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Abstract

Verifiable secret sharing (VSS) is a vital primitive in secure distributed computing. It allows
an untrusted dealer to verifiably share a secret among n parties in the presence of an adversary
controlling at most t of them. VSS in the synchronous communication model has received
tremendous attention in the cryptographic research community. Nevertheless, recent interest in
deploying secure distributed computing over the Internet requires going beyond the synchronous
communication model and thoroughly investigating VSS in the asynchronous communication
model.

In this work, we consider the communication complexity of asynchronous VSS in the com-
putational setting for the optimal resilience of n = 3t + 1. The best known asynchronous VSS
protocol by Cachin et al. has O(n2) message complexity and O(κn3) communication complex-
ity, where κ is a security parameter corresponding to the size of the secret. We close the linear
complexity gap between these two measures for asynchronous VSS by presenting two protocols
with O(n2) message complexity and O(κn2) communication complexity. Our first protocol sat-
isfies the standard VSS definition, and can be used in stand-alone VSS scenarios as well as in
applications such as Byzantine agreement. Our second and more intricate protocol satisfies a
stronger VSS definition, and is useful in all VSS applications including multiparty computation
and threshold cryptography.

Keywords: Verifiable Secret Sharing, Asynchronous Communication Model, Communication Complexity,

Threshold Cryptography, Polynomial Commitments

1 Introduction

The notion of secret sharing was introduced independently by Shamir [31] and Blakley [7] in 1979.
For integers n and t such that n > t ≥ 0, an (n, t)-secret sharing scheme is a method used by a
dealer to share a secret s among a set of n parties in such a way that any subset of t+ 1 or more
parties can compute the secret s, but subsets of size t or fewer cannot.

In many applications of secret sharing, parties may need to verify the correctness of the values
dealt in order to prevent malicious behavior by the dealer. To satisfy this requirement, Chor et
al. [17] introduced the concept of verifiable secret sharing (VSS). With its applicability to Byzantine
agreement, multiparty computation (MPC) and threshold cryptography, VSS has remained an
important area of cryptographic research for the last two decades [12,14,18,20,21,28,29].

Although the literature for VSS is vast, the notion of VSS in the asynchronous communication
setting (no bounds on message transfer delays) has not yet received the deserved attention in terms
of practical efficiency or theoretical lower bounds. Asynchronous VSS schemes with unconditional
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security have been developed [1, 6, 15, 27]; however, these schemes are prohibitively expensive for
any realistic use as they need Ω(κn5) bits of communication for κ-bit secrets. In the computational
security setting, Cachin et al. [12], Zhou et al. [32], and recently Schultz et al. [30] suggested more
practical asynchronous VSS schemes: asynchronous verifiable secret sharing (AVSS), asynchronous
proactive secret sharing (APSS) and mobile proactive secret sharing (MPSS), respectively. Of
these, AVSS [12] is the most generic and practical asynchronous VSS scheme and it forms the
basis for many practical threshold cryptographic protocols such as [22]. AVSS assimilates a bi-
variate polynomial into Bracha’s deterministic reliable broadcast protocol [11], which results into
its O(n2) message complexity (number of messages transferred) and O(κn4) communication com-
plexity (number of bits transferred) for the optimal resiliency condition of n = 3t + 1. Cachin
et al. [12] further refined the AVSS protocol to reduce the communication complexity to O(κn3).
Nevertheless, a further reduction in the communication complexity is not possible using similar
techniques, and a linear complexity gap between the message complexity and the communication
complexity still remains.

In this work, we bridge this gap. We present two efficient asynchronous VSS schemes (eAVSS and
eAVSS-SC) with different properties (and correspondingly different utilities) with O(n2) message
complexity and O(κn2) communication complexity.

1.1 Our Contributions

Kate, Zaverucha and Goldberg [23] define the concept of commitments to polynomials, and devise
two schemes PolyCommitDLog and PolyCommitPed that commit to a univariate polynomial of degree
t (or less) using a single element of size O(κ). Their schemes work in the bilinear pairing setting
under the t-strong Diffie–Hellman (t-SDH) assumption [9]. We use their PolyCommitPed scheme and
a collision-resistant hash function to achieve our goal of asynchronous VSS with O(κn2) commu-
nication complexity. Although we choose the PolyCommitPed scheme that provides unconditional
hiding (secrecy) instead of the simpler PolyCommitDLog scheme that provides computational hiding
against the discrete logarithm (DLog) assumption, our protocols work with the PolyCommitDLog

scheme with no modification.
Nevertheless, our schemes are not a straightforward adaptation of the PolyCommit schemes

to the bivariate polynomial-based AVSS scheme [12], and not surprisingly, Kate et al. [23] left
the applicability of PolyCommit to asynchronous VSS as an open problem. The reason for that,
as we elaborate in Section 2.4, is that modifying the PolyCommit schemes to a scheme providing
constant-size commitments to bivariate-polynomials used in asynchronous VSS seems difficult if
not impossible.

We achieve our goal by taking an entirely different path, bypassing the open problem of obtain-
ing constant-size commitments to bivariate polynomials. We realize asynchronous VSS in two steps:
We first present a univariate polynomial-based asynchronous VSS scheme (eAVSS), which guaran-
tees that at least t+1 honest parties receive proper shares of the secret, while the remaining honest
parties are assured that at least t+1 honest parties have received correct shares and can reconstruct
the shared secret. This construction is sufficient for stand-alone VSS and for applications such as
asynchronous Byzantine agreement (ABA). For applications such as MPC and threshold crypto-
graphic constructions, we then design an efficient stronger asynchronous VSS scheme (eAVSS-SC),
which guarantees that every honest party receives its share during the sharing phase. In principle,
this is possible by running n+1 instances of eAVSS; however, it asks for a broadcast of commitment
vectors of size O(κn) which increases the communication complexity to O(κn3). In eAVSS-SC, we
overcome this barrier by aptly modifying the AVSS protocol flow and by hashing the commitments
in the vector using a collision-resistant hash function and running a PolyCommit instance over the
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hashed values.
Our schemes have direct implications to the efficiency of all asynchronous VSS applications.

Most prominently, using our eAVSS protocol in the modular ABA construction by Canetti and
Rabin [13, 15], it is possible to obtain the first O(κn3) communication complexity ABA protocol,
which is secure against the adaptive adversary in the standard model.

Organization. In Section 2, we describe our system model and provide a brief overview of the
concepts of VSS, polynomial commitments and asynchronous VSS. In Section 3, we define and prove
our basic asynchronous VSS protocol (eAVSS), while in Section 4, we define our main asynchronous
VSS protocol (eAVSS-SC). In Section 5, we discuss a few interesting applications. An in-depth
discussion of the PolyCommitPed scheme and corresponding computational assumptions have been
added in Appendix A. Due to space restrictions, our proof for eAVSS-SC has been shifted to
Appendix B.

2 Preliminaries

Our schemes work in the computational security setting. The adversary A is a probabilistic poly-
nomial time (PPT) algorithm with respect to a security parameter κ unless stated otherwise. A
function ε(·) : N→ R+ is called negligible if for all c > 0 there exists a κ0 such that ε(κ) < 1/κc for
all κ > κ0. Throughout the rest of this paper, ε(·) denotes a negligible function.

We assume that the shared secret s lies over a finite field Fp, where p is a κ-bit long prime. We
use Shamir’s polynomial-based secret sharing approach [31], where our polynomials belong to Fp[x]
or Fp[x, y].

