporal proper-
ties seem to be written in natural language. They are ruling call event occur-
rences with different patterns: following (strict), preceding (non-strict), existence

11
12

14

16
17

B oW N o=

Temporal constraint Support for OCL 17

and boundedexistence that are combined with globally and between scopes. Both
safety_2 and safety_3 properties require quantification over objects prior to tem-
poral operators to specify relations between events. For instance, in safety_2 we
need to specify that the load of an application app must precede the run of the
same application app, and not any other. To do so, we introduced the variable
apptolnstall which allows us to set the same parameter apptolnstall for both
load and run operations.

context System

temp safety_1:
eventually isCalled(load(app:Application)) at most 1 times
globally

temp safety_2: let apptolnstall : Application in
isCalled (load (app: Application), pre: app = apptolnstall)
preceding isCalled (run(app: Application), pre: app = apptolnstall)

globally
temp safety_3: let apptolnstall : Application in

eventually isCalled(install())

between isCalled (load (app: Application), pre: app = apptolnstall)

and isCalled (run(app:Application), pre: app = apptolnstall)
temp liveness: isCalled(install())

following strictly isCalled(load(app:Application))

globally

Exp. 3. Temporal OCL constraints

The safety_3 property is not relevant because having an install call between the
load and the run does not ensure that the application will be really installed.
This will not happen if some dependencies are not loaded. To overcome this,
we propose in Exp 4 two variants of the safety_3 property. The safety_3 vl
property ensures that there is a particular install call, leading to a post-state
where the application is installed. The safety_3_v2 property only specifies that
the application becomes installed independently of any operation call (see the
becomesTrue semantics in Subsection 5.2). It requires any operation call from
a pre-state where the application was not installed to a post-state where it is
installed.

temp safety_3_.vl: let apptolnstall : Application in
eventually isCalled(install(),
post: self.installed_apps—>includes(apptolnstall))

between

temp safety_-3_.v2: let apptolnstall : Application in
eventually becomesTrue(self.installed_apps—>includes(apptolnstall))
between

Exp. 4. Variants of Safety_3 property

8 Application: Test Purpose Framework

Testing nowadays programs leads naturally to an exponential state space. When
reducing the state space, the testing process derivation may miss test cases of
interest and yield irrelevant ones. Test purposes (test intentions) are viewed as
one of the most promising directions to cope with this limit [4,5]. They are

18 S. Taha et al.

commonly used to guide the test generation techniques. A test purpose is a
description of the part of the specification that we want to test and for which
test cases are later generated.

Thinking of functional and security properties when writing test purposes is
a common practice, but it has not been automated. We propose to automatically
handle test purposes. We first specify the test purposes as OCL temporal prop-
erties using our extension. Then, we transform them automatically into regular
expressions. This phase was achieved in a join work with our partner LIFC who
generates automatically regular expressions from properties written in our OCL
extension and measures the coverage of the properties [6]. Considering scenario-
based semantics (see Section 6), the regular expressions generated are equivalent
to the OCL temporal expressions from which they are derived. This automatic
transformation is done based on the complete library given by Dwyer et al. [24,
3], mapping each pattern/scope combination to the corresponding formula in
many formalisms such as LTL, CTL, QRegExps and p-calculus.

We choose regular expressions as an output language because they are generic
enough to be used (with some adaptation) in large family of test generation tech-
niques that are guided by test purposes. For instance, our framework connects
naturally to the combinatorial test generation tool Tobias [25], that unfolds,
in a combinatorial way, tests expressed as regular expressions. Furthermore,
approaches such as [4,5,26] that describe their test purposes manually in the
form of Labeled Transition systems (LTS) or Input-Labeled Transition systems
(IOLTS), could easily be targets of our framework. We only need to translate
the regular expressions produced from the OCL temporal expressions into these
two formalisms, which requires a little technical effort.

