Optimal Gap Navigation for a Disc Robot

Rigoberto Lopez-Padilla, Rafael Murrieta-Cid and Steveri&Valle

Abstract This paper considers the problem of globally optimal nawigewith re-
spect to Euclidean distance for a disc-shaped, differedtiae robot placed into an
unknown, simply connected planar region with piecewisahgit boundary. The
robot is unable to build precise geometric maps or locatiefiin any Euclidean
frame. Most of the robot’s information comes from a gap senshich indicates
depth discontinuities and allows the robot to move towasithA motion strat-
egy is presented that optimally navigates the robot to angrteark in the region.
Optimality is proved and the method is illustrated in sintiola.

1 Introduction

If a point robot is placed into a given polygonal region, themmputing shortest
paths is straightforward. The most common approach is topotena visibility
graph that includes only bitangent edges, which is accamned inO(n?Ign) time

by a radial sweeping algorithm [4] (dnlgn+ m) algorithm also exists, in whicim

is the number of bitangents [7]). An alternative is tioatinuous Dijkstra method,
which combinatorially propagates a wavefront through #gian and determines
the shortest path i®(nlgn) time. Numerous problem variations exist. Comput-
ing shortest paths in three-dimensional polyhedral registNP-hard [1]. Allowing
costs to vary over regions considerably complicates thieleno[14, 16]. See [6, 13]
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Fig. 1 a) The optimal path for a point robot, b) The optimal path fadisc robot ¢) The gap
sensor (attached at the small solid disc on the robot boyhdatects the sequence of gaps=
[0R, 05,05, 0%, ok], in whichgR andgR are near-to-far gaps argj, g5, andgs, are far-to-near gaps.

for surveys of shortest path algorithms. For recent effont€urved obstacles, see
[2].

The approaches described thus far address a point robahvghunrealistic in
most practical settings. It is therefore interesting talgtthe case of a disc robot,
which could correspond, for example, to a Roomba platforariodis objective
functions are possible; we choose to optimize the distaiaweled by the center of
the robot. Once the robot has nontrivial dimensions, thélpra can be expressed
in terms of configuration space obstacles. Solutions arepted in [3, 11].

Now suppose that the map of the environment is not given tedhet. It must
use its sensors to explore and map the environment to demeidgation strategies.
Given strong sensors and good odometry, standard SLAM appes [5, 17] could
be applied to obtain a map that can be used as input to theopidyimentioned
methods.

However, we do not allow the robot to localize itself or toldud geometric
map. Instead, it observes the world using mainlyap sensor, introduced in [18],
which allows it to determine the directions of discontiiestin depth (distance to
the boundary) and move toward any one of those directiondeUtiis model, but
for a point robot, a combinatorial filter called the Gap Natign Tree (GNT) was
introduced that encodes precisely the part of the shopt@stvisibility graph that is
needed for optimal navigation [18]. The learned data stinectorresponds exactly
to the shortest path tree [6] from the robot’s location. Eriables the robot to nav-
igate to any previously seen landmark by following the dis&optimal path, even
though it cannot directly measure distances. The GNT waneetd and applied to
exploration in [15]. The GNT was extended to point cloud nmsde [8]. A larger
family of gap sensors is described in [10].

The case of a disc robot is important because real robots @veero width.
Unfortunately, the problem is considerably more challagdiecause without ad-
ditional sensing information, the robot could accidentattike obstacles that poke
into its swept region as it moves along a bitangent. See €igu@a) and (b). The
robot must instead execute small detours from the bitan@amtsing, characteriz-
ing, and optimally navigating around these obstructiotisésnain difficulty of this
paper.
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Before proceeding to the detailed model, motion strateyy,case-by-case anal-
ysis, several points are important to keep in mind:

1. The robot is placed into an environment, but it is not gitles obstacle loca-
tions or its own location and orientation. The purpose ishtows how optimal
navigation is surprisingly possible without sensing thi®rmation (i.e., without
ordinary SLAM).