2.1 Asynchronous System Model

Following the adversary and communication model of AVSS given by Cachin et al. [12], we assume
an asynchronous fully-connected network of n parties P = {P1, P2, . . . , Pn}, where every pair of
parties is connected by an authenticated and private communication link. A special party Pd ∈ P
works as a dealer. The indices for the parties are chosen from Fp. Without loss of generality, we
assume these indices to be {1, . . . , n}.

The adversary A is t-bounded and it can coordinate the actions of up to t out of n parties.
The adversary A is further assumed to be adaptive, and may corrupt a party of its choice at any
instance during a protocol execution as long as its total number of corruptions is bounded by t.
A party is said to be honest if the adversary has not corrupted it. In our asynchronous setting,
the adversary A controls the network and may delay messages between any two honest parties.
However, it cannot read or modify these messages, and it also has to eventually deliver all the
messages by honest parties.

2.2 Verifiable Secret Sharing—VSS

In many secret sharing applications, a dealer may behave maliciously. This led to the conception
of VSS [17].

Definition 2.1. An (n, t)-VSS scheme among n parties in P = {P1, P2, . . . , Pn} with a distin-
guished party Pd ∈ P consists of two phases: the sharing (Sh) phase and the reconstruction (Rec)
phase.
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Sh phase. A dealer Pd distributes a secret s ∈ Fp among parties in P. At the end of the Sh
phase, each honest party Pi holds a share si of the distributed secret s.

Rec phase. In this phase, each party Pi sends its secret share s′i to every party in P and a
reconstruction function is applied in order to compute the secret s = Rec(s′1, s

′
2, . . . , s

′
n) or output

⊥ indicating that Pd is malicious. For honest parties s′i = si, while for malicious parties s′i may be
different from si or even absent.

An (n, t)-VSS scheme has the following security requirements:
Secrecy. If the dealer is honest, the adversary who can compromise t parties does not have any

more information about s except what is implied by the public parameters.
Correctness. If Pd is honest, the reconstructed value should be equal to the dealer’s secret s.
Commitment. Even if Pd is dishonest, there exists a value s∗ ∈ Fp ∪{⊥} at the end of the Sh

phase, such that all honest parties output s∗ at the end of the Rec phase.
In this paper, we consider VSS schemes where any malicious behaviour by Pd can be identified

by the honest parties in the Sh phase itself and the commitment property simplifies to the following:
the reconstructed value z should be equal to a shared secret s ∈ Fp that gets fixed at the end of
the Sh phase.

Many VSS applications (e.g., threshold cryptography and MPC) avoid participation by all
parties once the Sh phase is over. It is required that messages from any t+ 1 honest parties (or any
2t + 1 parties) are sufficient to reconstruct the shared secret s. For these applications, we require
a stronger commitment property that we refer as the strong commitment requirement.

Strong Commitment. Even if Pd is dishonest, there exists a value s∗ ∈ Fp at the end of the
Sh phase, such that s∗ is reconstructed regardless of the subset of parties (of size greater than 2t)
chosen by the adversary in the Rec phase.

Further, some VSS schemes achieve a weaker (computational) secrecy guarantee.
Weak Secrecy. A t-limited adversary who can compromise t parties cannot compute s during

the Sh phase.
We also give the following definitions for the complexity measures.

Definition 2.2 (Message Complexity). The message complexity is defined as the total number of
messages exchanged between the parties participating in a scheme.

Definition 2.3 (Communication Complexity). The communication complexity is defined as the
total number of bits exchanged between the parties taking into consideration every message that has
been transmitted.

A variant of VSS considers dealer Pd to be an external party (i.e., Pd /∈ P) and allows the
adversary to corrupt Pd and up to t additional parties in P. All our protocols also work in this
stronger setting.

Assuming a broadcast channel, Feldman [20] developed the first non-interactive and efficient
VSS scheme and Pedersen [28,29] presented a modification to it. Both protocols obtain the strong
commitment property. In terms of secrecy, Feldman VSS achieves the weak secrecy property, while
Pedersen VSS achieves the stronger form.

2.3 Use of Commitments in VSS

A verification mechanism for a consistent dealing is fundamental to VSS. It is achieved using dis-
tributed computing techniques in the information-theoretic security setting. In the computational
setting that we focus in this paper, the commitment schemes provide an efficient alternative.
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A commitment scheme allows a committer to publish a value, called the commitment (say C),
which binds her to a message s (binding) without revealing it (hiding). Later, she may open the
commitment C and reveal the committed message m to a verifier, who can check that the message
is consistent with the commitment. In particular, the computational VSS schemes utilize the
commitments to the shared polynomials. Kate et al. [23] formalize this concept of polynomial
commitments. Here, we present a refined version of their polynomial commitment (PolyCommit)
definition for polynomial of degree ≤ t.

Definition 2.4. A PolyCommit scheme consists of the following algorithms:
Setup(1κ, t) generates system parameters SP to commit to a polynomial of degree ≤ t. In these

system parameters, let G be an algebraic structure for commitments. Setup is run by a trusted or
distributed authority. SP can also be standardized for repeated use.

Commit(SP, φ(x)) outputs a commitment C to a polynomial φ(x) for the system parameters
SP, and some associated decommitment information d. (In some constructions, d can be null.)

Open(SP, C, φ(x), [d]) outputs the polynomial φ(x) used while creating the commitment, with
decommitment information d.

VerifyPoly(SP, C, φ(x), [d]) verifies that C is a commitment to φ(x), created with decommitment
information d. If so, the algorithm outputs 1, otherwise it outputs 0.

CreateWitness(SP, φ(x), i, [d]) outputs 〈i, φ(i), wi, di〉, where wi is a witness and di is the de-
commitment information for the evaluation φ(i) of φ(x) at the index i. This algorithm is optional.

VerifyEval(SP, C, i, φ(i), [di, wi]) verifies that φ(i) is indeed the evaluation at the index i of the
polynomial committed in C. If so, the algorithm outputs 1, otherwise it outputs 0.

Given SP← Setup(1κ, t), a PolyCommit scheme satisfies the following properties:
Correctness. Let C ← Commit(SP, φ(x)). For a commitment C generated by Commit(SP,

φ(x)), and all φ(x) ∈ Zp[x], any 〈i, φ(i), wi, di〉 output by CreateWitness(SP, φ(x), i) is successfully
verified by VerifyEval(SP, C, i, φ(i), di, , wi).

Strong Correctness. For all adversaries A, Pr
{

(C, 〈φ(x), d〉)← A(SP) : deg(φ(x)) > t
}

=
ε(κ).

Polynomial Binding. For all adversaries A:

Pr

(C, 〈φ(x), d〉, 〈φ′(x), d′〉)← A(SP) :

 VerifyPoly(SP, C, φ(x), d) = 1
∧VerifyPoly(SP, C, φ′(x), d′) = 1

∧φ(x) 6= φ′(x)

 = ε(κ).

Evaluation Binding. For all adversaries A:

Pr

(C, 〈i, φ(i), di, wi〉, 〈i, φ(i)′, d′i, w
′
i〉)← A(SP) :

 VerifyEval(SP, C, i, φ(i), di, wi) = 1
∧VerifyEval(SP, C, i, φ(i)′, d′i, w

′
i) = 1

∧φ(i) 6= φ(i)′

 = ε(κ).

