
Lion and Man with Visibility in Monotone Polygons

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 12-005

Lion and Man with Visibility in Monotone Polygons

Narges Noori and Volkan Isler

First submitted: February 24, 2012

Revised: June 27, 2013

Lion and Man with Visibility in Monotone Polygons

Narges Noori and Volkan Isler ∗

June 27, 2013

Abstract

In the original version of the lion and man game, a lion tries to capture a man who is trying to
escape in a circular arena. The players have equal speeds. They can observe each other at all times.
We study a new variant of the game in which the lion has only line-of-sight visibility. That is it can
observe the man’s position only if the line segment connecting them does not intersect the boundary.
We show that despite this limitation, the lion can capture the man in any monotone polygon in finite
time.

1 Introduction

In recent years, solving pursuit-evasion games in complex environments has been receiving increasing
attention. Such games model robotics applications such as surveillance and search-and-rescue. An
overview of recent results on pursuit-evasion in robotics can be found in [3].

A fundamental pursuit-evasion game with immediate applications in robotics is the lion and man
game. In this game, a lion (the pursuer) tries to capture a man (the evader) by moving onto the man’s
location (or getting close to it). There are some known cases where the pursuer wins the game if it can
see the man at all times. For example, in the original setting, which takes place in a circular arena,
the pursuer has a winning strategy [10, 11] when the players take turns in moving. In the continuous
time setting, i.e. when the players move simultaneously, the pursuer can get arbitrarily close to the
evader [1]. In the turn-based game, a single pursuer with global visibility can capture the man in any
simply-connected polygon [8] and three lions suffice in arbitrary polygons with holes [2, 9].

In this paper, we focus on a variant of the turn-based lion-and-man game in which the pursuer has
only line of sight vision. That is, the pursuer can see the evader only if the line segment connecting
them is free of obstacles. We study the game when the goal of the pursuer is to capture the evader.
This variant models robotics applications where the pursuer is a robot equipped with a camera or a
laser scanner. With the limited vision power, the pursuer has to first find the evader when it disappears
and then move toward the evader to capture it. When the goal of the pursuer is to just find the evader
the problem is called the visibility-based pursuit evasion problem [6]. The necessary and sufficient
conditions for a simple polygon to be searchable by a pursuer with various degrees of visibility power
is presented in [12]. Guibas et al. show that for an arbitrarily fast evader, the minimum number of
pursuers required in the worst case is Θ(log n) for simply-connected polygons and Θ(

√
m + log n) for

a polygon with m holes [6].
A simple polygon is called monotone with respect to a line l if for any line l′ perpendicular to l the

intersection of the polygon with l′ is connected [4]. In this work, without loss of generality we consider
x-monotone polygons. For the lion and man game with visibility in monotone polygons, we present a
pursuit strategy which successfully combines search and capture and guarantees that the evader will
be captured after a finite number of steps.

In monotone polygons, merely searching for the evader is straightforward: the evader can be found
for example by moving along the shortest path that connects the leftmost vertex to the rightmost
vertex. This is because every point inside the polygon is visible from a location on this path and the
evader cannot move into a “cleared” region without revealing itself.

∗The authors are with the Department of Computer Science & Engineering, University of Minnesota. Emails:{noori,
isler}@cs.umn.edu. This work was supported in part by NSF Awards #0916209, and #0917676.

1

Similarly, the capture strategy is simple when the pursuer knows the location of the evader at all
times: it can capture the evader by starting from the leftmost vertex OL and performing the lion’s move
that is to move toward the evader along the shortest path that connects OL to the evader’s current
location. The distance of the pursuer from OL, defined as the length of the shortest path from OL

to the pursuer’s location, provides a natural notion of “progress” which is monotonically increasing in
this full visibility setting1.

What is not obvious is whether such progress can be maintained when the pursuer has to search
for the evader when it disappears. If the pursuer ends up retreating after a search, the evader might
have a strategy in which the pursuer oscillates between search and progress and the game can last
forever. We show that this cannot happen. In particular, we show that the pursuer can successfully
combine search and making progress toward capture in monotone polygons. Further, we show that
search without risking progress can be achieved with a deterministic strategy. We are not aware of
any other results which combine these two objectives for a single pursuer while providing guarantees
about the outcome of the game. The randomized strategy proposed for the general simply connected
polygons [8], where the pursuer guesses the hiding vertex of the evader, provides exponential capture
time2. In this work, however, we present a deterministic pursuit strategy which reduces the capture
time to a quantity that is polynomial in the number of vertices and the diameter of the polygon. An
interesting feature of our strategy is that the lion’s distance from OL is not increasing monotonically.
Nevertheless, we show that the pursuer can push the evader further to the right after a finite number of
steps. To do this, we introduce a new measure of progress for the pursuer which is more sophisticated
than its distance from OL.

Our results provide a step toward understanding the lion and man game with visibility constraints
in general polygons. An important question is to find the class of polygons in which a single pursuer
suffices to capture the evader3. We show that monotone polygons are included in this class.

In Section 2 we present the definitions used throughout the text. Section 3 provides an overview of
the pursuit strategy. In this section, we also present the tools used to show that the strategy guarantees
capture. The details of the pursuit strategy is presented in Section 4 and Section 5. For each part
of the strategy, we also present the complete algorithm in the form of pseudocode. In particular, we
provide the input configuration which describes the conditions that must be satisfied before the pursuer
starts the corresponding sub-strategy as well as the exit configuration that the pursuer guarantees as
it switches to the next sub-strategy. We present the analysis of the capture time in Section 6. The
concluding remarks are discussed in Section 7. For clear presentation of the main points of the strategy
we present the detailed proof of some of the technical lemmas as well as the properties of monotone
polygons in the Appendix (Section 9).

2 Preliminaries

We now formally define the game. We refer to the pursuer’s and the evader’s location at time-step t
as P(t) and E(t) respectively. When the time is obvious from the context, we use P and E . Our Game
Model is as follows: (1) The players move alternately in turns. (2) Each turn takes a unit time step.
(3) In each turn the players can move along a line segment of length at most one to a point visible
to themselves. (4) The evader has global visibility i.e. it knows the location of P at all time steps.
However, the pursuer sees the evader only if the line segment joining the two is not blocked by the
boundary of the polygon. Note that since P has a deterministic strategy, the evader can simulate the
pursuer’s moves and hence it knows the location of P at all time steps. (5) The pursuer captures E if
at any time, the distance between them is less than or equal to one (the step-size) while P can see E ,
see Fig. 1(c).

Without loss of generality, we assume that the game takes place in an x-monotone polygon Q. Recall
that for an x-monotone polygon, the intersection of all vertical lines with the polygon is a connected
segment. The leftmost vertex and the rightmost vertex are denoted by OL and OR respectively. The
boundary of the polygon connects these vertices by two x-monotone chains denoted by ChainL and
ChainU , see Fig. 1(a).

1This argument works in any simply connected polygon [8].
2It is an open problem whether this bound is tight or not.
3It should also be noted that capture using only deterministic strategies remains an open question.

2

OL OR

Π

ChainL

ChainU

P ~XP

~YP

(a)

E

E ′

v

~r

I

P

(b)

EP
(c)

Figure 1: (a) An x-monotone polygon. (b) The pocket pocket(v, ~r) is the shaded sub-polygon.
(c) Since E is not visible, capture condition is not satisfied.

We refer to the segment between points u and v as uv. Whenever direction is also important we
refer to the ray pointing from u to v as ~uv. We define a local reference frame whose origin coincides
with P. Its axes ~XP and ~YP are parallel to the axes of the reference frame, see Fig. 1(a). We refer to
the boundary of Q as ∂Q, and the number of vertices in Q as n. The shortest path between the two
points u and v is denoted by π(u, v), and the length of π(u, v) is denoted by d(u, v). The diameter of
the polygon is D = max u,v∈Q d(u, v). The shortest path tree rooted at the point o in Q is defined as
∪v∈V π(o, v) where V denotes vertices of Q. For a point p inside the polygon, the parent of p, denoted
by parent(p), is the first vertex on the shortest path π(o, p) from p to o. In the rest of the paper,
we consider the shortest path tree rooted at o = OL. We denote π(OL, OR) by Π (Fig. 1(a)). For
simplicity we denote d(OL, p) by R(p) for a point p ∈ Q.

Throughout the paper we refer to the x coordinate of a point p as x(p). Similarly, the y coordinate
is denoted by y(p).

Suppose that it is the evader’s turn to move. See Fig. 1(b). Imagine that the pursuer and the
evader can see each other before the evader’s move but the evader disappears behind a vertex v after
moving to E ′. Let ~r be a ray originating from P and passing through v. Let I be the intersection of
this ray with the polygon. The sub-polygon which contains E and is bounded by the ray ~r plus the
boundary of the polygon from v to I is called a pocket [8]. The ray ~r is called the entrance of the
pocket and the pocket is referred to as pocket(v, ~r).

Remark 1. In the rest of the paper, we refer to the pocket that the evader is hidden inside of as
pocket(v, ~r) (also the contaminated region) where ~r = ~pv and p is the location of the pursuer at the
time that the evader has disappeared behind the vertex v. See Fig. 1(b).

Lion’s Move Progress: In our pursuit strategy, we use the lion’s move strategy [10,11] proposed
for capturing E in circular arena. This strategy is performed with respect to a center C. Initially, the
pursuer has to lie on the line segment which connects C to E in order to be able to perform the lion’s
move strategy. In each turn, the pursuer moves so that it remains on the line segment which connects
C and E . Therefore, the invariant that the lion maintains is that it stays in between C and E . The
lion’s progress is that after each time step |L′C|2 ≥ 1 + |LC|2 where L and L′ are the previous and
the current position of the lion respectively. This invariant and notion of progress guarantee that the
evader is squeezed between the boundary and the lion in a smaller and smaller region and finally is
captured.

Extended Lion’s Move Progress: In [8] the lion’s move is generalized to the extended lion’s
move for capturing the evader in simply-connected polygons (when the pursuer can always see the
evader). Suppose that E is visible to P and P is on the edge which connects parent(E) and E in
the shortest path tree rooted at OL. Then the pursuer can follow E by lion’s move with respect to
the center C = parent(E). Note that as the evader moves, its parent in the shortest path tree also
changes. The invariant throughout the game is that the lion stays on the shortest path from OL to
E . The lion’s progress is that after each step, its squared distance from OL increases at least by 1

n

i.e. d(OL,P(t + 1))2 ≥ d(OL,P(t))2 + 1

n
. Thus, the evader is squeezed between P and the polygon’s

boundary, and it will be captured after O(nD2) steps where n is the number of vertices in the polygon
and D is the diameter of the polygon.

3

3 Monotone Polygon Capture Strategy

In this section we start with a high level description of the pursuer’s strategy. Then we present the
definitions used in the strategy and explain the pursuer’s notion of pursuer. Finally, we demonstrate
the strategy in an example. The details of the strategy is provided in the following sections.

3.1 Overview

We start with an example which demonstrates the difficulty of designing capture strategy for a pursuer
that has limited vision power. Fig. 2 provides some intuition. In this example, we also show the
importance of pursuer’s notion of progress which is required to prove that the proposed pursuer strategy
will guarantee capture in finite time. Suppose that the pursuer’s notion of progress is its x coordinate
and moreover let x(P) ≤ x(E) be the invariant that the pursuer tries to maintain. Therefore, if the
pursuer’s strategy guarantees that the x coordinate of P is increased after finite time, the evader will
be captured in finite time. Now, suppose that P is following E by lion’s move with respect to OL and
E disappears behind v in the shaded pocket. Hence P has to search for E . A careless search strategy
may result in losing the progress that P has made so far as follows. If the pursuer first visits v2, then
the evader hidden at v1 will escape to v and re-enter the previously “cleared” region i.e. the set of
points p such that x(p) ≤ x(P) defined by pursuer’s notion of progress. Likewise, if the pursuer first
visits v1, the evader hidden at v2 can re-contaminate the cleared region. Consequently, the evader can
hide in the same portion of the polygon infinitely many times and hence avoid capture (against this
naive pursuit strategy).

We will present a pursuit strategy called Monotone Polygon Capture (MPC) strategy which guaran-
tees capture. In this strategy, we partition the monotone polygon into sub-polygons called the critical
sub-polygons. The pursuer clears these sub-polygons from the left to the right. That is P ensures that
the evader cannot re-contaminate the cleared portion and hence it will be captured.

P
OL

OR

E E1

E2

v

v1

v2

Figure 2: A difficult situation for P:
E can re-contaminate the cleared re-
gion depending on how P enters the
pocket.

vk

vi−1

vj−1

vi
vj

vm

vl

ChainL

ChainU

Π

Figure 3: The path Π is shown in dots. The critical
sub-polygon defined by vm and vi is type 4, vi and
vk is type 1, vk and vj is type 2, and vj and vl is
type 3.

The state diagram of the MPC strategy is given in Fig. 4, and a high level description is presented in
Algorithm 1. The strategy consists of three states: Search, Guard and Extended Lion’s Move denoted
by S, G, and L respectively. Initially, P is at OL. It starts by the S state if E is invisible, and the L
state otherwise. Whenever E disappears, P switches to the search state to find it.

When E is found as a result of the S strategy, the pursuer performs the guard strategy in order
to establish the extended lion’s move with respect to OL. Recall that P has to be on π(OL, E) in
order to be able to perform the extended lion’s move. Therefore in the guard state P tries to catch
up with π(OL, E) since P might not be on π(OL, E) at the time that E is found. After P catches up
with π(OL, E), the pursuer follows it by extended lion’s move. During the lion’s move state or the
guard state, E might disappear. At this time P switches to the search strategy. The sequence of state
transitions is ((SG)∗L)∗ and the loops (SG)∗ and L(SG)∗L are possible. In the following, we refer to
the S state and its following G state as the combined Search/Guard state i.e. (SG).