2. The robot first learns the GNT by executing a learning phabkeh is described
in [9, 18], and remains unchanged in this paper. The procesb/es iteratively
chasing “unknown” gaps, causing each to split or disapgeantually, only
primitive gaps, which were formed by appearances of gapst@inflection ray
crossings), and gaps formed by merging primitives remdiis €orresponds to
learning the entire shortest-path graph.

3. A simple navigation strategy is provided that guides thtsot to any landmark
placed in the environment by using the learned GNT. We gieeipe conditions
under which the motions are optimal and prove this statemng case-by-case
analysis.

4. We believe that even when the optimality conditions aremet, the strategy
itself is close to optimal. Therefore, it may be useful in manactical settings
to efficiently navigate robots with simple sensor feedback.

Section 2 formally describes the robot model and the selogsed motion prim-
itives. Section 3 introduces an automaton that charaetedl possible sequences
of motion primitives that could occur when executing optimmetions to a land-
mark. Section 4 describes how obstacle blockages are ddtantd handled when
the robot chases a gap. This includes detours (that is, tlificagion of the path
encoded in the GNT for a point robot) needed to achieve optimagation. Section
5 argues the optimality of the motion strategy. Section 8@més an implementation
in simulation, and Section 7 concludes the paper.

2 Problem statement

The robot is modeled as a disc with radiusioving in an unknown environment,
which could be any compact setc R? for which the interior ofE is simply con-
nected and the boundagk:, of E is the image of a piecewise-analytic closed curve.
Furthermore, it assumed that the collision-free subseh®frbbot’s configuration
space? is connected%’-space obstacle corresponds to that of a translating disc,
that is, the extended boundary®fwhich is due to the robot radids

1 Note that this is the configuration space for a translatisg dither than for a rigid body because
of rotational symmetry.
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2.1 Sensing capabilities

1) Gap sensor: The robot has an omnidirectional gap sensor [10, 18], wiicble
to detect and track two types of discontinuities in deptbiinfation: discontinuities
from far to near and discontinuities from near to far (in tbemterclockwise direc-
tion alongdE). Figure 1(c) shows a robot in an environment in which theggypsor
detects some near-to-far and far-to-near gaps.

LetG = [g},...,g}] denote the circular sequence of gaps observed by the sensor.
Using this notationt represents the discontinuity type, in whith- R means a
discontinuity from near to far (the hidden portion is thehtijgandt = L means a
discontinuity from far to near (the hidden portion is to te&). For example, the
gap sensor in Figure 1(c) detects gaps of different types[gR, g5, 95, 9, k.

We place the gap sensor on the robot boundary and define npuiroitives that
send the robot on collision-free trajectories that possibintact the obstacles (mov-
ing along the boundary of the free subset of the configurati@te is necessary for
most optimal paths). These motion primitives, describedetril in Section 2.2,
allow the robot to rotate itself so that it is aligned to mokie gap sensor directly
toward a desired gap, move forward while chasing a gap, dfeWf@E while the
sensor is aligned to a gap.

Imagine that a differential drive robot is used. It is assdni®t the gap sensor
can be moved to two different fixed positions on the robot hiauy: The extremal
left and right sides with respect to the forward wheel dimttOne way to imple-
ment this is with a turret that allows the robot to move the gpsor from its right
side to its left side and vice versa. Figure 3(b) shows the@eadigned to a near-to-
far gap in which the gap sensor is on the right side of the rofmalign the sensor
to a far-to-near gap, the robot moves the gap sensor to th&defof the robot.

Finally, letA be a static disc-shaped landmarl&mwith the same radius as the
robot. A landmarkA is said to berecognized if the complete landmark is visible
from the location of the gap sensor.