(Unconditional) Hiding. Given 〈SP, C〉 and {〈ij , φ(ij), dij , wφij 〉 : j ∈ [1, deg(φ)]} for some

φ(x) ∈R Zp[x] such that VerifyEval (SP, C, ij , φ(ij), dij , wφij ) = 1 for each j, a computationally

unbounded adversary Â has no information about φ(ĵ) for any unqueried index ĵ.
The above strong correctness property is not present in the original PolyCommit definition. We

include it as restricting degree of the committed polynomial by a threshold t is required for VSS.
Further, a weaker form of hiding is also possible, where a computationally bounded adversary A
cannot compute φ(ĵ) for any unqueried index ĵ. We consider the unconditional hiding property in
the paper.
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In literature, VSS protocols utilized commitments to the coefficients or evaluations of shared
polynomials as polynomial commitments. They used two commitment schemes. Given g and h
as two random generators of a multiplicative group of order p, Feldman VSS and its variants
use a commitment scheme of the form gs with computational hiding under the discrete logarithm
(DLog) assumption and unconditional binding. Pedersen [28] presented another commitment of
the form gshr with unconditional hiding but computational binding under the DLog assumption.
The hiding property of the commitment scheme leads to the secrecy property of VSS, while the
binding property leads to the correctness property of VSS. Both of these commitment schemes also
trivially satisfy the commitment property of VSS by the fact that the size of a commitment to a
polynomial φ(x) ∈ Zp[x] is equal to deg(φ) + 1. In the complexity terms, the size of commitment
is O(n) (since for optimal resiliency, deg(φ) = t = bn−12 c). However, the commitment to a shared
polynomial has to be broadcast to all parties, which results in a linear-size broadcast for Feldman
VSS, and a linear complexity gap between the message and the communication complexities.

Kate et al. [23] close this gap for Feldman VSS and its variants using a commitment that
commits to the entire univariate polynomial using a single element. In particular, they define two
polynomial commitment (PolyCommit) schemes: PolyCommitDLog and PolyCommitPed, both of which
works in the bilinear pairing setting with Θ(t) system parameters. PolyCommitDLog attains hiding
under the DLog assumption, binding under the t-strong Diffie-Hellman (t-SDH) assumption [9], and
strong correctness under the t-polynomial Diffie-Hellman assumption (refer to Appendix A.1 for the
definitions of assumptions). Using a technique similar to Pedersen commitments, they also define
PolyCommitPed, which attains unconditional hiding and computational binding under the t-SDH
assumption. These constructions are based on an algebraic property of polynomials φ(x) ∈ Fp[x]
that (x− i) perfectly divides the polynomial φ(x)− φ(i) for any i ∈ Fp.

In this work, we extend the utility of the PolyCommit concept to asynchronous VSS. We choose
the PolyCommitPed scheme for our protocol as it provides unconditional hiding and include the
PolyCommitPed construction in Appendix A.

2.4 Asynchronous VSS

The asynchronous communication setting places no bounds on message delays. Consequently, there
is no trivially available broadcast channel, and Feldman VSS and its variants do not guarantee a
correct completion. This gives rise to the concept of asynchronous VSS for optimal resilience of
n = 3t+ 1.

An asynchronous VSS protocol requires the liveness and agreement properties along with the
secrecy, correctness and commitment properties defined in Section 2.2

Definition 2.5. An asynchronous VSS protocol having n ≥ 3t+1 parties with a t-limited Byzantine
adversary satisfies the following conditions:

Liveness. If the dealer Pd is honest in the Sh phase, then all honest parties complete the Sh
phase.

Agreement. If some honest party completes the Sh phase, then all honest parties will eventu-
ally complete the Sh phase. If all honest parties subsequently start the Rec phase, then all honest
parties will complete the Rec phase.

Correctness, Commitment and Secrecy. as defined in Section 2.2.

For VSS applications such as MPC, we need VSS that has identical secrecy, correctness, liveness
and agreement properties as in Definition 2.5, but a stronger commitment property as defined in
Section 2.2. In other words, there exists a t-degree polynomial f(x) such that a share si held by
every honest party Pi at the end of the sharing phase is equal to f(i).
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As discussed in the introduction, three computational VSS schemes have been suggested for
the asynchronous setting: AVSS [12], APSS [32], and MPSS [30]. Of these, AVSS [12] provides the
first and the most practical asynchronous VSS scheme. In the AVSS methodology, secret sharing is
integrated into a reliable broadcast primitive [11]. This results into its O(n2) messages complexity.
Here, the commitments to the secret and its shares are broadcast, and the shares themselves are
appropriately appended to the broadcast commitments so that parties receive their shares while
maintaining their secrecy. To overcome an adversarial dealer that does not provide some honest
party with its correct share, parties send sub-shares to each other along with the broadcasted
commitment. The victim party then computes its share from the received sub-shares. AVSS
implements this using bivariate polynomial-based secret sharing, which leads to a commitment
(or broadcast) of size Θ(κn2) and correspondingly O(κn4) bits of communication. In the same
paper, Cachin et al. improve their AVSS scheme by reducing the commitment-size to Θ(κn), which
results in O(κn3) bits of communication. A linear gap between the message complexity and the
communication complexity still remains.

A Mismatch between AVSS and PolyCommit. It is tempting to consider filling this gap
for AVSS using a bivariate PolyCommit scheme that commits to an entire bivariate polynomial
using a constant-size commitment; however, this does not seem to be possible with the existing
PolyCommit methodology. PolyCommit schemes use the algebraic property that, for φ(x) ∈ Fp[x],
(x − i) perfectly divides the polynomial φ(x) − φ(i) for any i ∈ Fp. However, such a perfect and
direct relation is not known between a bivariate polynomial φ(x, y) and its evaluations φ(i, j) for
any i, j ∈ Fp.1 Therefore, we will have to use two-stage properties involving univariate polynomials
(e.g., (x − i)(y − j) perfectly divides the polynomial φ(x, y) − φ(i, y) − φ(x, j) + φ(i, j) for any
i, j ∈ Fp). However, this does not work either because even though the t-SDH problem to find

〈c, g
1

α+c 〉 for any value of c ∈ Zp given 〈g, gα, gα2
, . . . , gα

t〉 is conjectured to be hard, its exponential

version to find a pair 〈gc, g
1

α+c 〉 is easy.
A closer look at AVSS reveals that further reducing the commitment-size in the hash-based

approach of Cachin et al. using a univariate PolyCommit scheme also does not work: Cachin et al.
hash the shares (or the univariate polynomials) for n parties and the secret. These n + 1 hashed
values sent to each party constitute a polynomial of degree n instead of degree t of the underlying
bivariate polynomial. This requires an honest party to wait for (constant-size) messages from all n
parties in AVSS, which is impossible in the asynchronous setting.

As a result, we have to work towards our goal of asynchronous VSS with O(κn2) in a different
way. In the next section, we provide an asynchronous VSS that satisfies the basic VSS definition,
and extend it to a stronger version with applicability in all known VSS applications in Section 4.

3 eAVSS: Asynchronous VSS Protocol

In this section, we present a protocol (eAVSS) with O(n2) message complexity and O(κn2) com-
munication complexity and that satisfies Definition 2.5 of asynchronous VSS. The eAVSS protocol
guarantees that at least t+ 1 honest parties receive proper shares of the secret committed using a
t-degree univariate polynomial during the Sh phase, while the remaining honest parties are assured
that there are at least t+ 1 honest parties that have received correct shares and can complete the
Rec phase. The protocol is sufficient for applications such as Byzantine agreement and stand-alone

1This is equivalent to derivatives in calculus, where complete derivation of a multi-variable equation is not possible
and partial derivatives are employed.
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Sh Phase
Dealer Pd with the secret s

• Select a polynomial φ(x) of degree t such that φ(0) = s.