4

Algorithm 1: Monotone Polygon Capture Strategy

repeat1

if E is invisible then2

do Search strategy until E is found;3

else if E is visible and P is not on π(OL, E) then4

do Guard strategy until P is on π(OL, E), or E disappears;5

else if E is visible and P is on π(OL, E) then6

do Extended Lion’s Move strategy until E is captured, or E disappears;7

end

until E is captured ;

To prove that our proposed strategy guarantees capture, it is necessary to show that these loops
terminate after finite time. To do so, we define a reference vertex, denoted by pref , which is a vertex of
the polygon. We show that P maintains the invariant that E is to the “right” of pref at the beginning
of a combined search/guard state (SG) or an L state. The pursuer makes progress by updating pref to
the “right” after finite number of time steps. Consequently, the evader is confined in a smaller region
and hence it will be captured.

We define “right” of a vertex v as the half-plane to the right, below or above v based on the
structure of the monotone polygon. We denote the half-plane associated with the vertex v by h(v).
Fig. 5 illustrates examples of these half-planes. Then, the invariant is that the evader is forced to
remain inside h(pref) at the beginning of a combined search/guard state (SG) or an L state (otherwise
it will be captured), and the progress is to update pref to a new point p′ref such that p′ref ∈ h(pref).

It is worth emphasizing that the aforementioned invariant is guaranteed only at the beginning of a
(SG) state or an L state. During the guard state, the evader can exit h(pref) and re-contaminate the
region before pref . At this time, the pursuer switches to the Vertical Guard or the Horizontal Guard
sub-state in order to push E back to h(pref) and recover its progress. See the state diagram in Fig. 4.

For ease of reference, we now list the terminology and variables that are crucial in this paper. We
will present the formal definition of these variables in the following sections.

• The reference vertex pref which is used to track the progress. The evader is guaranteed to be to
the right of pref .

• Half-planes associated to a vertex v denoted by h(v) which denotes right of a vertex v used to
track progress.

• The auxiliary vertex denoted by paux, which we introduce in Section 5.2, is a local variable used
to track the progress.

Let us next present the details of the invariants and the pursuer’s notion of progress.

3.2 Definitions, Invariants and the Notion of Progress

The critical sub-polygons that partition the monotone polygon are defined as follows.

Definition 3.1 (Critical Sub-polygons). Let Π be the shortest path from OL to OR and denote the
vertices on Π by {v0, ..., vi, ...}. Let si−1 be the slope of the edge vi−1vi and δsi = si − si−1. Then,
the critical vertices are those vertices on Π on which either s or δs changes sign. For example, in
Fig. 3, the vertices vi, vk and vj are the critical vertices. For a critical vertex p = vi, we assign ~Yp if

in p = vi, the values si and δsi have different signs and ~Xp if they have the same signs. Then, each
two consecutive critical vertices, say vi and vk, define a critical sub-polygon given by the sub-polygon
formed by ∂Q and the rays assigned to vi and vk. See Fig. 3. Depending on the sign of s and δs in the
critical sub-polygons, we get four types of critical sub-polygons: Type (1) when s < 0 and 0 < δs, Type
(2) when 0 < s and 0 < δs, Type (3) when 0 < s and δs < 0, Type (4) when s < 0 and δs < 0.

The critical sub-polygons allow us to enumerate all possible configurations between P, E and the
structure of P since our proposed strategy is symmetric in different types of these critical sub-polygons.

Remark 2. Throughout the paper, we present the strategy for the case that v, the vertex that defines
the hiding pocket pocket(v, ~r), is inside the 1st type critical sub-polygons. The strategies for the other
types are symmetric which we specify them in the form of Remarks.

5

Figure 4: The state diagram for the MPC
strategy. The sub-states in S and G are
shown at the bottom.

Π

v

v

v

v

vv

v

v

Figure 5: Bottom) The dot path is Π. The half-
planes associated to a vertex v. Top) From left
to right are types 1 to 4. The path Π and h(v)
are shown.

Without loss of generality we assume that at the beginning of the search state the pursuer is at
v. This is possible because, after E disappears, the pursuer moves toward v along the straight line pv
until it reaches v. If in the meantime E appears, the pursuer resumes the last state’s strategy, i.e. the
G state or the L state. Note that all preconditions of this state are still satisfied.

We now present an important property of Q, and then explain how the pursuer makes progress.
Let us first define the half-plane of a vertex.

Definition 3.2 (The half-plane of a vertex). For a vertex v ∈ Q, the open half-plane, denoted by h(v),
is defined as the set of points to the right of v if v is inside the 1st or the 3rd type critical sub-polygons.
For the 2nd type, h(v) is the half-plane above v i.e. the points p with y(v) < y(p). Finally for the
4th type, h(v) is the half-plane below v i.e. the points p with y(v) > y(p). The corresponding closed
half-planes are denoted by h[v]. See Fig. 5.

The following property of monotone polygons is crucial in this paper which we prove in Section 9.2.

Property 3.3. Consider the critical sub-polygons defined in Definition 3.1. Let v be any vertex in Q
and refer to Fig. 5.

• Suppose that v is inside a critical sub-polygon of the 1st type, v ∈ ChainU , and the slope of the
edge between parent(v) and v is negative. Then for all points p ∈ h(v), we have R(v) < R(p).

• Suppose that v is inside a critical sub-polygon of the 3rd type, v ∈ ChainL, and the slope of the
edge between parent(v) and v is positive. Then for all points p ∈ h(v), we have R(v) < R(p).

• Suppose that v is inside a critical sub-polygon of the 2nd type, v ∈ ChainU , and the slope of the
edge between parent(v) and v is positive. Then for all points p ∈ h(v), we have R(v) < R(p).

• Suppose that v is inside a critical sub-polygon of the 4th type, v ∈ ChainL, and the slope of the
edge between parent(v) and v is negative. Then for all points p ∈ h(v), we have R(v) < R(p).

The reference vertex pref : The invariant that the pursuer maintains and its notion of progress
are defined based on the vertex pref . Let v be the vertex that defines the hiding pocket pocket(v, ~r).
Initially pref = OL. The vertex pref is defined such that v ∈ h[pref] and pref ∈ ChainU . The pursuer
updates pref at the beginning of an S state which is after a G state (Section 5). Specifically, when v
belongs to ChainU we have pref = v. In case that v ∈ ChainL the vertex pref is set to another vertex
from the upper chain as explained in Section 5.1 and Section 5.2.

Remark 3. When P is sweeping the 3rd or the 4th type critical sub-polygons pref ∈ ChainL. Also in
the 2nd type critical sub-polygon pref ∈ ChainU .

Next we present the invariants that P maintains during the game. At the beginning of a combined
search/guard state (SG) or an L state we have:

• Invariant (I1) E ∈ h(pref) and P ∈ h[pref]. Consequently R(pref) ≤ R(P) and R(pref) < R(E)
(Property 3.3).

6

• Invariant (I2) whenever E is invisible, it is inside pocket(v, ~r) where v is the leftmost vertex of
pocket(v, ~r) and v ∈ h[pref].

The pursuer achieves one of the following notions of progress after a finite number of time-steps.
Consider two consecutive combined (SG) states, and let t and t′ be the time-steps that P starts them
correspondingly. Suppose that pref and p′ref are the old and the new reference vertices at t and t′

respectively. Also let v and v′ be the old and new vertices which define the pockets pocket(v, ~r) and

pocket(v′, ~r′) respectively. Then:

• Progress (P1) either the pursuer updates pref to a new vertex p′ref so that p′ref ∈ h(pref) and
consequently R(pref) < R(p′ref) (Property 3.3),

• Progress (P2) or pref remains the same and the pursuer updates the contaminated region

pocket(v, ~r) to pocket(v′, ~r′) such that v′ ∈ h(v).

Our main result is the following theorem which we prove in Section 6:

Theorem 3.4. (Progress) Suppose that Q is a monotone polygon. Then the pursuer by following the
MPC strategy can capture the evader in O(D13n7) steps where n is the number of vertices of Q and D
is the diameter of Q.

3.3 An Illustrative Example

Let us present an example which illustrates the MPC strategy (Fig. 6). Initially P is at OL, E is
visible and pref = OL (Fig. 6(a)). Therefore, P can follow E by extended lion’s move (Fig. 6(b)). This
continues until E disappears behind the vertex v. The pursuer moves toward v but in the meantime the
evader also moves to an unknown location inside pocket(v, ~r) say E5 (Fig. 6(c)). The pursuer updates
pref to v since v, the pocket vertex, is on the upper chain. It also switches to the search state and moves
along the dotted line in order to find E (Fig. 6(c)). By moving along this path the pursuer finally finds
E at P6 (Fig. 6(d)). Next, the pursuer switches to the guard state in order to catch up with π(OL, E)
and re-establish the extended lion’s move state. To do so, it defines a vertex called paux which is inside
h[pref]

4 (Fig. 6(d)). Then, P moves toward paux until E crosses the ray shot from P in direction of
paux to P e.g. in P7 and E7 (Fig. 6(e)). At this time, the pursuer follows E by lion’s move with respect
to paux (Fig. 6(e)). During this lion’s move the players cross the vertical line passing through paux to
the left and enter the region (Q− h[paux]) (Fig. 6(e)). In other words, E re-contaminates the region to
the left of paux

5. At this time, the pursuer switches to the vertical guard sub-state in order to push
the evader back to h(paux). The strategy in this state ensures that the evader cannot enter the shaded
region in Fig. 6(e). The pursuer does this by performing the lion’s move with respect to c which is the
center of the circle that passes through P9 and I. The result is that P catches up with π(OL, E) inside
h(paux) ⊆ h(pref) after finite time (Fig. 6(f) at P10). Hence P can again follow E by the extended
lion’s move while it has pushed pref and E to the right. Similarly, the pursuer keeps making progress
by updating pref to the right and ensuring that E ∈ h(pref).

We now present the details of each state.

4 Search State

When E disappears, the pursuer performs the search strategy in order to find E . Suppose that E is
hidden inside pocket(v, ~r). At the time that E disappears behind v, the pursuer walks toward the
blocking vertex v. Hence without loss of generality we can assume that at the beginning of the S state
P is at v, the pocket vertex.

In order to find E , the pursuer moves along a path. The following observation ensures that as long
as this path is monotone in the x-axis direction, P finds E after finite time.

Observation 4.1. Let p1 and p2 be two points inside the polygon where x(p1) < x(p2) and suppose
that x(p1) < x(E). Suppose that the pursuer moves from p1 to p2 along any (continuous) arbitrary
path. Then, if the pursuer reaches p2 and the evader is still invisible, it must be that x(p2) < x(E).

4Note that paux can be the same as pref , but in this example they are different.
5When paux = pref , this is equivalent to violating the invariant (I1).

7

P1 = pref

E1 Π

vOL

(a)

E1 E4

P4 v

(b)

E5
P5

pref = v

(c)

E6

P6

pref = v

paux

(d)

E7

E9

P7
P9

c paux

I

(e)

E10P10

paux
pref

(f)

Figure 6: An instance of the game. The path Π is shown in dots. (a) Beginning of the game.
(b) P follows E by extended lion’s move. In the fourth time step the evader hides behind v.
(c) By the time that P arrives at v the evader has moved to E5. The pursuer updates pref to v,
and searches for E by moving along the dotted path. (d) The pursuer finds E at P6. It defines
paux and moves toward it. (e) As E crosses the line from paux to P, the pursuer follows it by
lion’s move with respect to the center paux (P7 and E7). When E moves to the left of paux at
E9, P follows it by lion’s move with respect to c. (f) Finally, P reaches π(OL, E) and switches
to extended lion’s move inside h(pref).

Otherwise if E becomes visible before the pursuer reaches p2, then at the time that E is found it must
be that x(P) < x(E).

Let us refer to the path that the pursuer moves along in order to find the evader as the search
path. The search path consists of two types of paths, the α-path and the step-path. Intuitively, the
α-path periodically touches the upper chain while the step-path touches the lower chain6. The pursuer
uses these touching points as landmarks that it has to prevent the evader from re-contaminating the
region to the left of those landmarks. In fact, the reference vertex pref is set to these landmarks in
some cases. As we will see shortly, the search path is composed of horizontal lines, vertical lines and
lines with negative slope. An example is depicted in Fig. 6(c). The pursuer exploits this slope in order
to guarantee progress in the situations that the evader forces the pursuer to retreat to the left of the
landmarks. For example, in Fig. 6(e), if this slope was zero, i.e. P7 was at the same y-coordinate as
the landmark paux, and the evader has disappeared below the pursuer e.g. at E7, then the pursuer had
to retreat along the horizontal line all the way back to I without making any progress. However, the
slope provides a lower bound on the distance between the pursuer and the landmark paux at P9 which
translates into guaranteed progress.

In the following, we will first present the definition of the α-path and the step-path, and afterwards
we explain how the search path is built from them.

We define the α-segments as follows. The segments that make angle −α with the x-axis are called
the α-segments. As we will see in Section 5.3, the angle α is used to bound the time spent in the G
state.

Definition 4.2. The angle α is chosen as the minimum of the two angles ψ1 = arcsin 1

D
and ψ2 =

(π
2
− 2 arctan 1

2
) where D is the diameter of the polygon.

The α-steps and the α-path: The α-path is composed of a number of α-steps. A single α-step is
composed of an α-segment followed by a vertical segment and then another α-segment. For example,
in Fig. 7(a) the portion of the search path from v to e2 is an α-step. More specifically, let e = e1e2 be

6This is when P is inside the first type critical sub-polygons. We explain the modifications required for other types in
Remark 4.