2) Side sensors: To detect obstacles that obstruct the robot while it chasgapa
our algorithms need to measure distances between the eattieftnand right side
robot’s points along the direction of the robot headingwyf@rd and backward) and
the obstacles. Let those particular robot points be left gidintl p and right side
pointr p. The particular direction tangent to the robot boundarypas calledrt. The
particular direction tangent to the robot boundarlysis calledit (See Figure 2(a)).
Thus, we assume that the omnidirectional sensor is alvhedsure distance, indeed
based on distance the discontinuities can be detectedgIbet the distance between
r pand the obstacles at the particular directigrandd, the distance betwedp and
the obstacles at the particular directior{(See Figure 2(b)). Lad, be the distance
between the omnidirectional sensor and the veuntetkat originated the gag; to
be chased (in Figure 2(g) = gg‘). Let dr be the distance between the vertex that
the robot is touching (either afp or Ip) and the vertex that originated the goal
gapgo (the gap to be chased). This distance is measured using thiglioectional
sensor (see Figure 2(d)). If the particular direction,eittt or It, is pointing to a
reflex vertex (a gap is aligned with this direction), thenscdntinuity in the sensor
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Fig. 2 Side Sensors: (a) pointg andl p, and directionst andlt, (b) d. anddg, (c) dy, (d) dr, (€)
dt anddL‘+, (f) omnidirectional sensor readings for contact detectio

reading at this direction occurs. Leb;t{+ anddg' denote the distances fronp to
the further and closer points, respectively,dff along the discontinuity direction.
Similarly,d,', andd,' denote the distances froip. See Figure 2(e).

Our motion strategy will require only comparisons of distes to determine
which is larger, rather than need precise distance measmtsmAny small error
in the comparison (if the distances are close) contribuie $mall deviation from
optimality, which may be relatively harmless in practicewr@pproach will further-
more require detecting whether the robot is contactiigat rp or | p to enable
wall-following motions.

Distance measurement between the obstaclebmauadr p in directionst andlt
(both backward and forward), and the information of whetherrobot is touching
JE atrp orlp, can be obtained with different sensor configurations. kaneple, it
is possible to use two laser pointers and two contact seeaoh, of them located at
Ir andl p. However, to use a smaller number of sensors and facilii@testrumen-
tation of the robotic system, it is possible to emulate boédontact sensors and one
of the laser pointers, using the omnidirectional sensoe dmnidirectional sensor
reading in the particular forward and backward robot hegdiinections emulates
the laser pointer reading. An omnidirectional sensor caa bé used to determine
whether the robot is touching atlr or | p. The sensor readings at directions per-
pendicular to the robot heading are used in this case. Ifahetris touchinglE at
the point at which the omnidirectional sensor is locatedntthne sensor reading is
zero. If robot is touchin@E at the point diametrically opposed to the omnidirec-
tional sensor, then the sensor reading will correspondtiotrdiameter (see Figure
2(f)). Thus, one option is to have the robot equipped withmnidirectional sensor
and a laser pointer; they will be located ptandr p. Recall that a turret to swap the
locations of the laser pointer and the omnidirectional sexnan be used to avoid
unnecessary robot rotations in place. The gaps or landraegladways chased with
the omnidirectional sensor; the laser pointer is used teaietbstacles and to cor-
rectly align the robot.
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Fig. 3 The motion primitives: (a) Clockwise rotation in place; @tyaight line motion; (c) Clock-
wise rotation w.r.t. to pointp; (d) Counterclockwise rotation w.r.t. to poilp.

L-ALIGNLP

Fig. 4 The sequence of executed primitives depends on sensoraigedbhe possible executions
are captured by a Moore machiiein which each state applies a specific motion primitive and
each transition edge is triggered by a sensing event.

2.2 Motion primitives

The robot navigates using a sequence of motion primitivasale generated by an
automaton for which state transitions are induced by seflesaiback alone. There
are four motion primitives (see Figure 3). Let the anguldoeity of the right and
left wheels bew, andw;, respectively, withwy,w € {—1,0,1}.

Thus, the motion primitives are generated by the followiogtools:

Clockwise rotation in placey, = 1,w = —1.

Clockwise rotation w.r.t. to pointp: w, = 0,w; = 1.
Counterclockwise rotation w.r.t. to poilp: w, = 1,w; =0
Forward straight line motiorw, = 1,w = 1.

The rotation primitives are used to alighor It to a specific gap (or landmark).
Oncert orlt is aligned to a gap, the robot moves in straight line to chiasgap. If
the path to the chosen gap is blocked, then the robot exeautetour by choosing
a new vertex as a subgoal. More details are given in Sectiamsl 3.