• Compute a commitment 〈C, φ̂(x)〉 ← Commit(SP, φ(x)) and witnesses wj ← CreateWitness

(SP, φ(x), φ̂(x), j) for j ∈ [1, n].

• Send (send, C′ = C, φ(j), φ̂(j), wj) to every party Pj .

Every party Pi

• On receiving a message (send, C′, φ(i), φ̂(i), wi) from Pd, run VerifyEval(SP, C′, i, φ(i), φ̂(i), wi).
If the verification succeeds, set C = C′ and send (echo, C′) to all parties.

• On receiving (echo, C′) messages from (n− t) parties:

– For C′ = C, send (ready, share, C′) to all parties;

– For C′ 6= C, discard 〈φ(j), φ̂(j), wj〉, set C = C′, and send (ready, no-share, C′) to all parties.

• If a ready message has not been sent, then on receiving (ready, ∗, C′) messages from t+ 1 parties:

– For C′ = C, send (ready, share, C′) to all parties;

– For C′ 6= C, discard 〈φ(j), φ̂(j), wj〉, set C = C′, and send (ready, no-share, C′) to all parties.

• On receiving (ready, ∗, C′) messages from at least (n− t) parties such that share flags are set in

at least t + 1 of those, complete the Sh phase with commitment C = C′ (and 〈φ(i), φ̂(i), wi〉 if
present).

Rec Phase
Every party Pi

• Send (rec-share, φ(i), φ̂(i), wi) to all parties, if it has sent a (ready, share, C) message in the Sh
phase.

• On receiving t+1 rec-share messages verified using VerifyEval(SP,C, j, φ(j), φ̂(j), wj), interpolate
the secret as s = φ(0).

Figure 1: Protocol eAVSS for Asynchronous VSS (n ≥ 3t+ 1)

VSS. The protocol construction is significantly simpler than the AVSS protocol [12] and it has a
protocol flow similar to a VSS protocol for non-homomorphic commitments [5].

3.1 Construction

We take a PolyCommitPed commitment Setup instance SP← Setup(1κ, t). We choose PolyCommitPed
due to its unconditional hiding property and the constant size of the commitments. It can, however,
be replaced by any polynomial commitment scheme.

The dealer Pd starts off the protocol by choosing a univariate polynomial φ(x) with φ(0) = s,
and computing a polynomial commitment 〈C, d〉 ← Commit(SP, φ(x)) and corresponding witnesses
wj ← CreateWitness(SP, φ(x), d, j) for j ∈ [1, n]. In PolyCommitPed, the decommitment information

d is a t-degree polynomial, which is represented as φ̂(x) in the rest of the paper. Pd then sends
(send, C, φ(j), φ̂(j), wj) messages to all parties and the parties verify their shares against the
received commitment C. In the rest of the protocol, the parties try to agree on C. Unlike AVSS,
the parties in eAVSS do not exchange their common evaluations of a bivariate polynomial; they
only verify consistency of the received shares (if any) with C locally. If the dealer is dishonest,
some honest parties may not receive shares consistent with C; however, they still help to reach an
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agreement on C once they are assured that at least t + 1 honest parties have received shares and
witnesses consistent with C. We describe the protocol in Figure 1. Note that commitment C is
set to ⊥ initially. An honest party accepts only one message of a kind from any other party, and
without loss of generality, we assume that every party chooses only the first message.

The protocol requires O(n2) messages as decided by its echo and ready messages. Use of Poly-
Commit ensures that all messages are of a constant size, and results in O(κn2) communication
complexity.

3.2 Analysis

Theorem 3.1. Given a PolyCommit scheme that satisfies Definition 2.4, eAVSS is an asynchronous
VSS protocol that satisfies Definition 2.5.

Proof. To prove the theorem, we show that protocol eAVSS satisfies liveness, agreement, correctness,
commitment, secrecy properties of asynchronous VSS according to Definition 2.5. Our analysis is
based on the properties of the polynomial commitment scheme used.

We start by proving the following two claims.

Claim 3.2. If some honest party has agreed on C, then every honest party will eventually agree on
C.

Proof. We first prove by contradiction that if Pi be the first honest party to send ready message
containing C, then a ready message sent by every other honest party Pj will contain C. Assume an
honest party Pj sends a ready message with C such that C 6= C. Being the first honest party to send
a ready message with C party Pi must have received (echo, C) from at least n − t parties of which
at least n − 2t were honest. Pj can send C only after one of the following two events and in both
cases we arrive at a contradiction:

1. Pj can send (ready, C) after receiving (echo, C) from at least n − t parties. As n ≥ 3t + 1,
(n − t) + (n − t) − n = n − 2t ≥ t + 1 parties must have sent echo with both C and C. This
implies that at least one honest party sent echo messages of two types, which is impossible.

2. Pj can also send (ready, C) after receiving n − 2t (ready, ∗, C) messages. For n ≥ 3t + 1,
n− 2t ≥ t+ 1. Therefore, there is at least one honest party (say Pk), who sent C in its ready
message to Pj . This means that one of the events (1) or (2) must have occurred with the
honest party Pk. If we argue in a recursive manner, we reach some honest party who must
have experienced event (1), which is a contradiction.

Therefore, no two honest parties will send ready messages containing different commitments.
A honest party agrees on C only after receiving at least n− t ready messages such that at least

t + 1 contain share. Therefore, n − 2t ≥ t + 1 honest parties must have sent ready message and
at least one honest party must have sent a ready message containing share. ready messages from
t + 1 or more parties will eventually reach all remaining honest parties and they will send ready
messages with the same C, as discussed above. As the number of honest parties is at least n − t,
every honest party will receive at least n− t ready messages.

It, however, remains to show that every honest party will eventually receive at least t+ 1 ready
messages with the share flag. From the above paragraph, at least one honest party must have
sent a ready message for C after receiving n − t echo messages for C and out of those at least
n − 2t ≥ t + 1 are sent by honest parties. As an honest party sends an echo message only after
receiving a verifiable send message from the dealer, at least t+ 1 honest parties must have received
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their shares from the dealer. As every honest party eventually sends a ready message, these t + 1
parties will also certainly send ready messages and importantly, they will contain the share flag.
Therefore, every honest party will eventually receive n − t ready messages for C with t + 1 share
flags and agree on C.

Claim 3.3. If some honest party agrees on C, then there exists a subset of at least n− 2t ≥ t+ 1
honest parties such that each of those holds an evaluation of a degree-t polynomial consistent with
C.

Proof. From the proof of Claim 3.2, n− 2t honest parties will eventually send out ready messages
for C with share; these n − 2t honest parties have received verifiable send messages for C from the
dealer Pd. Note that these honest parties never update C, and eventually agree on the same C
by Claim 3.2. Due to the strong correctness and polynomial binding properties of PolyCommitPed,
there is a unique t-degree of polynomial φ(x) committed by C. Therefore, evaluations available
with these n− 2t ≥ t+ 1 parties implicitly defines φ(x) that is consistent with C.