8

α-segment

ChainU

v e1

e2

I1

(a)

ChainL
e′1

I2

e′2 u2

(b)

Π

u2

v

e2

I2

(c)

ChainU

ChainL

v
e3

I1

(d)

Figure 7: The search path is shown in dots. The path Π is shown in dashed line. (a) A single
α-step. The portion of the search path from v to e2 is one α-step. (b) A single step. The
portion of the search path from I2 to u2 is one step. Note that I2 is the floor point. (c) Two
α-steps and two steps are shown. (d) When v, the pocket vertex, is from the lower chain, the
search path starts by the step-path.

the edge on ∂P that the first α-segment intersects and let I1 be the point of intersection. The edge e
can be either on ChainU or ChainL.

If e ∈ ChainU , then the α-step continues along the vertical segment passing through I1 until this
segment intersects the α-segment passing through e2. The α-step then continues along this α-segment
until it reaches e2. We refer to this part of the search path from v to e2 as a single α-step (Fig. 7(a)).

If e ∈ ChainL then the α-step will be followed by the step-path described below. See Fig. 7(b). In
summary, the search path continues along a number of α-steps, which together are called the α-path,
until it hits the lower chain in which case it continues along the step-path. See Fig. 7(c).

The steps and the step-path: The step-path can be divided into a number of steps. A single
step is composed of a vertical segment followed by a horizontal segment. For example, in Fig. 7(b), the
portion of the search path from I2 to u2 is one step. Detailed definition of an step is the following. Let
e2I2 be the α-segment from the α-path that intersects the lower chain (Fig. 7(c)). Also, let e′ = e′1e

′
2

be the corresponding edge on ChainL (Fig. 7(b)). Then e2 is called the ceiling point and I2 is called
the floor point. The step-path starts at the floor point I2, continues along the vertical line passing
through I2 until this vertical line intersects the horizontal line passing through e′2 and then continues
along this horizontal line until it hits ∂P at u2. This portion of the search path from I2 to u2 is referred
to as a single step (Fig. 7(c)).

The search path: Finally, the search path is composed of the α-path and the step-path as follows.
If v ∈ ChainU , the search path starts by the α-path, otherwise if v ∈ ChainL, it starts by the step-
path. See Fig. 7 parts (c) and (d) respectively. Suppose that v ∈ ChainU . Then, the search path
continues along the α-path until it hits the lower chain. As it hits the lower chain it continues along
the step-path until it hits the upper chain in which case it continues again along the α-path, and so
on. This switch between the step-path and the α-path is depicted in the state diagram of Fig. 4. As
an example, note that in Fig. 7(d) from v to I1 we have the step-path and after e3 we have the α-path.

Remark 4. The general rule for the search path for other types of critical sub-polygons is as follows. The
1st and the 3rd types include both the step-path and the α-path with angles −α and +α respectively.
The 2nd and the 4th types only have the step-path. The direction traveled parallel to the y-axis during
the step-path and the α-path, is the same as the sign of δs and the sign of s respectively (i.e. positive
sign means upward, negative sign means downward).

Lemma 4.3. The pursuer finds E after at most O(nD) steps where n is the number of vertices of the
polygon and D is the diameter of the polygon. Moreover, at the time that the evader is found we have
x(v) ≤ x(P) < x(E) where v is the pocket vertex. Therefore, at the end of the search state we have
P ∈ h[pref] and E ∈ h(pref).

Proof. We first bound the length of the search path that will be used to search the whole polygon.
Consider the smallest bounding box that encompasses the polygon. Let H and W denote the height
and the width of this bounding box respectively. According to the triangle inequality theorem, the
length of the search path is less than the displacement of P along the x-axis and the y-axis as the
pursuer moves along the search path. First, the total displacement along the x-axis is less than W
since the x coordinate of the points on the search path never decreases. Second, associated with each
vertex, the search path traverses in the direction of the y-axis at most once upward and at most once

9

downward (Fig. 7(d)). Therefore, the total displacement along the y-axis is 2nH. Thus, the length of
the search path is less than W + 2nH = O(nD).

According to Observation 4.1, at the time that E is found x(v) ≤ x(P) < x(E) since the x coordinate
of P is increasing as it moves along the search path and at the beginning of the search state P is at v.
Consequently, we have P ∈ h[pref] and E ∈ h(pref) since v ∈ h[pref] (invariant (I2)).

5 Guard State

After P finds E , it starts the Guard state. The purpose of the guard strategy is to establish the
extended lion’s move. The extended lion’s move is possible only when P is on π(OL, E). Therefore, in
the guard state the pursuer has to reach π(OL, E). In the meantime, th evader is also moving and thus
the pursuer has to preserve the progress it made so far.

At the beginning of the guard state we have x(P) < x(E) (Lemma 4.3,). At this time, based on
the quadrant that E has appeared in, the pursuer starts different sub-states, either the zig-zag guard
strategy or the simple guard strategy as shown in Algorithm 2 and the state diagram of Fig. 4.

1. If at the beginning of the G state, E is inside the fourth quadrant of P (lines 1-5 in Algorithm 2):
the pursuer performs the zig-zag guard strategy.

2. Otherwise, if E is inside the first quadrant of P (lines 6-11 in Algorithm 2): the pursuer starts
by simple guard sub-state.

Let pref be the current reference vertex used for tracking progress. The pursuer’s ultimate goal is
to maintain the invariant and the notion of progress. That is to ensure that E is to the right of pref
i.e. inside h(pref). However, during zig-zag guard sub-state and simple guard sub-state, the evader
can re-contaminate the region to the left of pref i.e. the region (Q − h[pref]). The evader does this by
crossing the vertical line passing through pref to the left, and entering (Q − h[pref]). See line 5 and
line 11 in Algorithm 2. This violates the invariant (I1). At this time, the pursuer switches to the
vertical guard sub-state in order to push the evader back to the right of pref (line 24 in Algorithm 2).
Hence at the end of the vertical guard state the invariant (I1) will be re-established.

At the end of the guard state, as the pursuer switches to the next state, it guarantees progress (P1)
or (P2). Specifically, if progress (P1) is achieved the pursuer updates the reference vertex pref . See
lines 15- 21. We show that the new reference vertex p′ref is inside h(pref) and so the evader is pushed
further to the right since the invariant E ∈ h(p′ref) is also valid (Lemma 5.1 and Lemma 5.2). We
proceed by presenting the details of each sub-state, the zig-zag guard, the simple guard and the vertical
guard.

Remark 5. If at the beginning of the G state, the players are inside a critical sub-polygon of the 2nd

type, the 3rd type or the 4th type, then:

1. if they are inside the 2nd type (or the 4th type) critical sub-polygon: P always starts by zig-
zag guard sub-state. During zig-zag guard, the pursuer might retreat beyond pref in which case
the pursuer switches to the horizontal guard sub-state, similar to the vertical guard, in order to
recover its progress.

2. If they are inside the 3rd type critical sub-polygon: the pursuer starts by zig-zag guard if E has
appeared inside the first quadrant of P. Otherwise, if E has appeared inside the fourth quadrant,
the pursuer starts by simple guard. Similar to the previous case, during zig-zag guard or simple
guard, the pursuer might retreat beyond pref in which case it switches to the vertical guard
sub-state.

5.1 Zig-Zag Guard

After finding the evader, P switches to the zig-zag guard sub-state if E is inside the fourth quadrant
of P. The goal of this state is to establish the extended lion’s move state while the invariants and the
notions of progress are maintained. The Zig-Zag Guard strategy is shown in Algorithm 3.

10

Algorithm 2: Guard Strategy

Input Configuration: The evader is visible while x(v) ≤ x(P) < x(E). Here, v is the pocket vertex.
Exit Configuration : One of the following two configurations: (1) The pursuer is on π(OL, E) while

P ∈ h[pref] and E ∈ h(pref), or (2) The evader disappears inside h(pref).
The sub-states : The Zig-zag Guard sub-state, the Simple Guard sub-state, and the Vertical Guard

sub-state. Also the horizontal guard sub-state when the pursuer is inside the 2nd or the
4th type critical sub-polygon.

if y(P) > y(E) then1

state← ZigZagGuard;2

lv = ~Ypref
;3

do Zig-zag Guard strategy ;4

/* The zigzag guard ends up in one of the following configurations: (1) The pursuer is5

on π(OL, E) while P ∈ h[pref] and E ∈ h(pref), (2) The evader disappears inside h(pref),
or (3) x(P) = x(E) = x(pref), y(E) < y(P) ≤ y(pref), and E is crossing lv to the left.

*/
else6

state← SimpleGuard;7

define paux ∈ h[pref] as explained in Section 5.2;8

lv = ~Ypaux
;9

do Simple Guard strategy ;10

/* The simple guard ends up in one of the following configurations: (1) P is on11

π(OL, E) while P ∈ h[paux] and E ∈ h(paux), or (2) E disappears inside h(paux), or (3)

x(P) = x(E) = x(paux), y(E) < y(P) ≤ y(paux), and E is crossing lv to the left. */

end

/* The next state (after P exits the zig-zag guard state or the simple guard state). */

if P is on π(OL, E) then12

do Extended Lion’s Move strategy13

else if E has disappeared then14

/* update pref */

Let v′ be the vertex that E has disappeared behind;15

if state = ZigZagGuard and v′ ∈ ChainU then16

pref ← v′;17

else if state = SimpleGuard and v′ ∈ ChainU then18

pref ← v′;19

else if state = SimpleGuard and v′ ∈ ChainL then20

pref ← paux;21

end
do Search strategy22

else if x(P) = x(E) and E is crossing lv to the left then23

do Vertical Guard strategy;24

/* The vertical guard ends up in one of the following two configurations: (1) The25

pursuer is on π(OL, E) while P ∈ h[pref] and E ∈ h(pref), (2) The evader disappears

inside h(pref). */

end

11

Algorithm 3: Zig-zag Guard Strategy

Input Configuration: The evader is visible while x(v) ≤ x(P) < x(E) and y(P) > y(E). Here,
v is the pocket vertex.

Exit Configuration : One of the following three configurations: (1) The pursuer is on
π(OL, E) while P ∈ h[pref] and E ∈ h(pref), (2) The evader disappears
inside h(pref), or (3) x(P) = x(E) = x(pref), y(E) < y(P) ≤ y(pref), and
E is crossing lv = ~Ypref

to the left.

repeat1

if x(P) < x(E) then2

if P is below π(OL, E) then move in the positive ~y direction;3

else if P is above π(OL, E) then move in the negative ~y direction;4

else
move in the negative ~x direction;5

end

until (1) The pursuer catches up with π(OL, E), (2) The evader disappears, or (3)

x(P) = x(E) = x(pref), y(E) < y(P) ≤ y(pref), and E is crossing lv = ~Ypref
to the left ;

In order to establish the extended lion’s move state, the pursuer moves toward π(OL, E) along the
x-axis or the y-axis: if x(P) < x(E), the pursuer moves parallel to the ~y-axis. Otherwise, if E moves to
a point which is to the left of P, then P moves in the negative ~x direction. We show that by following
these zig-zag moves the evader will remain inside the fourth quadrant of P (Lemma 5.1). See Fig. 8
and Fig. 9(a).

Let pref be the current reference vertex used for tracking progress. According to the invariants, the
pursuer must ensure that E is to the right of pref . However, in the strategy described above, E can force
P to move along the negative x-axis direction. Therefore, the evader can re-contaminate the region
to the left of pref . That is it crosses the vertical line passing through pref to the left, and enters the
region (Q−h[pref]). This violates the invariant (I1). See Fig. 9(a). Also note that this is the third exit
configuration in Algorithm 3. At this time, the pursuer switches to the vertical guard strategy. The
vertical guard strategy (presented in section 5.3) ensures that the evader will be pushed back to the
right of pref and hence the invariant and the progress are recovered. In the following lemma we show
that the invariants are maintained as P exits the zig-zag guard state. This lemma also presents the
progress that P gains at the end of zig-zag guard state.

Lemma 5.1 (Zig-zag guard progress). When the pursuer exits the zig-zag guard sub-state, the players
are in one of the following three configurations:

• The pursuer is on π(OL, E) while P ∈ h[pref] and E ∈ h(pref).
• The evader disappears inside h(pref).

• x(P) = x(E) = x(pref), y(E) < y(P) ≤ y(pref), and E is crossing lv = ~Ypref
to the left.

For each of these configurations, the pursuer achieves the following notions of progress correspond-
ingly:

• the pursuer switches to the L state while R(pref) ≤ R(P) < R(E)
• the pursuer switches to the S state while progress (P1) or (P2) is guaranteed.

• the pursuer switches to the vertical guard sub-state.

Proof. Let P0 and E0 be the positions of P and E at the beginning of the zig-zag guard. Observe
that parent(P0) is in the second quadrant of P0 (Lemma 9.4). Now consider the funnel [5] formed by
π(OL, E) and π(OL,P). Let d be the deepest common vertex between these two paths. The shortest
path to all points inside this funnel starts by π(OL, d) and then continues inside the funnel. Observe
that as E moves, π(OL, E) changes continuously. See Fig. 8.

Suppose that P is below π(OL, E) (Fig. 8(c)). Then P is getting closer to π(OL, E) just by moving
in the positive ~y direction. Note that the slope of the edge between P and parent(P) is negative

(Lemma 9.4). Hence, if the evader tries to cross ~YP to the left, P will be on π(OL, E) and thus it can
switch to the L state. Therefore, E has to remain inside the fourth quadrant of P until one of the

12

P

E

En1

En2

d

(a)

P

E

d

(b)

P E
En1

d

~XP

~YP

(c)

Figure 8: The zig-zag guard strategy. (a) When x(P) < x(E) and P is above π(OL, E). (b) When
x(P) = x(E) and P is above π(OL, E). (c) When x(P) < x(E) and P is below π(OL, E).

following happens: (1) P is on π(OL, E), (2) the evader disappears. Now, let v be the pocket vertex
that the pursuer searched right before this zig-zag guard state. According to Lemma 4.3, x(v) ≤ x(P).
Also, according to the invariant (I2) we have v ∈ h[pref]. Thus, P ∈ h[pref] and E ∈ h(pref). Hence,
invariant (I1) is valid at the end of zig-zag guard state.