The first use of this test purpose framework is within the TASCCC project [1]
which aims to automatize testing security properties on smart card products and
experiment it on GlobalPlatform, a last generation smart card operating system.
The process of test generation used in this project consists mainly of five phases:

1. Identifying security properties from the Common Criteria standard?;

2. Writing these security properties using our OCL temporal extension and
based on the GlobalPlatform UML model distributed by Smartesting;

3. Translating the OCL temporal properties into equivalent test scenarios that
are regular expressions over an alphabet of API calls;

4. Transforming the test scenarios into test cases by means of Tobias [25];

5. Animating the generated test cases on the GlobalPlatform. This is performed
by the Certifylt tool of Smartesting.

Figure 6 is a snapshot of the Temporal OCL editor in which the GlobalPlat-
form security properties (extracted from Common Criteria) were entered and the
corresponding regular expressions were generated. The visible property specifies
that each logical channel must keep secured between the last successful call of
ExternalAuthenticate and a command needing authentication.

4 www.commoncriteriaportal.org

Temporal constraint Support for OCL 19

= Outline %8
[GlobalPlatform.tocl &2 EF Outline

import 'GlobalPlatform.uml’ ¥ E3Temporal OCL document
%7 GlobalPlatform.uml
package classes v EaGlobalplatform::classes
“context Card v Ecard
¥ {} <temp>CC1
= /* Each Logical Channel must keep secured between the last successful call of ExternalAuthenticate el
and a command needing authentication. */ =
“temp Ci: let lc: ALL_LOGICAL_CHANNELS, aid: ALL_AIDS in » 1= aid
B never P I Mlinot. selt.issecuresessionper) S
= between last isCalled(APDU externalAuthenticate (IN_lcNumber : ALL_LOGICAL_CHANNELS, IN_securi| e "
pre: Ic = IN_IcNumber, = "disjunction of events'
post: self.lastStatusWord = ALL_STATUS_WORDS: : SUCCESS and self.Ics->any(numb) ¥ [) change event
e and isCalled(APDU_setStatus(IN_claSMLevel : ALL_SM_LEVELS, IN_lcNumber : ALL_LOGICAL |
pre: Ic = IN_IcNumber and aid = IN_appAid, . "
post: self.lastStatushord = ALL_STATUS_WORDS: : SUCCESS) ¥ = "between
¥ fig "disjunction of events"

&-- A successful LOAD is directly preceded by a successful INSTALL[for Load]
= temp cc2: JArbue ©
& isCalled(APDU_installForLoad (IN_lcNumber : ALL_{OGICAL_CHANNELS, IN_clasMLevel : ALL_SM_LEVE ¥ =" disjunction of events

> () APDU_externalAuthenticate call
preceding directly > [1APDU_setStatus call
e isCalled(APDU_load (IN_LcNumber : ALL_LOGICAL_ CHANNELS, IN_claSMLevel : ALL_SM_LEVELS, IN_unau v () <temp>cC2

¥ o= "preceding”
¥ =" chain of events”

Bl GlobalPlatform.regex &

temp: CC1 ¥ &= "disjunction of events”
let lc: ALL_LOGICAL_CHANNELS > (1 APDU_installForLoad call
let aid: ALL_AIDS v dw"chai £ events”
P : [_, not (not self.isSecuresessionOpen) , not self.isSecuresessionopen] a7 chain of events
Q : [APDU_externalAuthenticate , lc = IN_lcNumber , self.lastStatuskWord = ALL_STATUS_WORDS: :SUCCESS anc * i "disjunction of events”
R : [APDU_setStatus , lc = INlcNumber and aid = IN appAid , self.lastStatusWord = ALL_STATUS WORDS::SL » () APDU_load call
RexExp: ([- Q1*: Q: [- P,R1*; R)*: [- Q1*; (Q: [- RI*)?
p: ([- Q1*: Q: [1) [- a1 @ 1) = "globally”

Fig. 6. The Temporal OCL editor (GlobalPlatform properties)

9 Conclusion

Although many temporal extensions of OCL exist, they have never been used
convincingly in practice. To cope with this, we have presented a pattern-based ex-
tension of the OCL language to express temporal constraints on object-oriented
systems. We defined our language with a formal scenario-based semantics to
support the specification of test purposes and their automatic translation into
regular expressions. We also developed this extension and integrated it into the
Eclipse’s OCL plug-in (version 4.x). As regards practical applications, our OCL
extension is used in a test purpose framework dedicated to UML/OCL mod-
els in order to develop strategies to support the automatic testing of security
properties on the smart card operating system GlobalPlatform.