Liveness. If the dealer Pd is honest, then every honest party will eventually receive verifiable
send message sent by Pd and will send an echo message and then a ready message. As there are
n− t ≥ 2t+ 1 honest parties, they will finally agree on C and complete the Sh phase.
Agreement. A party completes its Sh phase as soon as it agrees on a commitment C. Claim 3.2
suggests that if an honest party agrees on C, then every honest party will eventually agree on C.
Therefore, if one honest party completes the Sh phase, then every honest party will complete its
Sh phase.

For agreement in the Rec phase, Claim 3.3 shows that there is a subset of at least t+ 1 honest
parties each holding an evaluation of a degree-t polynomial φ(x) that is consistent with C. As every
honest party participates in the Rec phase, t+ 1 correct evaluations of φ(x) associated with C are
available in the Rec phase, and the secret s = φ(0) can be interpolated by every honest party.
Correctness. Assume that the dealer has shared a secret s using a polynomial φ(x), and has
remained honest throughout the execution of the Sh phase. Let C be the commitment to φ(x) sent
by the dealer. Given correctness of the polynomial commitment scheme, all honest parties will
receive correct shares of the secret s that is consistent with C. Therefore, as we discussed above for
agreement, the same secret s will be reconstructed by the parties.
Commitment. We prove the commitment by contradiction. Assume that two different honest
parties Pi and Pj reconstruct different s′ and s′′ such that s′ 6= s′′, The maximum possible degree
of the committed polynomial is t due to strong correctness of PolyCommitPed. Therefore, each of
them must have agreed upon different commitments (say) C′ and C′′ in the Sh phase. However, this
contradicts with Claim 3.2. Therefore, a unique value s∗ ∈ Fp will be reconstructed by all honest
parties.
Secrecy. We have to show that if the dealer Pd is honest, then the adversary A obtains no
information about the secret s. A t-limited adversary will be able to obtain the t messages of
the form (send, C, wi, φ(i)). Due the hiding property for polynomial commitments, given only t
such messages it is impossible to reconstruct polynomial φ(x) (of degree t) and correspondingly the
dealer’s secret s = φ(0).

10



4 eAVSS-SC: Asynchronous VSS Protocol with Strong Commit-
ment

Although protocol eAVSS in Section 3 does not attain the strong commitment property, it can be
used as a component of a VSS protocol that satisfies the property. The most intuitive way to realize
such a VSS scheme is to make Pd execute (n+ 1) correlated instances of eAVSS, where the secret s
is shared using the first instance (say) eAVSS0 and the associated shares or polynomial evaluations
for all n parties in eAVSS0 are themselves shared using n instances eAVSSj for j ∈ [1, n]. Once all
eAVSSj instances complete their Sh phases, a subset of t+ 1 or more honest parties provide every
Pj its share in eAVSS0 by running the Rec phase of eAVSSj , and by sending their verifiable shares
of eAVSSj to only Pj . It is possible to combine send, echo and ready messages for all n+1 instances
to keep the message complexity the same as that of AVSS and eAVSS, i.e., O(n2). However, to
broadcast all associated commitments, the communication complexity becomes O(κn3), which is
no better than that of AVSS [12]. In protocol eAVSS-SC, we overcome this drawback using a
collision-resistant hash function.

4.1 Construction

Here, the dealer Pd shares the secret s using a symmetric bivariate polynomial φ(x, y) such that
φ(0, 0) = s. The dealer commits to this bivariate polynomial using the univariate PolyCommit
scheme twice. In Section 2.4, we observed that constant-size commitments to bivariate polynomials
seem difficult, if not impossible. Here, we overcome this hurdle using PolyCommit over the hashed
univariate PolyCommit values.2 We provide an expository description of protocol eAVSS-SC in
Figure 2. Notice that although we use send, echo, and ready messages similar to AVSS, our message
structures and their utilities are significantly different from those of AVSS. These message structures
are crucial to adopt a univariate PolyCommitPed scheme to our asynchronous VSS scheme, which
uses bivariate polynomials.

The protocol requires two PolyCommitPed instances: SP1 ← Setup(1κ, t) and SP2 ← Setup(1κ, n).
Pd runs n + 1 eAVSS instances with polynomials φ(x, 0), φ(x, 1), . . . , φ(x, n). Let C0, C1, . . . , Cn be
the commitments for these n + 1 instances. Pd also computes an n-degree polynomial hC(x) from
H(C0), H(C1), . . . , H(Cn), where H : G→ Fp is a collision-resistant hash function and broadcasts a
commitment ζ to hC(x). This makes the size of the commitment in this scheme a constant-sized one.
The dealer cannot cheat with φ(x, y) as the PolyCommitPed scheme is binding and the hash function
is collision-resistant. When all honest parties agree on ζ, they implicitly agree on C0, C1, . . . , Cn. As
t + 1 or more honest parties have received all required shares φi(x) = φ(x, i) and φ̂i(x) = φ̂(x, i),
and commitments ~C, they can provide all parties their required shares, commitments and witnesses
in a verifiable manner using the homomorphic property of PolyCommitPed. We optimize this final
step by attaching the required shares, witnesses and commitments to the ready messages.

From the protocol description, it is apparent that the message complexity is O(n2). As we
use the PolyCommitPed scheme that commits to univariate polynomials using a single element, the
communication complexity is O(κn2). Note that although the size of send messages is O(κn), only
n such messages are delivered; thus, the communication complexity does not exceed O(κn2).

For simplicity of the description, we define our protocol with a symmetric bivariate polynomial.
It is easily possible to avoid this symmetry requirement in the protocol without any asymptotic
increase in the complexity measures.

2Note that our scheme is not a generic constant-size commitment scheme for bivariate polynomials and some care
has to be taken before applying it in other applications; e.g., our scheme cannot be applied to the main as well as
the refined AVSS protocols [12] without making their computational complexity exponential O

(
n
t

)
.
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Sh Phase
Dealer Pd with the secret s

• Choose a symmetric t-degree bivariate polynomial φ(x, y) such that φ(0, 0) = s and φ(i, j) = φ(j, i).

• Commit to φ(x, y) using a vector ~C = {Cj}j∈[0,n], where 〈Cj , φ̂j(x)〉 ← Commit(SP1, φj(x)), φj(x) =

φ(x, j) and φ̂(x, y) is symmetric. Also, compute witness vectors
−→
Wj = {wk

j }k∈[0,n] for every party

Pj such that wk
j ← CreateWitness (SP1, φk(x), φ̂k(x), j).

• Compute an n-degree polynomial hC(x) from H(C0), H(C1), . . . ,H(Cn), where H : G → Fp is a

collision-resistant hash function and commit to it 〈ζ, ĥC(x)〉 ← Commit(SP2, hC(x))

• Send (send, ζ ′ = ζ, ~C′ = ~C, ĥC(x),
−→
Wj , φj(x), φ̂j(x)) to every party Pj .

Every party Pi

• On receiving a message (send, ζ ′, ~C′, ĥC(x),
−→
Wi, φi(x), φ̂i(x)) from Pd, verify its correctness:

– interpolate the complete ~C′ from any of its t+ 1 elements to assert the degree t of the polynomial;

– compute hC(x) from ~C′ and VerifyPoly(SP2, ζ
′, hC(x), ĥC(x));

– VerifyPoly(SP1, C′i, φi(x), φ̂i(x));

– VerifyEval(SP1, C′j , i, φj(i)
[

= φi(j)
]
, φ̂j(i)

[
= φ̂i(j)

]
, wj

i ) for every j ∈ [0, n].