Similarly, if the pursuer is above π(OL, E) it moves in the negative ~y direction when x(P) < x(E),
and then to the left, i.e. in the negative ~x direction, at the moment that x(P) = x(E). See Fig. 8 parts
(a) and (b), also Fig. 9(a). These zig-zag moves continue until (1) the pursuer is on π(OL, E), (2) the
evader disappears, or (3) the players cross ~Ypref

to the left (Fig. 9(b)). At the time that each of these
happen, the players are inside h(pref) and thus invariant (I1) is valid.

Next let us consider invariant (I2) that the pocket vertex is inside h[pref]. Initially, pref = OL. Thus,
the invariant holds. According to the above argument, as the game proceeds to zig-zag guard state the
invariant is still valid since when E disappears it is inside h(pref). Therefore, using induction on time
we can prove that the pocket vertex is inside h[pref].

So far we have shown that the invariants (I1) and (I2) are maintained. Next, let us consider the
pursuer’s progress. As discussed above, the pursuer finishes the zig-zag guard state when it reaches
π(OL, E), or when the evader disappears, or when the players move to the left of pref . In the first case,
since P is on π(OL, E) we have R(P) < R(E). Also, since P ∈ h[pref] we have R(pref) ≤ R(P) < R(E).

Now consider the case that the evader disappears. Let v′ be the new pocket vertex that E disappears
behind, and v be the pocket vertex that was used right before this zig-zag guard state. Also, let pref be
the reference vertex at the beginning of this zig-zag guard state, and p′ref be the new reference vertex
at the end of this state.

1. v ∈ ChainL: suppose that at the beginning of the zig-zag guard the pursuer was below π(OL, E).
Then, v′ ∈ h(v) since P is only moving upward. If v′ ∈ ChainL we do not update pref but we have
v′ ∈ h(v) (Progress (P2)). Otherwise, if v′ ∈ ChainU we set p′ref to v

′. Since p′ref = v′ ∈ h(v) and
v ∈ h[pref] (Invariant (I2)), we have R(pref) < R(p′ref) (Property 3.3) and hence we have Progress
(P1).

Next, suppose that at the beginning of zig-zag guard the pursuer was above π(OL, E). Since E
remains inside the fourth quadrant of P, v ∈ ChainL, and P is moving downward and to the left,
E cannot cross v to the left. Hence, v′ is also in the fourth quadrant of v. If v′ ∈ ChainL we do
not update pref but we have v′ ∈ h(v) (Progress (P2)). Otherwise, if v′ ∈ ChainU we set p′ref to
v′. Since p′ref ∈ h(v) ⊆ h(pref) we have Progress (P1).

2. v ∈ ChainU : then pref = v. As we showed above, whether P is initially below or above π(OL, E),
the evader disappears inside h(pref). Similar to the previous case, if v′ ∈ ChainL we have
v′ ∈ h(pref = v) (Progress (P2)), and if v′ ∈ ChainU we set p′ref to v

′ and we have Progress (P1).

In summary, if E disappears during zig-zag guard state, the pursuer updates pref to v′ when v′ ∈
ChainU and achieves progress (P1) (line 17 in Algorithm 2). Otherwise, if v′ ∈ ChainL the pursuer
achieves progress (P2).

13

pref

lv

P

E
P1
E1

(a)

pref

lv

c

I
P1

P2
E1

E2

(b)

pref

lv

P1
P ′
2

E1
E ′2

(c)

pref

parent(pref)
lv

P ′
2 P3
E ′2

E3

(d)

Figure 9: The zig-zag guard followed by the vertical guard . The path Π is shown in dots. (a)
The zig-zag moves. (b) If E moves to the left of pref , the pursuer follows it by lion’s move with
respect to c. (c) Afterwards, if E moves to the right of pref , the pursuer performs the lion’s
move with respect to pref . (d) Finally, P will be on π(OL, E) inside h(pref).

5.2 Simple Guard

After finding the evader, P switches to the simple guard sub-state if E is inside the first quadrant of P.
The main goal of the pursuer is to reach π(OL, E) so it can start the extended lion’s move state. Since
the evader can disappear in the meantime, this translates to establishing the next state which could
be the search state or the extended lion’s move state while the invariants and the notions of progress
are maintained. The Simple Guard strategy is presented in Algorithm 4.

The general idea for the pursuer’s strategy is the following. See Fig. 10, and let pref be the current
reference vertex used for tracking progress. Let v be the vertex that defines the contaminated pocket
right before this guard state. When the pursuer starts the simple guard state we have x(v) ≤ x(P) <
x(E) (the exit configuration of the search state). Therefore at this time, P is to the right of pref
i.e. inside h[pref] since v ∈ h[pref] (Invariant (I2)). Now let p0 be the location of the pursuer at the
beginning of the simple guard state. The pursuer moves back toward the vertex pref along the line
segment that connects p0 to pref (P1 in Fig. 10(a)). It continues moving toward pref until it reaches
pref , or E crosses the ray shot from P in the direction of pref to P (P2 and E2 in Fig. 10(b)). In both
of these cases, P follows E by lion’s move with respect to the center pref . The pursuer continues with
this lion’s move until one of the following configurations hold: 1) either P reaches π(OL, E) while it
is inside h(pref), 2) or E moves to the region which is to the left of pref i.e. it crosses the vertical line
which passes through pref to the left and re-contaminates h(pref). See P3 and E3 in Fig. 10(b).

In the former case, when the pursuer catches up with π(OL,P), it switches to the extended lion’s
move state, and since it is inside h(pref) the invariant (I1) is maintained. In the latter case, when
E moves to the left of pref , invariant (I1) is violated. At this time, the pursuer switches to the next
state which is called the vertical guard state in order to push the evader back to the right of pref , and
re-establish invariant (I1). The vertical guard strategy, presented in section 5.3, guarantees that the
pursuer reaches π(OL, E) inside h(pref) and therefore is ready for the extended lion’s move state while
invariant (I1) holds.

The simple guard strategy described above has two subtle points. First, pref must be visible to p0
so that P can move along the segment that connects pref to p0. However, it might be the case that pref
is not visible to p0 since p0 is the location of the pursuer at the time that P has found E . Therefore,
we define an auxiliary vertex, referred to as paux, so that it is visible to p0 and moreover paux ∈ h[pref].
The pursuer performs the aforementioned strategy with respect to paux i.e. it moves toward paux and
the rest of the strategy. Since the simple guard strategy ensures that in the next state the players
are inside h(paux), and because paux ∈ h[pref] the invariant (I1) is maintained. The second important
part of the strategy is that p0 must be closer to all points on the segment between p0 and paux than

14

Π

pref

P1

E1

ChainU

ChainL

p0
(a)

pref

lv

P2
E2

P3
E3

(b)

v′
pref

P4
E4

(c)

v′

pref

P5 E5

(d)

Figure 10: The Simple Guard. (a) P moves toward pref . (b) As E crosses the ray from P to p0,
P performs lion’s move w.r.t. pref (P2 and E2). If during this lion’s move E enters the region
to the left of pref , the pursuer switches to the vertical guard sub-state e.g. P3 and E3. (c) If
E hides inside pocket(v′, ~r′), P moves toward v′ if v′ ∈ ChainL, (d) otherwise if v′ ∈ ChainU
it continues moving toward pref and then from there it moves toward v′. Note that here, as
the pursuer keeps moving back to pref , the new pocket formed by the ray connecting P to v′,
includes the initial hiding pocket pocket(v′, ~r′). Also in this example paux = pref .

the evader so that P can prevent E from crossing this segment and thus escaping to the cleared region
(Q− h[pref]). Notice that if the pursuer does not prevent this type of re-contamination the evader will
be above the pursuer i.e. y(P) < y(E). Therefore P cannot force E back to h(pref) by performing the
vertical guard strategy as it does when y(P) > y(E) (we will see in section 5.3 that one of the conditions
that P is allowed to perform the vertical guard sub-state is y(P) > y(E)). Instead the pursuer prevents
this situation by guaranteeing that it is closer to all points on the segment between p0 and paux. This,
in addition to the capture condition that E will be captured if its distance to P is less than one unit,
ensures that E will be captured if it tries to cross the segment between paux and P. Finally, the pursuer
ensures that it is closer to p0 by guaranteeing that the angle between the aforementioned segment and
the x-axis is less than or equal to α (Lemma 9.7).

An illustrative example of the auxiliary vertex paux is shown in Fig. 11(a). The interested reader
is referred to the Appendix, Section 9.4, for the definition of the auxiliary vertex paux based on the
structure of the polygon and the location of the pursuer.

Lemma 5.2 (Simple guard progress). When the pursuer exits the simple guard sub-state, the players
are in one of the following three configurations:

• The pursuer is on π(OL, E) while P ∈ h[paux] and E ∈ h(paux).
• The evader disappears inside h(paux).

• x(P) = x(E) = x(paux), y(E) < y(P) ≤ y(paux), and E is crossing lv = ~Ypaux
to the left.

For each of these configurations, the pursuer achieves the following notions of progress correspond-
ingly:

• the pursuer switches to the L state while R(pref) ≤ R(paux) ≤ R(P) < R(E)
• the pursuer switches to the S state while progress (P1) or (P2) is guaranteed.

• the pursuer switches to the vertical guard sub-state.

Proof. From the description above, the exit configuration of simple guard is one of the following: (1) the
L state inside h(paux), (2) the S state inside h(paux), or (3) vertical guard while the player are crossing lv
to the left. In case of the L state, since paux ∈ h[pref] we would have R(pref) ≤ R(paux) ≤ R(P) < R(E).

In case of the S state, let v′ be the new pocket vertex. Then v′ ∈ h(paux) ⊆ h(pref). Therefore, the
invariant (I2) is valid.

Next, let us consider the progress. Let p′ref denote the new reference vertex that is updated in this
guard state. If v′ ∈ ChainU we set p′ref to v′. Since p′ref = v′ ∈ h(pref) we have R(pref) < R(p′ref)
(Property 3.3) and hence we have Progress (P1).

15

If v′ ∈ ChainL we update pref to paux. Note that paux can be the same as pref . However, we
show that v′ ∈ h(v). Suppose that v ∈ ChainL and paux is to the left of v. The remaining situations

are similar. Now if v′ /∈ h(v), the pocket pocket(v′, ~r′) defined by v′ will be a simple pocket and
thus by performing the simple pocket strategy (section 9.1) the pursuer can force the evader to exit

pocket(v′, ~r′) and continue the simple pocket strategy. See Fig. 13(a) for an illustration.

The complete description of simple guard strategy is given in Algorithm 4. Notice that when the
evader disappears while P is moving back toward pref , the pursuer’s reaction depends on whether the
hiding vertex v′ is from ChainL or ChainU (lines 12-16 in Algorithm 4). An example is shown in
Fig. 10(c) parts (c) and (d). When v′ ∈ ChainL, the pursuer moves toward v′ until it reaches v′ at
which time it switches to the S state (P4 and E4 in Fig. 10(c)). When v′ ∈ ChainU , the pursuer
continues moving back toward pref and if in the meantime E crosses −→ray (line 3) the pursuer performs
the same strategy from line 4. In the following, we briefly explain the reason that P must make
distinction between v′ ∈ ChainL and v′ ∈ ChainU :
• v′ ∈ ChainL: in this case, if the pursuer keeps moving back toward pref , it cannot keep track

of the hiding vertex v′. For example, in Fig. 11(c), at the time that E disappears, P defines the
hiding pocket with respect to v′ = v1. If P continues moving back toward pref , at P2 the hiding
pocket with respect to v1 doesn’t include E (Fig. 11(d)). In other words, P cannot keep track of
the hiding vertex v′.

• v′ ∈ ChainU : in this case x(v′) can be less than x(P). Therefore, if the pursuer moves toward
v′ the evader can cross the segment between pref and P (Fig. 11(b)) and thus it escapes to the
previously cleared region.

Algorithm 4: Simple Guard Strategy

Input Configuration: The evader is visible while x(v) ≤ x(P) < x(E) and y(P) < y(E). Here,
v is the pocket vertex.

Exit Configuration : One of the following three configurations: (1) The pursuer is on
π(OL, E) while P ∈ h[paux] and E ∈ h(paux), (2) The evader disappears
inside h(paux), or (3) x(P) = x(E) = x(paux), y(E) < y(P) ≤ y(paux),
and E is crossing lv = ~Ypaux

to the left.

define paux as explained in section 5.2;1

let p0 be the location of E at the beginning of the simple guard;2

let −→ray be the ray shot from P in the direction of paux to p0;3

repeat4

move toward paux along the segment p0paux;5

until E crosses −→ray, or E disappears, or P reaches paux ;
if E has crossed −→ray, or P has reached paux then6

if E has crossed −→ray, or P has reached paux and E is visible then7

repeat8

do lion’s move with respect to the center paux;9

until P is on π(OL, E), or E disappears, or x(P) = x(E) = x(paux) and E is crossing

lv = ~Ypaux
to the left ;

else if P has reached paux and E is hidden behind v′ inside pocket(v′, ~r′) then10

move toward v′;11

end

else if E has disappeared behind v′ inside pocket(v′, ~r′) then12

/* P is not at paux yet. */

if v′ ∈ ChainL then13

move toward v′ until P is at v′;14

else if v′ ∈ ChainU then15

continue moving toward paux and the rest of the strategy at line 4;16

in the meantime keep track of the hiding vertex v′;17

end

end

16

pref

p0

v

vaux

pref

paux

(a)

v′

E

P

pref

(b)

v1
v2
E

P1

pref

(c)

v1 v2 E
P2

pref

(d)

Figure 11: (a) An example of paux. (b), (c) and (d) Examples when E disappears behind a
vertex, namely v′, during simple guard. The pursuer has to make distinction between v′ ∈
ChainU and v′ ∈ ChainL, otherwise E can escape. Refer to the text.