Future work. As previously stated, adding temporal aspects to the OCL language
could be a promising direction to explore model checking techniques. We intend
to connect our language to usual model checking tools inspired by the work
proposed by Distefano et al. in [12].

References

1. Projet TASCCC, Test Automatique basé sur des SCénarios et évaluation Criteres
Communs. http://lifc.univ-fcomte.fr/TASCCC/.

2. Object Management Group. Object Constraint Language. http://www.omg.org/
spec/0CL/2.2, February 2010.

3. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in prop-
erty specifications for finite-state verification. In Proceedings of the 21st Interna-
tional Conference on Software Programming, pages 411-420, 1999.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.
23.
24.
25.

26.

S. Taha et al.

C. Jard and T. Jéron. TGV: theory, principles and algorithms. In World Conference
on Integrated Design and Process Technology (IDPT’02), California, USA, 2002.
C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic execution techniques for
test purpose definition. In TestCom, pages 1-18, 2006.

K. Cabrera Castillos, F. Dadeau, J. Julliand, and S. Taha. Measuring test proper-
ties coverage for evaluating UML/OCL model-based tests. In B. Wolff and F.Zaidi,
editors, IC'TSS, volume 7019 of LNCS, pages 32—47. Springer, 2011.

C. Baier and J.P. Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

P. Ziemann and M. Gogolla. Ocl extended with temporal logic. In M. Broy and
A. Zamulin, editors, Perspectives of System Informatics, volume 2890 of LNCS,
pages 617-633. Springer Berlin / Heidelberg, 2003.

M. Richters and M. Gogolla. OCL: Syntax, semantics, and tools. In T. Clark and
J. Warmer, editors, Object Modeling with the OCL, volume 2263 of LNCS, pages
42-68. Springer, 2002.

M.V. Cengarle and A. Knapp. Towards OCL/RT. In Formal Methods — Interna-
tional Symposium of Formal Methods Europe, pages 389—408. Springer, 2002.

D. Calegari, M.V. Cengarle, and N. Szasz. UML 2.0 interactions with OCL/RT
constraints. In FDL, pages 167-172, 2008.

D. Distefano, J.P. Katoen, and A. Rensink. On a temporal logic for object-based
systems. In Fourth International Conference on Formal methods for open object-
based distributed systems IV, pages 305-325, Norwell, MA, USA, 2000.

J. Mullins and R. Oarga. Model checking of extended OCL constraints on UML
models in SOCLe. In Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2007), Cyprus, volume 4468 of LNCS, pages 59-75. Springer, 2007.
SOCLe Project. hitp://www.polymtl.ca/crac/socle/index.html.

S. Flake and W. Mueller. Formal semantics of static and temporal state-oriented
OCL constraints. Software and Systems Modeling (SoSyM), Springer, 2:186, 2003.
J.C. Bradfield, J.K. Filipe, and P. Stevens. Enriching OCL Using Observational
Mu-Calculus. In 5th International Conference on Fundamental Approaches to Soft-
ware Engineering, FASE’02, pages 203217, London, UK, 2002. Springer-Verlag.
S. Ramakrishnan and J. Mcgregor. Extending OCL to support temporal operators.
In 21st International Conference on Software Engineering (ICSE99) Workshop on
Testing Distributed Component-Based Systems, LA, May 16-22, 1999.

S. Conrad and K. Turowski. Temporal OCL: Meeting specifications demands for
business components. In Unified Modeling Language: Systems Analysis, Design,
and Development Issues, pages 151-166. Idea Publishing Group, 2001.

Object Managment Group. UML profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE), november 2009.

Specification patterns. http://patterns.projects.cis.ksu.edu.

OCL temporal extension,http://wwwdi.supelec. fr/taha/temporalocl/, 2012.

OCL (MDT). http://www.eclipse.org/modeling/mdt/?project=ocl.

Xtext 2.1. http://www.eclipse.org/Xtext/.

Spec Patterns. http://patterns.projects.cis.ksu.edu,/.

Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron. Filtering TOBIAS combi-
natorial test suites. In Fundamental Approaches to Software Engineering, volume
2984 of LNCS, pages 281-294. Springer Berlin/Heidelberg, 2004.

J. Tretmans. Conformance testing with labelled transition systems: Implemen-
tation relations and test generation. Computer networkss and ISDN systems,
29(1):49-79, 1996.