Upon a successful verification, set ζ = ζ ′ and ~C = ~C′, compute witnesses wi
j ← CreateWitness

(SP1, φi(x), φ̂i(x), j) for j ∈ [1, n] and wC
i ← CreateWitness(SP2, hC(x), ĥC(x), i).

Send a message (echo, ζ ′) to all parties.

• On receiving (echo, ζ ′) from at least (n− t) parties:

– For ζ ′ = ζ, send (ready, ζ ′, share, φi(j), φ̂i(j), w
i
j , Ci, ĥC(i), wC

i ) to every party Pj ;

– For ζ ′ 6= ζ, discard 〈~C,
−→
Wi, φi(x), φ̂i(x)〉, set ζ = ζ ′, and send (ready, ζ ′, no-share) to all parties.

• If a ready message has not been sent, then on receiving (ready, ζ ′, ∗) messages from (t+ 1) parties:

– For ζ ′ = ζ, send (ready, ζ ′, share, φi(j), φ̂i(j), w
i
j , Ci, ĥC(i), wC

i ) to every party Pj ;

– For ζ ′ 6= ζ, discard 〈~C,
−→
Wi, φi(x), φ̂i(x)〉, set ζ = ζ ′, and send (ready, ζ ′, no-share) to all parties.

• On receiving (ready, ζ ′, ∗) messages from at least (n − t) parties such that at least (t + 1)

of those messages contain 〈share, φj(i), φ̂j(i), wj
i , Cj , ĥC(j), wj

C〉 successfully verified using VerifyE-

val(SP1, Cj , i, φj(i), φ̂j(i), wj
i ) and VerifyEval(SP2, ζ

′, j,H(Cj), ĥC(j), wj
C), interpolate

– shares φ0(i) and φ̂0(i) from respectively (t+ 1) φj(i) values and (t+ 1) φ̂j(i) values, and

– commitment C0 and witness w0
i from respectively (t+ 1) Cj values and (t+ 1) wj

i values.

Complete the Sh phase with (ζ = ζ ′, C0, φ0(i), φ̂0(i), w0
i ) as output.

Rec Phase
Every party Pi

• Send a message (rec-share, φ0(i), φ̂0(i), w0
i ) to every party Pj .

• On receiving t+ 1 rec-share messages verified using VerifyEval(SP1, C0, φ0(j), φ̂0(j), w0
j ), interpolate

the shares φ0(j) to compute the secret s.

Figure 2: Protocol eAVSS-SC for Asynchronous VSS with Stronger Commitment

4.2 Analysis

Theorem 4.1. Given a PolyCommit scheme that satisfies Definition 2.4, eAVSS-SC is an asyn-
chronous VSS protocol that satisfies Definition 2.5 with the strong commitment property.
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Proof Outline. We have to prove that protocol eAVSS satisfies the asynchronous VSS properties in
Definition 2.5 along with the strong commitment property. Our analysis is based on the following
two claims and the properties of the PolyCommit scheme. We present our proof sketch here, while
the complete proof appears in Appendix B.

Claim 4.2. If some honest party agrees on ζ, then every honest party will eventually agree on ζ.

Claim 4.3. All honest servers complete the Sh phase with the same PolyCommit commitment C0.

Proof. Assume two honest parties terminate with C0′ and C0′′ such that C0′ 6= C0′′. From Claim 4.2,
we know that all honest parties agree on the same ζ. As ζ commits to hC(x), an n-degree polynomial
interpolated by hashing n + 1 elements of ~C, the adversary has to break the evaluation binding
property of the polynomial commitment or the collision resistance property of hash function to
obtain two different C0 values that culminate the same ζ. This is not possible in PPT and there is
a contradiction. Therefore, we prove that all honest servers complete the Sh phase with the same
C0.

Liveness is apparent from the protocol flow and correctness of the PolyCommit scheme. Agree-
ment in the Sh phase follows from claims 4.2 and 3.3, while agreement in reconstruction follows from
agreement during the Sh phase. Correctness follows directly from correctness of the PolyCommit
scheme and collision-resistance of the hash function. Strong Commitment follows from agreement
of eAVSS-SC and Claim 3.3. Secrecy follows from the hiding property of PolyCommit.

4.3 Lower Bounds

We observe that the Ω(n2) message complexity of our eAVSS and eAVSS-SC protocols as well
as the AVSS protocol is optimal.3 This can be proved in two steps: first, it is known that a
VSS protocol is sufficient to implement reliable broadcast [24]; next, extending a result by Dolev
and Reischuk [19] for Byzantine agreement to reliable broadcast. The latter proves that if a
reliable broadcast protocol terminates, the number of messages exchanged by honest parties is
lower bounded by max{(n − t), (1 + t/2)2} in presence of a commitment scheme. The above two
claims show that the message complexity of asynchronous VSS is lower-bounded by Ω(n2) for
optimal resiliency condition n = 3t+ 1 and t > 2. We thoroughly prove this result in Appendix C.

Note that when the shared secret is of size κ (the computational security parameter), the
lower bound of Ω(n2) message complexity intuitively transfers to a lower bound of Ω(κn2) on the
asynchronous VSS communication complexity. Nevertheless, proving this thoroughly presents an
interesting challenge. If proven, it will show that our eAVSS and eAVSS-SC protocols are not only
optimal in terms of message complexity but also in terms of communication complexity.

5 Applications

Our eAVSS and eAVSS-SC schemes have direct implications to all asynchronous VSS applications.
We briefly discuss some important applications here.

Using our eAVSS-SC protocol in proactive VSS [12] reduces its communication complexity by a
linear factor to O(κn3). The same reduction also applies to distributed key generation required for
threshold cryptography, and its group and threshold modification primitives [22]. Using our eAVSS
protocol in the asynchronous Byzantine agreement (ABA) framework of Canetti and Rabin [13,15],

3With the stronger cryptographic assumptions such as PKI or ZK proofs more efficient schemes can be possible;
however, we only assume commitment schemes here.
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it is possible to obtain the first O(κn3) communication complexity ABA protocol, which is secure
against the adaptive adversary in the standard model without the random oracle assumption (see [12,
Sec. 3.5] for details).

Finally, the commitment methodology used here may also find applications in some other bivari-
ate polynomial-based protocols; however, one has to be careful as it is not a full-fledged bivariate
polynomial commitment scheme.
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A Protocol PolyCommitPed: Constant-size Commitments to Uni-
variate Polynomials

In this section, we instantiate the PolyCommitPed scheme that commits to a univariate polynomial
using a single group element.

A.1 Cryptographic Assumptions

We first discuss the cryptographic assumptions used in the PolyCommit constructions [23].

Definition A.1. Discrete logarithm (DLog) Assumption. Given a generator g of G∗, where
G∗ = G or GT , and a ∈R Z∗p, for every adversary ADLog, Pr[ADLog(g, g

a) = a] = ε(κ).

Mitsunari, Sakai and Kasahara [25] introduced the weak Diffie-Hellman assumption, which was
renamed the t-DHI assumption by Boneh and Boyen [8] as this assumption is stronger than the
Diffie-Hellman assumption, especially for large values of t.

The t-DHI problem is, on input 〈g, gα, gα2
, . . . , gα

t〉 ∈ Gt+1 to output g1/α, or equivalently
(see [10]), gα

t+1
. Kate et al. [23] used a generalization of the t-DHI assumption, where A has to

output a pair 〈φ(x), gφ(α)〉 ∈ Zp[x]×G such that 2κ > deg(φ) > t. They named this assumption as
the t-polynomial Diffie-Hellman (t-polyDH) assumption.