5.3 Vertical Guard

The vertical guard strategy is presented in Algorithm 5. The pursuer switches to the vertical guard
sub-state from either the zig-zag guard sub-state or the simple guard sub-state. See Fig. 4. Let pref be
the current reference vertex used for tracking the progress. The condition for state transition to the
vertical guard sub-state is when the evader re-contaminates the region to the left of pref i.e. it enters
the region P − h[pref] and violates the invariant (I1). Since h(pref) is defined as the set of points to
the right of pref

7, this condition is in fact when x(P) = x(E) = x(pref), y(E) < y(P) ≤ y(pref) and E is

moving to the left of pref . Let lv denote the line ~Ypref
. Then, the pursuer switches to the vertical guard

state when E crosses lv to the left. The goal of the vertical guard strategy is to push the evader back
to the right of pref and hence re-establish the invariant (I1).

The vertical guard strategy is composed of two parts: lion’s move with respect to a center c (which
we define soon) and lion’s move with respect to the center pref . The pursuer uses c as the center for
the lion’s move if E crosses lv to the left. It also uses pref as the center for lion’s move if E crosses lv
to the right. The role of the circle centered at c is to push E back to the right of pref (inside h(pref))
and re-establish the invariant (I1). The role of the other circle centered at pref is to force E to cross
the ray connecting parent(pref) to pref and hence to establish the extended lion’s move state. See Fig.
9. The vertical guard strategy is as follows, see Fig. 9:

1. As the evader crosses the vertical line lv to the left, P follows him by lion’s move with respect to
c, see Fig. 9-(b) P1 and E1 to P2 and E2 respectively.

If the evader disappears behind the lower chain vertices which are to the left of lv, the pocket
would be of a special form that we call it simple pocket8. In simple pockets the pursuer has
a relatively simple strategy so that the evader has to exit the pocket to prevent capture. See
section 9.1 for definition of simple pocket and the corresponding pursuit strategy. Therefore,
when E disappears somewhere to the left of lv, the pursuer can repel him outside the hiding
pocket by simple pocket strategy.

Consequently, as long as E is on the left side of lv, the distance cP increases while P lies on cE .
As a result, E will be pushed to the right of lv after finite time (Fig. 9-(c) where E is at E ′2).

2. As the evader crosses the vertical line lv to the right, P switches to lion’s move with respect to
the center pref (Fig. 9-(c) where P moves to P ′

2).

3. This back and forth switch between lion’s move with respect to centers c and pref continues until
one of the following two configurations hold: 1) the evader disappears behind a vertex to the right
of pref , 2) or the extended lion’s move is established (P3 and E3 in Fig. 9-(d)).

Next, let us proceed with the definition of the center c. Let I be the intersection between the
horizontal line passing through pref and ∂P , see Fig. 12(a). Then c is the intersection between bisector
of PI and the line lv.

7Inside the first type critical sub-polygon.
8See Lemma 9.12.

17

Algorithm 5: Vertical Guard Strategy

Input Configuration: The evader and the pursuer are both on the line lv and E is crossing lv to the left.
In other words, x(P) = x(E) = x(caux) and y(E) < y(P) ≤ y(caux), and E is moving
to the left of the vertex caux. Refer to the lines 1- 6 for definition of the vertex caux
and the line lv.

Exit Configuration : One of the following two configurations: (1) The pursuer is on π(OL, E) while
P ∈ h[pref] and E ∈ h(pref), (2) The evader disappears inside h(pref).

if the previous state is zig-zag guard then1

lv = ~Ypref
;2

caux ← pref ;3

else if the previous state is simple guard then4

lv = ~Ypaux
;5

caux ← paux;6

end

I ← ~Xcaux ∩ ∂Q ;7

c = bisector of PI ∩ lv;8

9

repeat10

if E is to the left of caux then11

repeat12

do lion’s move with respect to the center c;13

until E disappears somewhere to the left of caux, or E moves to the right of caux ;
if E has disappeared somewhere to the left of caux then14

perform the simple pocket strategy presented in section 9.1;15

/* as a result of the simple pocket strategy the evader is forced to exit the

hiding pocket while P is on the entrance of the pocket and their distance has

been increased. */

continue from line 12 ;16

else if E has moved to the right of caux then17

continue from line 1918

end

end
if E is to the right of caux then19

repeat20

do lion’s move with respect to the center caux;21

until P is on π(OL, E) to the right of caux, or E disappears somewhere to the right of caux, or E
moves to the left of caux ;
if E has moved to the left of caux then22

continue from line 11;23

else24

exit the vertical guard sub-state;25

end

end

until The pursuer catches up with π(OL, E) inside h(caux), or (2) The evader disappears inside h(caux) ;

18

I

β

β

pref

E
P

c

(a)

I

c

(b) (c)

E
P

v

~r

(d)

Figure 12: (a) the vertical guard (Π is shown in dots). (b) These pockets are impossible. (c)
The possible pockets before lv are simple pockets. (d) The simple pockets.

Remark 6. When the state before the vertical guard state is the simple guard state, the pursuer defines
the center c based on paux instead of pref . In Algorithm 5, we use the notation caux to refer to pref or
paux. See lines 1-6 in Algorithm 5.

The lion’s move circle centered at c has the following important properties. First, all upper chain
vertices before pref are above prefI and thus the lion’s move with respect to c is feasible (Lemma 9.14).

Second, the lion’s move circle centered at c prevents E from hiding behind the upper chain vertices
which are to the left of pref without being captured (Lemma 9.11). Also see Fig. 6-(e). These vertices
are the ones on ChainU with their x-coordinate less than pref . In addition, the circle is defined such
that if E disappears behind lower chain vertices which are to the left of pref , the resulting pocket would
be a simple pocket (Lemma 9.12), pockets that P has a relatively simple strategy to push E out of the
pocket (section 9.1).

Third, the initial radius of this circle is upper bounded which is necessary for the lion’s move with
respect to center c to result in progress in finite number of steps [11]. In the following, we show that
the angle α plays an important role in bounding the radius. Let r be the radius of the lion’s circle
centered at c i.e. r = cP.
Lemma 5.3. The initial radius (r) of the circle defined above is upper bounded by r ≤ 2l2

hmin

where
hmin is a lower bound for h = y(pref)− y(P) at the beginning of vertical guard (hmin ≤ h).

Proof. Let β be the angle between PI and the horizontal line passing from caux, see Fig. 12(a). Also

let 2l = PI. We have sinβ = l
r
= h

2l
. Hence r = 2l2

h
. Therefore r ≤ 2l2

hmin

.

In Lemma 9.5 and Lemma 9.9, we provide hmin = sinα as the lower bound for h at the beginning
of the vertical guard strategy.

Corollary 5.4. The initial radius of the vertical guard circle centered at c is upper bounded by r ≤
D2

2 sinα
. According to Definition 4.2, we have r is O(D3).

Lemma 5.5 (Vertical guard progress). At the end of vertical guard the pursuer achieves Progress (P1)
or (P2).

Proof. Let pocket(v, ~r) be the pocket searched in the previous search state. Recall that if the vertical
guard is invoked from zig-zag guard then caux = pref and if it is invoked from simple guard then
caux = paux (Remark 6).

1. from zig-zag guard (caux = pref):

(a) v ∈ ChainU : hence pref = v. The next state after the vertical guard is either L or S. As the
evader exits the vertical guard state the players are inside h(pref) = h(v). If the next state

is S, let pocket(v′, ~r′) be the corresponding pocket. Then, v′ ∈ h(v). If v′ ∈ ChainU we set
pref = v′ and we have Progress (P1). If v′ ∈ ChainL we have Progress (P2).

19

(b) v ∈ ChainL: this case is not possible. This is because: the evader is inside the fourth
quadrant of P (zig-zag guard state), v ∈ h[pref] according to invariant (I2), and the search
path used for searching pocket(v, ~r) ensures that the evader cannot cross pref to the left. See
Fig. 13-(b).

2. from simple guard (caux = paux):

(a) v ∈ ChainU : then pref = v and paux ∈ h[pref]. At the time that P exits the vertical guard
state the players are inside h(paux) which is a subset of h(pref). The pursuer achieves Progress
(P1) or (P2) similar to the above case.

(b) v ∈ ChainL: refer to the definition of paux in section 5.2 and note that paux can be to the
left or to the right of v. The case that paux is to the right of v is similar to the above cases.
Suppose that paux is to the left of v. Referring to the definition of paux in section 5.2 this is
the case only when p0 is in between v and vaux (the first definition in section 5.2). Suppose
that during vertical guard (lion’s move w.r.t. paux) the evader disappears behind v′. When
v′ ∈ ChainU we have v′ ∈ h(paux) ⊆ h(pref). We set pref to v

′ and achieve progress (P1).
When v′ ∈ ChainL there are two cases. The first is when x(v) < x(v′) which we have progress

(P2). The second is when x(v′) ≤ x(v) in which case the resulting pocket pocket(v′, ~r′) would
be a simple pocket and the pursuer performs the simple pocket strategy in section 9.1 in order
to resume the lion’s move with respect to paux. See Fig. 13-(a).

Lemma 5.6 (The time spent in the guard state). The pursuer exits the guard state and switches to
the next state in O(n4D11) steps where n is the number of vertices of Q and D is the diameter of Q.

Proof. Let T1 be the time spent in simple guard, T2 be the time spent in vertical guard, and T3 be the
time spent in the zig-zag guard state. Then the guard time is at most T1T2 + T3T2.

The vertical guard strategy is composed of simple pocket strategy (to the left of lv) and lion’s move
with respect to caux or c. In the worst case, every single step of the lion’s move can be followed by a
round of simple pocket strategy. Therefore, the total time in vertical guard would be the product of
the time spent in lion’s move and the simple pocket strategy. The time spent in simple pocket strategy
is O(n2D3) (Lemma 9.1). The initial radius of the circle centered at c used during vertical guard is
O(D3) (Corollary 5.4). Hence the lion’s move with respect to c during vertical guard takes O(nD6)
steps [8]. Therefore, the vertical guard state takes T2 = O((nD6) · (n2D3)) = O(n3D9).

The simple guard is lion’s move with respect to paux which can take at most T1 = O(nD2). The
zig-zag guard is composed of zig-zag moves which are of time T3 = O(D).

Thus, the guard time is O((nD2) · (n3D9) +D · (n3D9)) = O(n4D11).

E

P

v

v′

paux

pref

(a)

E

v

pref

ChainL

ChainU

(b)

Figure 13: (a) When v ∈ ChainL and E disappears behind v′ ∈ ChainL so that x(v′) < x(v),
the resulting pocket is a simple pocket. (b) When v ∈ ChainL and E appears in the fourth
quadrant, E cannot cross pref to the left since it is confined with ∂Q.

20

6 Analysis of Capture Time

We are now ready to present the proof of Theorem 3.4 which gives the worst capture time of the
proposed pursuit strategy.

Proof of Theorem 3.4. Suppose P is currently in a combined (SG) state. In Lemma 5.1, Lemma 5.2,
and Lemma 5.5, we showed that after finite time this combined state will terminate to another combined
(SG) state or an L state.

In the latter case, the aforementioned lemmas ensure that R(pref) ≤ R(P) < R(E). Moreover P is
on π(OL, E) and d(OL,P) is increasing after each step of the L state [8]. Hence either P captures E in
the L state or it switches to another (SG) state.

Now consider two consecutive (SG) states and suppose that E is not captured yet. According to
the aforementioned lemmas, P achieves progress (P1) or (P2). Since in (P2), v and v′ are vertices of Q,
after at most n progress updates of type (P2), there would be one progress update of type (P1). Also
since pref is a vertex, at some point D ≤ R(pref). Since D is the diameter of the polygon, at some point
D = R(pref). According to invariant (I1), we must have D = R(pref) < R(E). This is a contradiction
since R(E) cannot be greater than the diameter.

Next let us provide an upper bound for the number of time-steps required for capture. Let T1 be the
time spent in the guard state plus the time spent in the search state (the time spent in the combined
(SG) state). Also let T2 be the number of steps for a pursuer, which is performing the extended lion’s
move, to travel the diameter of the polygon. Thus, the number of time-steps between two consecutive
combined states (SG) would be T1T2. Since pref ∈ Q and v ∈ Q, and we achieve (P1) or (P2) after
each (SG) combined state, the total capture time T would be T = n · nT1T2. According to [8] we have
T2 = nD2. Next, the search time is O(nD) (Lemma 4.3), and the guard time is bounded by O(n4D11)
(Lemma 5.6). Hence T1 = n4D11 and T = O(n2 · (n4D11) · (nD2)) = O(n7D13).

7 Concluding Remarks

In this paper, we showed that a single deterministic pursuer with line-of-sight visibility can capture an
evader whose speed is equal to the pursuer’s in any monotone polygon. A general question regarding the
lion-and-man game with visibility is the class of environments in which a single pursuer can capture
the evader. Our result provides a step toward characterizing this class by showing that it includes
monotone polygons. It turns out that if we slightly relax the monotonicity constraint and consider the
class of weakly monotone polygons9, capture is no longer guaranteed. Fig. 14 shows a weakly monotone
polygon in which the evader can escape forever.

When a single pursuer is not enough, a natural question is to find the sufficient number of deter-
ministic pursuers with line-of-sight visibility for a given polygon. In general, it is easy to see that if k
pursuers can locate the evader, then k + 1 pursuers can capture it in any simply-connected polygon.
This suggests studying a new version of the visibility based pursuit evasion game in which the evader is
not arbitrarily fast but only as fast as the pursuers. Preliminary results on this problem were presented
in [13].

Our result is also applicable to the continuous setting, when both the players move at the same
time, as follows. The pursuer considers the continuous movement of the evader at discrete time steps
with its specific time unit ∆t. Then it plays the same turn-based pursuit strategy with respect to the
location of evader at t − ∆t. Recall that our capture condition in turn-based version is whether the
distance between the players becomes less than the step-size. With the aforementioned modification
to the continuous setting, the capture guarantee is that the pursuer will decrease its distance to the
evader to at most twice the step-size. In our turn based strategy the time unit ∆t can be chosen
arbitrarily small. Consequently, the step-size can be arbitrarily small since the players’ speed is fixed.
Therefore, as long as the pursuer can change its step-size, our pursuit strategy guarantees that it can
get arbitrarily close to the evader.

9A simply connected polygon is weakly monotone with respect to vertices s and t if the following hold. Consider a particle
that walks from s to t along the boundary in clockwise and counterclockwise directions. If in each of these walks, the range
of the directions that the particle sweep does not include the negative x-axis, the polygon is weakly monotone with respect
to s, t and x [7].

21

Currently the only known lower bound on capture time for the lion and man game is Ω(D logD)
for the case of a circular environment and full visibility [1], and O(nD) for the case of line-of-sight and
general polygons [8]. One interesting question is whether the capture time for monotone polygons can
be improved (perhaps using a randomized strategy).

x1 x2 x3 x4 x5

y1 y2 y3

s
t

Figure 14: A weakly monotone polygon with respect to s and t. The upper chain that connects
s to t is a repetition of the chain from s to y4. The number of repetitions can be arbitrarily
large. The chains from s to x1, from x2 to x3, and from x4 to x5 are x-monotone chains. Also,
the chains from x1 to y1, from y1 to x2, from x3 to y2 to x4, from x5 to y3 are y-monotone
chains. After disappearing from the pursuer’s sight, the evader can hide in an upper or lower
y-monotone polygon (whichever will be visited by the pursuer last) and escape when the evader
is searching the other one.

8 Acknowledgements

The authors would like to thank Dr. Andrew Beveridge for helpful comments.

References

[1] L. Alonso, A. S. Goldstein, and E. M. Reingold. Lion and Man: Upper and lower bounds.
INFORMS Journal on Computing, 4(4):447, 1992.

[2] D. Bhadauria and V. Isler. Capturing an evader in a polygonal environment with obstacles. In
Proc. International Joint Conference on Artificial Intelligence, 2011.

[3] T. Chung, G. Hollinger, and V. Isler. Search and pursuit-evasion in mobile robotics. Autonomous
Robots, (3), 2011.

[4] M. De Berg, O. Cheong, and M. van Kreveld. Computational geometry: algorithms and applica-
tions. Springer, 2008.

[5] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear-time algorithms for visibility
and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.

[6] L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani. A visibility-based pursuit-
evasion problem. Internat. J. Comput. Geom. Appl., 9(4-5):471–493, 1999.

[7] P. J. Heffernan. Linear-time algorithms for weakly-monotone polygons. Computational Geometry,
3(3):121 – 137, 1993.

[8] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a polygonal environment.
IEEE Transactions on Robotics, 21(5):875–884, 2005.

[9] K. Klein and S. Suri. Complete information pursuit evasion in polygonal environments. In Pro-
ceedings of the 25th Conference on Artificial Intelligence (AAAI), pages 1120–1125, 2011.

22

[10] J. E. Littlewood. A mathematician’s miscellany / J. E. Littlewood. Methuen, London :, 1953.

[11] J. Sgall. Solution of david gale’s lion and man problem. Theor. Comput. Sci., 259:663–670, May
2001.

[12] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM Journal
on Computing, 21(5):863–888, 1992.

[13] B. Tovar and S. M. LaValle. Visibility-based pursuit-evasion with bounded speed. The Interna-
tional Journal of Robotics Research, 27(11-12):1350–1360, November/December 2008.

9 Appendix

9.1 The simple pockets

The pocket pocket(v, ~r) is called a simple pocket if its boundary except the entrance ~r, is a single
x-monotone chain and the angle between ~r and the y axis is smaller than π

2
.

The pursuer by following the MPC strategy described in this paper, can force the evader to exit
the pocket in order to prevent capture. The only difference is that during search it is sufficient to
move along ~r in order to find E . As the evader is found the pursuer starts the simple guard strategy
presented in Sect. 5.2 i.e. it moves toward v along ~r. Note that E cannot cross the segment between v
and P because of the slope.

Lemma 9.1 (Simple Pockets). By following the MPC pursuit strategy on a simple pocket pocket(v, ~r),
after at most O(n2D3) time-steps, E is forced to cross the entrance and exit the pocket in order to
prevent being captured. At the crossing time, P and E both lie on ~r and P is in between v and E, see
Fig. 12-(d). The only difference is that during search the pursuer moves along ~r.

Proof. First observe that P will eventually stop performing the current state, which can be one of:
Search, Guard or Lion, and switch to the next state. Suppose that the current state is Guard. Then
the next state can be either Lion or Search.

In the former case, the pursuer gains lion’s progress with respect to v until E is captured or E
disappears behind a vertex v′ in the new pocket pocket(v′,

−−→
Pv′) or E exits the initial pocket.

In the latter case, the vertex v′ which defines the new pocket pocket(v′,
−→
vv′) has the property that

x(v) < x(v′). Hence the new pocket is a smaller one contained in the original pocket.
To complete the proof, note that once the evader hides behind a vertex, say v, it cannot disappear

behind the vertex for the second time.
Since there are n vertices and the entrance is traversed twice, once during search and once during

guard, the total time spent in the guard and search states would be O(2nD). Together with O(nD2)
required for extended lion’s move progress, the total capture time would be O((nD2) · (2nD)) =
O(n2D3).

It remains to show that the entrance of all possible new pockets is positive and hence we can
recursively use the simple pocket strategy. Clearly, all possible new pockets after the Guard state has
positive slope since v′ is inside pocket(v, ~r).

Next, we show that all possible pockets after the lions move state must have positive slope. Since

during lion’s move, P lies on the edge parent(E)E , the entrance
−−→
Pv′ is in direction of the tree edge

parent(v′)v′. See Fig. 15(a). Therefore, it is enough to show that in the shortest path tree rooted at
v all edges have positive slope and hence if the evader disappears during Lion’s state, the new pocket

pocket(v′,
−−→
Pv′) will have positive slope entrance (the entrance is

−−→
Pv′).

Suppose that there is an edge uw on the shortest path tree rooted at v with negative slope i.e. u
is the parent of w in π(v, w). We will show that there exists a path from v to w which is shorter than
π(v, w) which is a contradiction. See Fig. 15(c). Since the original pocket had a positive slope, there
exists a vertex u′ below vw such that w is visible to u′. Note that u′ can be v itself. Also since w is
visible to u, it must be that x(u′) < x(u) because otherwise u′ would block the edge uw (note that slope
of uw is negative and the slope of u′w is positive). Then according to the triangulation property the
shortest path from v to u′ followed by the edge u′w yields a shorter path than π(v, w) = π(v, u) + uw.
A contradiction.

23

EP
v

v′

(a)

EP

v

(b)

v

w

u

u′

(c)

Figure 15: (a) The evader disappears into the shaded pocket. (b) Result of the simple pocket
strategy. (c) Proof of Lemma 9.1.

9.2 Monotone Polygon Properties

Proof of Property 3.3. We present the proof for the 4th type critical sub-polygons. The proof for other
types is similar. Let v = vi−1, see Fig. 5 and Fig. 16. For other possible v the proof is similar.

According to Lemma 9.2 the shortest path to all points to the right of −−−−−→vi−2vi−1 passes from vi−1.
Hence the length of their shortest path is greater than d(OL, vi−1). Next consider the region in between
~Xvi−1

and −−−−−→vi−2vi−1 and let p be a point in this region. As a corollary of Lemma 9.2 we observe that
there is a vertex vc ∈ Π(vm−1, (vi−1) that p is the region defined by two rays −−−−→vcvc+1 and −−−−→vc−1vc.

Moreover p is a descendant of vc. Next consider the line vcp and its intersection point with ~Xvi−1

namely Ip. In the following we will show that d(vc, vi−1) < vcIp. Since vcIp < vcp ≤ d(vc, p) we would
have d(vc, vi−1) < d(vc, p) and thus d(OL, vi−1) < d(OL, p).

Let us now present our proof for d(vc, vi−1) < vcIp, see Fig. 16 top-right. Consider the rays shot in

direction of vc′vc′+1 where c ≤ c′ ≤ (i − 3) and denote their intersection point with ~Xvi−1
by Ic′ . By

induction we will show that vc′Ic′ + d(vc, vc′) = d(vc, Ic′) < vcIp.
For the base case consider c′ = c. Since the angle vcIcIp is greater than 90 degrees we would have

vcIc < vcIp.
For the inductive hypothesis let us suppose that the statement is true for c′ and prove it for (c′+1).

According to our hypothesis we have vc′Ic′ +d(vc, vc′) = d(vc, Ic′) < vcIp. Since the angle vc′+1Ic′+1Ic′

is greater than 90 degrees we would have vc′+1Ic′+1 < vc′+1Ic′ . We also have vc′Ic′ = vc′vc′+1+vc′+1Ic′ .
Hence d(vc, Ic′) = vc′Ic′ + d(vc, vc′) = vc′vc′+1 + vc′+1Ic′ + d(vc, vc′) = d(vc, vc′+1) + vc′+1Ic′ . Since

vc′+1Ic′+1 < vc′+1Ic′ we would have d(vc, vc′+1) + vc′+1Ic′+1 < d(vc, Ic′). Recall that d(vc, Ic′) < vcIp.
Thus d(vc, Ic′+1) < vcIp.

Lemma 9.2. Let (ve−1, ve) be an edge on Π. Consider the ray shot in direction of ~r = −−−−→ve−1ve. Then
the shortest path to all vertices to the right of ~r passes through the vertex ve. See Fig. 16 left and
middle.

Proof. For the sake of contradiction suppose that there are some edges on Π that this property does
not hold for them. Among these edges let (ve−1, ve) be the first one i.e. with smallest ve. Thus there
is a point to the right of ~r = −−−−→ve−1ve that the shortest path to that point does not pass from ve. Then
the direct parent of one of its ancestors should be a vertex to the left of ~r. Let v be this ancestor and
let v′ = parent(v). Let (ve′−1, ve′) be the edge on Π that the shortest path to v′ passes from ve′ . Since
v′ is to the left of −−−−→ve−1ve and since the property holds for all edges before (ve−1, ve) we would have
e′ ≤ (e−1). Next observe that −−−−→ve−1ve intersects with π(e

′, v′). This can be seen by enumeration over all
possible situations arisen depending on the type of the critical sub-polygon that (ve−1, ve) belongs to.
For example the case where this edge is in the second type critical sub-polygon and before the summit
vertex is depicted in Fig. 16 left and middle. In this case since slope of ve−1, ve is negative and slope of
Π we observe that −−−−→ve−1ve intersects with π(e′, v′). Next let I1 and I2 be the intersection of −−−−→ve−1ve with
v′v and π(e′, v′) respectively. Then according to triangle inequality we have: I1I2 < v′I1 + d(v′, I2).
Hence vI1, I1I2, π(e

′I2), π(OL, e
′) is a shorter path than π(OL, v) = vI1, v

′I1, v
′I2, I2e

′, π(OL, e
′) which

is a contradiction.

24

v

v′

ve

ve−1

ve′

ve′−1

I1

I2

Π

vk

vi−1

vi

ve

~r

vc−1

vc

vc+1

vc′−1

vc′

vi−1

pIpIc

Figure 16: proof of Lemma 9.2 and Property 3.3.

Lemma 9.3. Suppose vi−1vi and vj−1vj are two consecutive critical edges and consider π(vi−1, vj−1)
which is also part of Π. Then (see Fig. 5-left):

(i) If vi ∈ ChainU , then the slope of edges on π(vi−1, vj) is monotonically increasing.
(ii) If vi ∈ ChainL, then the slope of edges on π(vi−1, vj) is monotonically decreasing.

Proof. First, consider a segment wz and a point k with x(z) < x(k), see Fig. 5:

1. k is below the ray −→wz: then slope(zk) < slope(wz).

2. k is above the ray −→wz: then slope(zk) > slope(wz).

Let w, z and k be three consecutive vertices on π(vi−1, vj). Now, consider the case that vi ∈ ChainU .
In this case, k must be above the ray wz because otherwise Π cannot be a shortest path [5]. Similarly,
when vi ∈ ChainL, k must be below the ray wz. Therefore:

(i) when vi ∈ ChainU the slope of edges is monotonically increasing. (ii) and, when vi ∈ ChainL
the slope of edges is monotonically decreasing.

Lemma 9.4. Consider the search path inside the first type critical sub-polygon. Let p be a point on
this part of the search path. Then the slope of the edge that connects p to parent(p) is negative.

Next consider the 2nd type critical sub-polygons and suppose that p is in this portion of the search
path. Then the slope of the edge that connects p to parent(p) is positive.

Proof. First observe for all points p, x(parent(p)) < x(p).

25

• p is in the first type critical sub-polygon: Note that all points in this part are descendants of
vi−1, see Lemma 9.2. For the sake of contradiction let us assume that parent(p) is in the third
quadrant of p, see Fig. 17. In the following we will show that there exist a shorter path than
π(OL, p) = π(OL, parent(p)) + parent(p)p which is a contradiction.