Definition A.2. t-polynomial Diffie-Hellman (t-polyDH) Assumption. Let α ∈R Z∗p. Given

as input a (t+ 1)-tuple 〈g, gα, gα2
, . . . , gα

t〉 ∈ Gt+1, for every adversary At-polyDH, the probability

Pr[At-polyDH(g, gα, gα
2
, . . . , gα

t
) = 〈φ(x), gφ(α)〉] = ε(κ) for any freely chosen φ(x) ∈ Zp[x] such

that 2κ > deg(φ) > t.

This assumption was implicitly made by [2,3] to support their claim that the accumulator of [26]
is bounded. The deg(φ) is bounded by 2κ as evaluations can be found for polynomials with higher
degrees in PPT using number theoretic techniques (e.g., for φ(x) = xp−1, gφ(α) = g for any α ∈ Z∗p).
In practice, deg(φ)� 2κ.

Boneh and Boyen [9] defined the t-strong Diffie-Hellman assumption that is related to but
stronger than the t-DHI assumption and has exponentially many non-trivially different solutions,
all of which are acceptable.

Definition A.3. t-Strong Diffie-Hellman (t-SDH) Assumption. Let α ∈R Z∗p. Given as

input a (t + 1)-tuple 〈g, gα, gα2
, . . . , gα

t〉 ∈ Gt+1, for every adversary At-SDH, the probability

Pr[At-SDH(g, gα, gα
2
, . . . , gα

t
) = 〈c, g

1
α+c 〉] = ε(κ) for any value of c ∈ Zp\{−α}.

See Cheon [16] and [23] for security analyses of the above assumptions.

A.2 Construction

PolyCommitPed is based on the algebraic property of polynomials φ(x) ∈ Fp[x]: (x − i) perfectly
divides the polynomial φ(x) − φ(i) for i ∈ Fp. Further, it uses an additional random polynomial

φ̂(x) to achieve unconditional hiding.

Setup(1κ, t) computes two groups G and GT of prime order p (providing κ-bit security) such
that there exists a symmetric bilinear pairing e : G × G → GT and for which the t-SDH
assumption holds. We denote the generated bilinear pairing group as G = 〈e,G,Gt〉. Choose
two generators g, h ∈R G. Let α ∈R F∗p be SK, generated by a (possibly distributed) trusted
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authority. Setup also generates a (2t + 2)-tuple 〈g, gα, . . . , gαt , h, hα, . . . , hαt〉 ∈ G2t+2 and
outputs SP = 〈G, g, gα, . . . , gαt , h, hα, . . . , hαt〉. Note that SK is not required by the other
algorithms of the commitment scheme, and it can be discarded by the authority if t is fixed.

Commit(SP, φ(x)) chooses φ̂(x) ∈R Fp[x] of degree t and computes commitment C = gφ(α)hφ̂(α) ∈
G for the polynomial φ(x) ∈ Fp[X] of degree t or less. For φ(x) =

∑deg(φ)
j=0 φjx

j and φ̂(x) =∑deg(φ̂)
j=0 φ̂jx

j , it outputs C =
∏deg(φ)
j=0 (gα

j
)φj
∏deg(φ̂)
j=0 (hα

j
)φ̂j as the commitment to φ(x).

Open(SP, C, φ(x), φ̂(x)) outputs the committed polynomials φ(x) and φ̂(x).

VerifyPoly(SP, C, φ(x), φ̂(x)) verifies that C ?
= gφ(α)hφ̂(α). If C =

∏deg(φ)
j=0 (gα

j
)φj
∏deg(φ̂)
j=0 (hα

j
)φ̂j for

φ(x) =
∑deg(φ)

j=0 φjx
j and φ̂(x) =

∑deg(φ̂)
j=0 φ̂jx

j , the algorithm outputs 1, else it outputs 0.

Note that this only works when both deg(φ) and deg(φ̂) ≤ t.

CreateWitness(SP, φ(x), φ̂(x), i) computes ψi(x) = φ(x)−φ(i)
(x−i) and ψ̂i(x) = φ̂(x)−φ̂(i)

(x−i) , and outputs

〈i, φ(i), φ̂(i), wi〉. Here, the witness wi = gψi(α)hψ̂i(α).

VerifyEval(SP, C, i, φ(i), φ̂(i), wi) verifies that φ(i) is the evaluation at the index i of the polynomial

committed to by C. If e(C, g)
?
= e(wi, g

α/gi)e(gφ(i)hφ̂(i), g), the algorithm outputs 1, else it
outputs 0.

Suppose h = gλ for some unknown λ. Then VerifyEval is correct because

e(wi, g
α/gi)e(gφ(i)hφ̂(i), g) = e(gψi(α)+λψ̂i(α), g(α−i))e(g, g)φ(i)+λφ̂(i)

= e(g, g)(ψi(α)(α−i)+φ(i))+λ(ψ̂i(α)(α−i)+φ̂(i))

= e(g, g)φ(α)+λφ̂(α) as φ(x) = ψi(x)(x− i) + φ(i)

and φ̂(x) = ψ̂i(x)(x− i) + φ̂(i)

= e(gφ(α)hφ̂(α), g) = e(C, g)

The hiding property of PolyCommitPed is unconditional. The polynomial binding property is
based on the DLog assumption, while the evaluation binding property is based on the t-SDH
assumption. The strong correctness property follows from the t-polyDH assumption.

B Complete Proof for Theorem 4.1

To prove the theorem, we show that protocol eAVSS-SC satisfies liveness, agreement, correctness,
strong commitment, secrecy properties of asynchronous VSS according to Definition 2.5. Our
analysis is based on the properties of the polynomial commitment scheme.

We start our discussion with the following two claims.

Claim B.1. If some honest party agrees on ζ, then every honest party will eventually agree on ζ.

This follows from directly from Claim 3.2.

Claim B.2. All honest servers complete the Sh phase with the same PolyCommit commitment C0.
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Proof. Assume two honest parties terminate with C0′ and C0′′ such that C0′ 6= C0′′. From Claim B.1,
we know that all honest parties agree on the same ζ. As ζ commits to hC(x), an n-degree polynomial
interpolated by hashing n + 1 elements of ~C, the adversary has to break the evaluation binding
property of the polynomial commitment or the collision resistance property of hash function to
obtain two different C0 values that culminate the same ζ. This is not possible in PPT and there is
a contradiction. Therefore, we prove that all honest servers complete the Sh phase with the same
C0.