Note that p is on the search path.

1. p is on the α-path (Fig. 17(a)): Let A be the intersection of ~Xp with π(OL, parent(p)).
Observe that A is visible to p since all upper chain vertices are above the search path.
Because of the triangulation inequality, pA followed by π(OL, A) is a shorter path than
π(OL, p) = π(OL, parent(p)) + parent(p)p which is a contradiction.

2. p is on the step-path (Fig. 17(b)): Similar to the previous case.

• p is in the second type critical sub-polygon: The same as the previous case. See Fig. 17(c). Note
that all points in this part are descendants of the summit vertex s, see Lemma 9.2. Also, A is
visible to p since all lower chain vertices are below the search path. The rest of the proof is the
same as above.

p

parent(p)

vi−1

A

(a)

p
Is

(b)

the Π path p
s

parent(p)

Is Ih

A

(c)

Figure 17: Proof of Lemma 9.4. The path Π is shown in dots.

9.3 Zig Zag Guard Correctness Proof

Lemma 9.5. At the beginning of Vertical Guard invoked from Zig-Zag Guard, we have sinα ≤ h =
y(caux)− y(P).

Proof. Recall that the pursuer performs vertical guard while it is in the 1st or the 3rd type critical
sub-polygons (see Section 5). In the following, we present the proof for the 1st type.

Consider the preceding Search. Recall that during the search state P moves along the search path
from v. The pursuer performs the zig-zag guard when E appears in its fourth quadrant (see Section 5).
Recall that caux = v (Section 5.3).

Suppose that v ∈ ChainU .
First, suppose that P is on the step-path. Then observe that E cannot force P to retreat beyond

v because the step that P lies on is after the floor point and moreover the evader is confined in the
corresponding step. Hence only by following the zig-zag moves the pursuer will catch up to π(OL, E).

Next suppose that P is on the α-path. Let l1 be the distance P has traveled from v. Thus l1 sinα
is the minimum height P obtains during search. Moreover 1− l1 is the residual move which P travels
downward during the Zig Zag Guard. Thus the total height P obtains during search phase is at least
hmin = l1 sinα+ 1− l1 = l1(sinα− 1) + 1 which is at least sinα. Recall that vertical guard is invoked
in the case that initially P is above π(OL, E) and the zig-zag strategy is to move downward or to the
left. In other words y(caux)− y(P) increases afterward and hence the lower bound sinα remains valid.

The above argument is valid when v ∈ ChainL.

Lemma 9.6. Suppose that the pursuer starts Search state (on pocket(v, ~r)) in the 1st or the 3rd type
critical sub-polygons but it finds E while it is inside the 2nd or the 4th type critical sub-polygons. Recall
that here independent of the quadrant that E is inside, the pursuer invokes the zig-zag guard (Section 5).
Then the evader cannot force P to retreat beyond v. In other words, only by following the zig-zag moves,
P will start the next state S or L.

26

Proof. First, note that the portion of the polygon formed by two consecutive α lines or horizontal lines,
∂Q and the vertical lines is a triangle, see Section 4.

Note that we omitted presenting the zig-zag moves for the 2nd or the 4th types. Let us start by
presenting the detailed description of the zig-zag moves that P takes toward π(OL, E). According to
Lemma 9.4, the slope of parent(P)P is positive (0 ≤ slope). Also, at the moment that E becomes
visible x(P) < x(E) (Observation 4.1). Recall that the search path in these types is composed of only
the step-path (section 4). We present the strategy by dividing each step into two parts. Also we only
present the argument for the 2nd type. See Fig. 18 and consider the step from A to D:

1. The segment uD: As a corollary of Lemma 9.4, all points on this segment are direct children of
u. Therefore, we would have parent(P) = u.

(a) If E is inside the fourth quadrant of P: See Fig. 18(a). Observe that the pocket formed by
the segment uD and ∂Q from u to D is a simple pocket. By performing the simple pocket
strategy presented in section 9.1, the evader is forced to cross uD while P is also on this
segment. Note that uD is an edge of the shortest path tree. Note that all points on this
segment are direct children of u. In other words, the next state will be L while P is in h(v).

(b) If E is inside the first quadrant of P: See Fig. 18(b). Note that π(OL, E) has to be above P.
Then P moves along − ~XP toward π(OL, E). The L state or the S state will be established
while P is in hf(v).

2. From A to u: Note that E has to be in the first quadrant of P because otherwise P must have
seen him sooner. The configuration that π(OL, E) is above P, shown in Fig. 18(b), is similar to
the case (b) above. The configuration that π(OL, E) is below P, shown in Fig. 18(c), is as follows.

The pursuer moves toward π(OL, E) along ~XP . This ensures that E is in the first quadrant of P
until E crosses ~XP . At this time, P moves toward π(OL, E) along −~YP , see Fig. 18(d). Note that
P is becoming closer and closer to π(OL, E) while π(OL, E) is confined in the triangular region
△ABu. Hence the next state (L or S) will be established while P is in h(v).

pi

vk

P1

E1
u

A

B D

(a)

vk

P2

E2

(b)

vk

P3
E3

u

A

B D

(c)

vk

P4 E4
u

A

B D

(d)

Figure 18: The zig-zag moves when P invokes zig-zag guard inside the 2nd type critical sub-polygons
while v in the preceding S state was in the 1st type. See Lemma 9.6.

9.4 The Auxiliary Vertex in Simple Guard

In simple guard strategy, we define a local variable called the auxiliary vertex paux which is used as a
landmark to guarantee progress. In simple guard state, the pursuer’s goal is to prevent the evader from
contaminating the region to the left of paux. In other words, the pursuer guarantees that the evader
is inside h(paux). We define paux such that it is inside h[pref]. Therefore, at the end of this state the
evader is inside h(pref).

Next let us present the selection of the vertex paux. Let pocket(v, ~r) be the pocket which has been
searched in the previous S state. Suppose that vaux is the vertex that the α-path starts from (if
v ∈ ChainU , then vaux = v). Moreover, let pceil be the ceiling point (refer to Section 4). Then:

• if p0 is in the portion of the search path, from v to vaux: See Fig. 19(a). Here paux is the
bottommost vertex from the upper chain which is in the region in h[pref] and to the left of the

27

segment p0pref . Note that only when v ∈ ChainL, we have vaux 6= v e.g. in Fig. 7(d) we have
vaux = e3.

• If p0 is in the portion of the search path from vaux to the floor point: then paux is the first endpoint
of the α-step that p0 lies on it. For example, in Fig. 7(c), if p0 is on the α-step defined from e2
to I2 then paux = e2.

• If p0 is in the portion of the search path after the floor point: See Fig. 19 parts (b) and (c). Let
a be the intersection point between the α line passing through p0 and Π. Suppose that w1w2

and w′
1w

′
2 are the edges on Π such that x(w1) ≤ x(pceil) < x(w2) and x(w′

1) ≤ x(a) < x(w′
2)

respectively. Then, if a is inside the next critical sub-polygon, paux is the second critical endpoint
that defines the current critical sub-polygon. If w1 6= w′

1, i.e. a and pceil are not in between
the endpoints of the same edge on Π, then paux = w′

1, see Fig. 19(b). Otherwise, paux is the
bottommost vertex from the upper chain which is inside h[pceil] and to the left of the line that
connects pceil to p0, see Fig. 19(c).

p0

v

vaux

pref

paux

(a)

Π
w1 w2

w′
1

w′
2

p0

v

a

(b)

Π
w1

w2

p0

v

a

paux

(c)

Figure 19: The path Π is shown in dots. Note that all upper chain vertices are above Π. (a)
here paux is the bottommost vertex from ChainU in the shaded region. (b) here paux = w′

1

(pceil = v). (c) paux is the bottommost vertex from ChainU in the shaded region (pceil = v).

9.5 Simple Guard Correctness Proof

Π
w1 w2

w′
1

w′
1

w′
2w′

2

p0
p0 Is

v a
a

b

Figure 20: The point paux when w1 6= w′
1. Here paux = w′

1.

Π

w1

w1

w2

w2

p0p0
p0 Is

vv
v

a
a

b

c

~Yv

pauxpaux

Figure 21: The point paux when w1 = w′
1.

28

Lemma 9.7. Suppose that the pursuer is in simple guard state and p0 be the location of the pursuer
at the beginning of the state. Then paux defined in section 5.2 is visible to p0 and moreover, the angle
built by p0paux and the x-axis is less than α.

Proof. Let pocket(v, ~r) be the pocket being searched in the previous search state.

1. v ∈ ChainU : here paux are defined based on the second and the third definition in section 5.2.

• If p0 is in the portion of the search path from vaux to the floor point: since both p0 and paux
are on the α line of the corresponding α-step, the slope of p0paux is equal to −α.

• If p0 is in the portion of the search path after the floor point: first suppose that a and pceil
are not in between the endpoints of the same edge on Π. Then paux = w′

1. See Fig. 20-right.
Note that all upper chain vertices are above Π and all lower chain vertices are below the
search path. Hence paux is visible to p0. Next, let b be the intersection between p0a and
the horizontal line passing through w′

1. Note that the angle between this horizontal line and
p0b is equal to α. Also, observe that w′

1 is the left of p0b. Hence, considering the triangle
△p0bw′

1, it can be concluded that the angle between p0paux and the x-axis must be less than
α.
Next, suppose that a and pceil are in between the endpoints of the same edge on Π. Observe
that paux is visible to p0 as follows. This is because paux is the bottommost upper chain vertex
in the shaded region, and moreover the slope of the edge w′

1w
′
2 is negative (Lemma 9.3), and

all upper chain vertices are above Π and all lower chain vertices are below the search path.
See Fig. 21. Next consider the angle between p0pceil and the x-axis. Considering the triangle
△p0pceilb and the fact that the angle between p0a and the x-axis is equal to α and pceil is to
the left of p0a, we can conclude that the angle between p0pceil and the x-axis is smaller than
α, see Fig. 21-middle. Now observe that paux is in the triangular region formed by p0pceil,
the edge w′

1w
′
2, and

~Ypceil
. Let c be the intersection between p0pceil and the horizontal line

passing through paux, see Fig. 21-right. Then, since the angle between this horizontal line
and p0c is smaller than α and considering the triangle △p0pauxc, we conclude that the angle
between p0paux and the x-axis is smaller than α.

2. v ∈ ChainL:
(a) The slope of ~r is negative: recall that when E appears inside the first quadrant of P, the

pursuer performs the simple guard (section 5.2). Also, recall that when v ∈ ChainL the
search path starts by the step-path (section 4). Since the slope of ~r is negative, the evader
can appear in the first quadrant of P only when p0 is after vaux. Similar to the above case
where v ∈ ChainU , it can be shown that the angle between p0paux and the x-axis is smaller
than α.

(b) The slope of ~r is positive: let us refer to the current simple guard state as G2 and its
corresponding search state which is on pocket(v, ~r) as S2. Let us refer to the state before
S2 as stateprev. Then stateprev must be a simple guard. This is because during zig-zag
guard, the evader remains inside the fourth quadrant of P and hence the resulting pocket
(pocket(v, ~r)) would have negative slope. Also, if the previous state was L the resulting
pocket would have negative slope (a corollary of Lemma 9.2). Let stateprev = G1 which is a
simple guard. Also let p′aux be the auxiliary point defined in G1, and p

′ be the location of P
at the beginning of G1. Therefore, the sequence of states is G1S2G2, the pursuer is moving
toward p′aux along p′p′aux during G1, and v is to the right of the line p′p′aux. Recall that at
the beginning of S2, we set pref = p′aux (Lemma 5.2).
Now consider paux defined in G2 (section 5.2). If the second or the third definition applies,
the proof is similar to the above cases. Hence suppose that paux is defined according to the
first definition (i.e. p0 is in between v and vaux).
We continue by an inductive argument as follows. Suppose that the angle between p′p′aux
and the x-axis (the absolute value) is equal to or less than α. Since pref = p′aux, and v is to
the right of p′p′aux the slope of vpref is less than α. Recall that the search state in between v
and vaux is increasing in the x-coordinate and decreasing in the y coordinate, see section 4.
Therefore, the slope of p0pref is also less than α. See Fig. 22(a).
Since paux is defined as the bottommost vertex in h[pref] which is also to the left of p0pref , it
can be shown that the slope of p0paux is less than α (Fig.21-right).

29

It remains to show that paux is visible to p0. According to our inductive argument, pref = p′aux
is visible to p′. For the sake of contradiction, let us assume that paux is not visible to p0
and hence is blocked by a vertex namely vb. We must have vb ∈ ChainL. Also it must that
x(p′) < x(vb) < x(v). See Fig. 22(b). Let pg be the position of P during G1 at which the
evader the evader disappears behind v. Note that pg is on the segment p′p′aux and moreover
v is visible to pg. Since all lower chain vertices are below the path formed by p′auxpg, pgv
and the search path between v and p0, the vertex vb cannot block p0paux. Contradiction.

v

pref

p0

(a)

v

pref

p0

vb

pg

p′

paux

(b)

Figure 22: Proof of Lemma 9.7. (a) the angle p0paux is less than α. (b) the vertex vb has to be below the
line pgv.

Lemma 9.8. Suppose that P is in the simple guard sub-state, see section 5.2. While the pursuer is
moving back to paux the evader cannot cross the segment p0paux.

Proof. Refer to Fig. 23-(a) let p0 and E0 be the position of the players at the beginning of the Simple
Guard. Hence x(p0) < x(E0) Observation 4.1. We will show that for all points A on the line segment
between paux to p0, the length of p0A is smaller than the length of the shortest path from E0 to A
minus one. Hence if E tries to cross the p0paux at A is will be captured by P. Specifically we show
that Ap0 −AE0 ≤ 1.

First observe that the angle pauxp0 is equal to or smaller than α, see Lemma 9.7.
Let H be the point on Yp0

where AH is perpendicular to Yp0
.

1. α = ψ1: we have:

cosα = (1− 1/D2)0.5

Ap0 ≤ D, 1 ≤ D
Ap0(1− cosα) ≤ D(1− (1− 1/D2)0.5) =

D − (D2 − 1)0.5 ≤ 1

2. α = ψ2 < ψ1: we have:

cosψ1 < cosψ2, − cosψ2 = − cosα < − cosψ1,

Ap0(1− cosα) < Ap0(1− cosψ1) ≤ 1

(1)

Lemma 9.9. At the beginning of Vertical Guard invoked from Simple Guard we would have sinα ≤
h = y(c aux)− y(P).

30

Proof. Recall that here c aux = paux. In the following, the key observation is that the angle between
pauxp and the x-axis is smaller than α, see Lemma 9.7.

Note that E has to cross the line pauxp before crossing lv. From pauxp to lv the pursuer follows E by
lion’s move with respect to paux. Now consider the time-step that P and E are on pauxp. Let P ′ and
E ′ be the position of the pursuer and the evader after one step of the lion’s move with respect to paux.
According to Lemma 9.10 the distance from all points on pauxp to all points on lv is equal or greater
than one. Therefore E ′ is a point in between pauxp and lv see 23-(b).

1. 1 ≤ pauxP: Because of the lion’s progress pauxP < pauxP ′. Hence 1 ≤ pauxP ′. Moreover P ′ is in
between the pauxp and lv. Thus sinα ≤ h = y(paux)− y(P ′) see Fig. 23-(c).

2. pauxP ≤ 1: Let A = ~XP ∩ ~YP′ .

(a) P ′ is outside the unit circle: similar to the first case we have sinα ≤ h
(b) x(P ′) < x(P), see Fig. 23-(e) and (f) for P ′

2:

h = AP ′
2,

AP
pauxP

< cosα,

pauxP < 1, AP ≤ pauxP · cosα < cosα

AP < cosα, h2 = 1−AP2

sinα < h (2)

(c) x(P) < x(P ′), see Fig. 23-(d) and (g) for P ′
1:

β ≤ π

2
− α, sinα ≤ cosβ, PP ′

1 = 1, h = cosβ,

sinα < h

(3)

Lemma 9.10. Let paux be a point inside Q. Consider the α-line passing through paux, the unit circle
centered at paux, and the vertical line lv = ~Ypaux

. For all points e above the α-line and all points e′ on
lv in which e and e′ are outside the unit circle we would have 1 ≤ ee′.

Proof. Refer to Fig. 23-(b) note that ee′ = tan θ1 + tan θ2 where θ1 + θ2 = π − α. The function
tan θ1 + tan θ2 − 1 is positive for α angles equal or smaller than ψ2 = (π

2
− 2 arctan 1

2
). Hence 1 ≤ ee′

for α which is equal or smaller than ψ2. See Definition 4.2.

9.6 Horizontal Guard

In this section, we present the horizontal guard strategy which is the counterpart of vertical guard
(section 5.3) in the second type critical sub-polygon. Suppose that the horizontal guard has been
invoked in the 2nd type. Recall that at this time x(v) ≤ x(P) < x(E) and y(P) = y(E) = y(v)
(Lemma 5.1). The center c for the horizontal guard is found as follows: Let I be the intersection

between ∂Q and ~Yv. Then c is the intersection point between bisector of PI and ~Xv. See Fig. 24(b).
Symmetric to what we saw in vertical guard, the pursuer performs lion’s move with respect to c or v
as the evader moves below lh = ~Xv or above lh = ~Xv. This continues until the next state is established
in h(v).

9.7 The Vertical Guard and the Horizontal Guard Correctness Proof

Lemma 9.11. The vertical guard circle centered at c prevents E from escaping to upper chain vertices
which are to the left of pref .

Proof. See Lemma 9.14.

31

paux
paux

paux paux

paux pauxpaux

α
α

α
α

αα

A

A

A

A

A
H
E0

p0

E E

E E

P P

P P

P

E ′

E ′
P ′

unit circle

E ′1

P ′
1

P ′
1

β

β

h
h

h h

E ′2

P ′
2

P ′
2

θ1θ2

(a) (b) (c)

(d) (e)

(f)
(g)

Figure 23: E cannot cross pauxP during simple guard

Lemma 9.12. If during vertical guard strategy E disappears behind a vertex to the left of lv, then the
resulting pocket would be a simple pocket. Also refer to Fig. 12 parts (b) and (c).

Proof. The vertex that defines the pocket must be from the lower chain (Lemma 9.11). In this figure,
because of monotonicity the pocket in the left is impossible and hence the pocket must be an simple
pocket (middle part of the figure).

Lemma 9.13. Feasibility of the Horizontal Guard. Suppose that P invokes the horizontal guard
sub-state. Then, the radius of the circle centered at c is finite (i.e. upper bounded) and the pursuer can
perform lion’s move with respect to c.

Proof. Recall that the pursuer performs the horizontal guard strategy when: (1) the previous search
state was on pocket(v, ~r) where v is inside the 2nd or the 4th type critical sub-polygon, and (2) x(v) ≤
x(P) < x(E) and y(P) = y(E) = y(v) (Lemma 5.1).

Note that x(v) ≤ x(P) < x(E) and y(P) = y(E) = y(v) can occur only when the evader appears
while P is on the horizontal line passing through v (i.e. the first step) (see Fig. 24). If P is on other
steps, similar to Lemma 9.6 we can show that the zig-zag moves are sufficient.

Also note that since the slope of the entrance ~r is positive, at the beginning of G state (end of the
S state) the evader would be in the first quadrant of P.

Similar to Lemma 5.3, it can shown that the radius of the circle centered at c is upper bound if
we could provide a lower bound for x(P) − x(v). Note that 1 ≤ x(P) − x(v). This is because during
search P is moving in the direction of the x-axis (the horizontal line passing through v which is on the
first step). Even if the evader appears as P moves for ǫ < 1 (during the one time unit of the S state),
the pursuer immediately switches to the G state and moves for the residual move toward π(OL, E) (the
residual move is (1− ǫ)). Therefore at the time that E crosses ~Xv, we would have 1 ≤ x(P)− x(v).

Lemma 9.14. Feasibility of the Vertical Guard. Consider the vertical guard state, section 5.3.
Then all upper chain vertices before caux are above cauxI. Therefore, P can perform the lion’s move
with respect to caux and c. In other words, the next location that P must move to according to the lion’s
move is in the free space.

Proof. Note that the vertical guard state can be invoked from zig-zag guard, simple guard. Therefore,
caux = v (in case of zig-zag guard) or caux = paux (in case of simple guard).

32

EPv

s

Π

(a)

EP
v c

s

~Xv

~Yv Π

I

(b)

Figure 24: (a) The configuration that P performs the horizontal guard strategy. (b) The
horizontal guard circle centered at c.

In the following, we present the proof by arguing the 1st and the 2nd type critical sub-polygons.
The other two types are symmetric.

1. caux = v (i.e. the vertical guard is invoked from zig-zag guard): Here, v must be a vertex inside
the 1st type and moreover at the beginning of the G state P must be inside the same critical
sub-polygon (see section 5 and Lemma 9.6). Also note that v ∈ ChainU . To see this suppose
that v ∈ ChainL. Recall that the search path on pocket(v, ~r) starts by the step-path, then
continues along the α-path and then the step-path (section 4). Let I1 be the intersection of the
first step-path with ∂Q. Recall that P performs the zig-zag guard when E appears inside its
fourth quadrant (section 5.1). Suppose that P is in between v and I1. According to zig-zag
guard, the pursuer moves downward and to the left. Hence the evader cannot force the pursuer
to retreat beyond v (the players will hit ∂Q). When P is after I1 the similar result is valid.

Therefore only when v ∈ ChainU , the pursuer invokes the vertical guard during zig-zag guard.
In the following we prove that all upper chain vertices before v are above vI. Let us refer to the
current G state as G2 and the S state before it (which is on pocket(v, ~r)) as S2. Also, let stateprev
be the state before S2. Hence the sequence of states is stateprevS2G2.

(a) stateprev = L: Let w1w2 be the edge on Π so that x(w1) ≤ x(v) < x(w2). Then v must be
in the fourth quadrant of w1. Because otherwise pocket(v, ~r) would be a simple pocket and
P can recover the L state by following the simple pocket strategy presented in section 9.1.
Since the slope of edges on Π before w1 is negative (Lemma 9.3) it must be that all upper
chain vertices before v are above vI.

(b) stateprev = G: Let us denote this G state as G1 and its previous S state as S1. Hence the
sequence of states is S1G1S2G2. Also suppose that S1 is on pocket(v1, ~r1).

i. G1 is zig-zag guard and v1 ∈ ChainU : We continue by an inductive argument as follows.
Suppose that for all invokes to the S state before S2 all upper chain vertices are above
the corresponding horizontal line. In other words, all upper chain vertices before v1 (in
S1) which are before v1 are above the horizontal line passing through v1. Note that
during S1, the pursuer moves downward and to the right. During G1, which is a zig-zag
guard, the pursuer moves downward and to the left and moreover the evader remains
inside the fourth quadrant of the pursuer. See Fig. 25(a). Hence all upper chain vertices
are above the horizontal line passing through v.
Now we prove the property for the first invoke to G. Therefore, the sequence of states is
S2G2... where S2 is the first search state which is done on pocket(v, ~r). Observe that the
first time that the pursuer invokes S in a critical sub-polygon, the vertex v ∈ Π. Even
if the sequence of states is LS2G2..., either pocket(v, ~r) is a simple pocket which P can
recover the L state by following the simple pocket strategy, or the property must hold
for v.

ii. G1 is zig-zag guard and v1 ∈ ChainL: Likewise, since all upper chain vertices are above
the search path and the blocking vertex v is inside the fourth quadrant of P’s location

33

replacemen

v

P

v1

(a)

v

P

v1

ChainL

ChainU

(b)

v

paux

(c)

Figure 25: All upper chain vertices are above vI. The search path on v1 is shown in green and
the path traversed during G1 is shown dash green lines. (a) v1 ∈ ChainU . Here G1 is a zig-zag
guard. (b) v1 ∈ ChainL. Here G1 is a zig-zag guard. (c) Here G1 is a simple guard.

during G1. See Fig. 25(b).

iii. G1 is simple guard: Recall that v ∈ ChainU . According to the simple guard the entrance
of pocket(v, ~r) is ~r = pauxv where paux is the auxiliary reference point defined in G1. Note
that v must be inside the fourth quadrant of paux because otherwise pocket(v, ~r) would
be a simple pocket and by following the simple pocket strategy (section 9.1) the pursuer
will recover the simple guard strategy.
In the following we show that in simple guard all upper chain vertices before paux are
above the horizontal line passing through paux. Therefore all upper chain vertices before
v are above the horizontal line passing through v. See Fig. 25(c).

(c) caux = paux (i.e. the vertical guard is invoked from simple guard): By an inductive argument
we show that all upper chain vertices before pref are above the horizontal line passing through
pref . Using this we show that all upper chain vertices before paux are above its corresponding
horizontal line.
In our inductive argument we also use the result obtained above: all upper chain vertices are
above v if v ∈ ChainU and v is defining pocket(v, ~r) being searched in an S state.
Suppose that the property holds for the current pref . Then referring to section 5.2, the point
paux is defined based on the location of P at the beginning of the simple guard. Let us
denote the current guard state as G2 and the previous search state as S2 which is performed
on pocket(v, ~r). Also recall that p0 is the location of P at the beginning of G2 (section 5.2).

• If p0 is in the portion of the search path, from v to vaux: Recall that here v ∈ ChainL
and paux is the bottommost vertex from the upper chain which is in the region in h[pref]
and to the left of the ray p0pref . See Fig. 26(a). Since paux is the bottommost vertex
in this region and all upper chain vertices are above the horizontal line passing through
pref , the property also holds for paux. Also recall that we update pref to paux at the end
of the simple guard (Lemma 5.2). Therefore, the property is valid for the next pref point.

• If p0 is in the portion of the search path from vaux to the floor point: First, suppose
that v ∈ ChainL. Since all upper chain vertices are above the search path, the property
holds for paux. Next suppose that v ∈ ChainU . Since the y coordinate of the points on
the search path is decreasing and all upper chain vertices are above the search path and
the property holds for v, we conclude that the property also holds for paux.

• If p0 is in the portion of the search path after the floor point: Recall that if w1 6= w′
1,

i.e. a and pceil are not in between the endpoints of the same edge on Π, then paux = w′
1,

see Fig. 26(b). Note that since w′
1 ∈ Π, the property holds for paux = w′

1.
If w1 = w′

1, i.e. a and pceil are in between the endpoints of the same edge on Π, then
paux is the bottommost vertex from the upper chain which is inside h[pceil] and to the
left of the line connecting pceil to p0, see Fig. 26(c). Here, v could be from the lower
chain or the upper chain. In the case that v ∈ ChainL, since all upper chain vertices
are above the search path the property will be concluded. When v ∈ ChainU , since the
property is valid for v and paux is the bottommost vertex, the property is concluded.

34

(

p0

v

vaux

pref

paux

(a)

Π
w1 w2

w′
1

w′
2

p0

v

a

(b)

Π
w1

w2

p0

v

a

paux

(c)

Figure 26: Fig. 19 shown for convenience. The path Π is shown in dots. Note that all upper
chain vertices are above Π. (a) Here paux is the bottommost vertex from ChainU in the shaded
region. (b) Here paux = w′

1 (pceil = v). (c) paux is the bottommost vertex from ChainU in the
shaded region (pceil = v).

35

	
12-005