Liveness. Given dealer Pd is honest and shares a secret s, verification of send message by each
party will succeed due to correctness of PolyCommitPed. All the honest parties will send echo
messages for the same ζ and consequently will send ready messages for the same ζ with the share
tag and the shares. Therefore, at least n− t ready messages will be communicated with share tag,
and all parties will obtain their shares of the secret and end with the same commitment C0. During
the Rec phase, all n − t honest parties will send their shares consistent with C0 and output the
dealer’s secret s.
Agreement. We first show that if any honest party completes the Sh phase, then every honest
party will eventually complete the sharing phase. Claim B.2 proves that all honest servers complete
the Sh phase with the same commitment C0. On the similar lines, using Claim B.1 and strong
correctness of PolyCommitPed, we show that every honest party Pi also completes the Sh phase with
〈si, ŝi, w0

i 〉 consistent with C0 for the index i; i.e., C0 commits to a t-degree polynomial φ0(x) such
that si = φ0(i). This proves the agreement in the Sh phase. As all honest parties terminate with
a valid share of the secret si, commitments C0 and witnesses, all honest servers complete the Rec
phase with the same output φ0(0).
Correctness. Assume that the honest dealer has shared a secret s using φ(x, y), and has remained
honest throughout the execution of the Sh protocol. Let ζ and ~C be the commitment to φ(x) spread
by the dealer. Given correctness of the polynomial commitment scheme and the collision-resistance
property of the hash function, all honest parties will hold correct shares of the secret s that is
consistent with ζ and ~C
Strong Commitment. In the agreement property proof, we show that all honest parties receive
their shares in the Sh phase, therefore, we only need to prove the correct property. Assume that
two honest parties reconstruct values s′ and s′′ such that s′ 6= s′′. This implies that they received
distinct subsets S ′ = {(s(j), ŝ(j), w0

(j))} and S ′′ = {(s(j), ŝ(j), w0
(j))} of the size (t+1) such that each

of those satisfies VerifyEval(SP1, C0, l, sj , ŝj , w0
j) with the same C0, which follows from Lemma B.2.

A probability of that is negligible according to the evaluation binding property of PolyCommitPed
and we obtain the required contradiction.

Secrecy. We show that upon obtaining send messages 〈(send, ζ, ~C, ĥC(x),
−→
Wi, φi(x), φ̂i(x))〉i∈I and

ready messages 〈(ready, φj(i), φ̂j(i), wij , Cj , ĥC(j), w
j
C)〉i∈I,j∈[1,n], the adversary has no information

about the secret, where I is a set of compromised t parties
From the unconditional hiding property of PolyCommitPed, it trivially follows that the adver-

sary obtains no information about φi′(j) for i′ /∈ I and j ∈ [1, n] using t tuples of the form

〈~C,
−→
Wi, φi(x), φ̂i(x)〉. Further, for ready messages, it is easy to observe that the adversary can gen-

erate all ready messages it receives using the information provided in the received send messages

using the symmetry of polynomials φ(x, y), φ̂(x, y) and the witness matrix
−→
W.
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C Lower Bound on Message Complexity

We start our discussion by defining a reliable broadcast protocol [11], which is a fundamental
synchronization primitive. Here, a distinguished party delivers a message m to n parties in presence
of t malicious parties such that if the sender is correct then all honest parties eventually accept m,
and even if the sender is faulty, all honest parties eventually decide for the same value or do not
terminate the protocol at all. In the absence of a proper reliable broadcast definition in [11], we
use a definition by Backes and Cachin in [4], which extends Bracha’s reliable broadcast work.

Definition C.1. [4] A reliable broadcast protocol in an asynchronous network of n ≥ 3t+1 parties
with a t-limited Byzantine adversary satisfies the following conditions:

Validity: If an honest dealer broadcasts a message m then all honest parties will deliver this
message, provided the adversary delivers all associated messages.

Consistency: If an honest party delivers a message m and another honest party delivers a
message m′, then m = m′.

Totality: If some honest party delivers a message, then all honest parties deliver a message,
provided the adversary delivers all associated messages.

Authenticity: Every honest party delivers at most one message and, if the sender is honest,
this message has been broadcast by this sender before.

Lemma C.2. In the asynchronous communication model, an (n, t)-VSS instance implements (n, t)-
reliable broadcast.

Proof. Without loss of generality, assume that a message m to be broadcast belongs to Fp of the
size κ. To implement reliable broadcast using VSS, the sender, acting as a dealer, appropriately
shares the message m with n parties using (n, t)-VSS over Fp. All honest parties start the Rec phase
once they complete their Sh phases successfully, and output the reconstructed value as a broadcast
message.

The properties of reliable broadcast (Definition C.1) follow directly from the properties in
asynchronous VSS (Definition 2.5), as follows. Validity of reliable broadcast follows directly from
liveness and correctness of asynchronous VSS. Consistency of reliable broadcast is equivalent to
the commitment property of asynchronous VSS, while totality is exactly the same as agreement of
asynchronous VSS. Finally, authenticity of reliable broadcast follows from the fact that in asyn-
chronous VSS, each honest party will output only the value that has been reconstructed in the Rec
phase. The second part of the authenticity definition is equivalent to correctness of asynchronous
VSS.

Lemma C.3. In the computational setting with commitments, if a reliable broadcast protocol ter-
minates, the total number of messages exchanged by honest parties is lower bounded by max{(n−
t), (1 + t/2)2}.

Proof. Dolev and Reischuk [19] showed that a lower bound exists in the total number of messages
exchanged among the processors when achieving Byzantine agreement. We use a similar approach
to show that reliable broadcast achieves identical lower bounds. For ease of exposition, we do not
assume cryptographic commitments initially.

For the set P of n parties, a phase is a directed graph, where an edge labeled m from Pi to
Pj represents that Pi has sent the message m to Pj . A sequence of such phases in an execution
makes up a history for the set P. For each history H, there exists an individual subhistory for a
party Pi, HPi . We shall show that there exists a history H in which the honest parties send at
least max{(n− t), (1 + t/2)2} messages.
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Let H be a history in which all the parties are honest and the dealer sends the message m. The
honest parties cannot reach a conclusion without having received any messages. Therefore, all n− t
honest parties must receive at least one message each and at least n − t messages have been sent
in H.

Now, lets assume that the second term achieves the maximum. Let C be a set of parties in P of
size b1+ t/2c, and let R be the remaining parties. We shall now show that there exists a history H ′

in which each party in C is corrupted and honest parties in R are forced to send at least d1 + t/2e
messages to each party in C.

Let H ′ be the following history: All parties in R are honest, and the dealer Pd correctly sends
the message m. Each party in C behaves like an honest party except that it rejects the first dt/2e
messages from the parties in R. If some party receives less than dt/2e messages, then it ignores all
of them. There is no communication between the parties in C. This defines a valid history with
b1 + t/2c corrupt parties. In this history, the honest parties must agree on m, since the dealer
shared this message correctly.

Now, assume that a party Pi in C receives less than dt/2e messages. We shall show that this
assumption leads to a contradiction. Let R(Pi) be the set of parties in R which had sent messages
to Pi in H ′. In order to get a contradiction, we now define a new history H ′′, where Pi is an honest
party, and R(Pi) are all corrupted. These parties do not send any message to Pi, and every party
in C other than Pi ignore every message from Pi.

The corrupted parties in C − {Pi} and R(Pi) behave toward the honest parties in R in H ′′ in
exactly the same way as they do in H ′. Since Pi in H ′′ behaves like an honest party which did not
receive the first bt/2c messages, there is no difference in its behavior towards the honest parties of
R in H ′ and H ′′. Thus, each honest party Pj other than Pi observes the same subhistory in H ′

and H ′′, i.e. H ′Pj = H ′′Pj for all j 6= i, and in the end must agree on m. But, the honest Pi does not

receive any message in H ′′. Hence, it cannot satisfy totality. This leads to a contradiction, which
proves that every party in C must receive at least dt/2e messages from the honest parties.

Now, we consider the effect of cryptographic commitments. In case of the honest dealer, (n− t)
messages are still necessary as every honest party has to receive some message before concluding
anything. A commitment scheme cannot reduce the number of interactions in the latter case either
as a commitment does not bind the sender to a single message across multiple receivers; the sender
can still send different commitments (and correspondingly different messages) to different honest
parties. Therefore, all honest parties have to interact with each other in the exactly same manner
resulting in (1 + t/2)2 messages.
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