3 The movement automaton

The algorithm for generating optimal navigation motions ba nicely captured by
an automaton or (Moore) finite state machMe See Figure 4. Every state corre-
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sponds to the selection and execution of a motion primitiveh@ robot or it is a
decision. Each state transition is triggered by a sensaibfiek event during mo-
tion. There are 21 total states, with clear right/left synmim& he ten upper states in
Figure 4 correspond to near-to-far gaps (fheases) and the ten lower states corre-
spond to far-to-near gaps (thecases). The other remaining state iSOUICHING,
which is used when the robot is not touchidig and decides whether the gap to be
chased is left or right.

The machine has 3 main levels (see Figure 4). The first onegmonds to decide
whether the goal gap is far-to-near (left gap) o near-tgrfght gap). It also decides
whether the robot is touching tle¥. If the robot is touchin@E, then the first level
determines whether the robot is touching it pt(left side) orrp (right side). The
second level is the main one, it detects blockages. Accgrdithe decisions made
in level one, the second level makes the robot executes otteedhree types of
rotations (clockwise rotation in place, rotation w.rp.or rotation w.r.tl p). Before
starting the rotation, during robot rotation or after hayvfimished the rotation, the
second level determines whether the path to the goal gapdékdxd. According to
this decision, the robot executes either a straight lineieandbward the gap (the
path is not blocked) or executes a detour (the robot tramnedsstraight line toward
the subgoal vertex). The third level is in charge of exegutire motion toward the
gap to be chased.

In the first level no motion primitive is executed. In this ébvthere are three
states:

e NTOUCHING: This state happens when the robot is not toucldlkg It decides
whether the gap to be chased is left of right.

e TOUCHINGRP: This state is triggered when the robot is touchiigat r p and
the gap being chased splits, or the robot goal is a landdile., the landmark
is totally visible to the omnidirectional sensor). The stdecides whether the
new gap to be chased is a left or right gap. If the new seleaedgya right gap
(near-to-far), then the next state will be R-ISNRP. If the new selected gap is a
left gap (far-to-near), then the next state will be L4&ANRP. Finally, whenever
the goal is &\ the state will transit ta\-ALIGNRP.

e TOUCHINGLP: This state is the left symmetric equivalent toJCHINGRP.

The second level determines whether the path to the chogeis ¢docked. To
detect the blockage, the robot scans the environment vgitbeitsors and simulta-
neously aligns eithelt or rt to the chased gag or the vertex that generates the
blockageu. This scanning is done by executing three types of rotatjcleskwise
rotation in place, rotation w.r.tp or rotation w.r.tlp). There are eight states in the
second level (four for the right case and four for the leff)eTstates for the right
case are:

R-ALIGN: Right gap alignment executing clockwise rotation in place
R-ALIGNLP: Right gap alignment executing counterclockwise rotati.r.t.l p.
R-ALIGNRP: Right gap alignment executing clockwise rotation w.pt
AN-ALIGNRP: Right landmark alignment executing clockwise rotatiornt. r p.
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Note that whenever the landmark is not reachable by a strighpath, from the
initial robot configuration, then optimal navigation to ceahe landmark requires
that the landmark is completely visible while the robot igabingdE.

There are other four other symmetrically equivalent statken the goal gap
is left g5, or the landmark is chased with the omnidirectional senscated at p
(these aré cases irM).

For all of these states, there are three possible transitinif the path is not
blocked, then a straight line motion is allowed. 2) The ratetects a blockage and
the subgoal vertex corresponds to a right gap. 3) There sckaye and the subgoal
vertex generates a left gap.

In the third level, the robot always executes a straight fim#tion. Either the
robot moves to the goal gap (these states are calle#hASE) or toward the vertex
u that represents the subgoal (these states are aaiiedur). Note that the goal
vertex or the vertex that blocks the path can generate a deafgbt gap; for this
reason the states are designed as right or left.

There are ten states in the third level (five for the right casfive for the left).
The states for the right case are:

R-CHASE: The robot moves toward the goal ggip
R-DETOURR: The robot moves toward a sub-goal ventigxhat generates a right
gapgR detour.

e R-DETOURL: the robot moves toward a sub-goal vertgxthat generates a left
gapg, detour.

e RA-cHASE The robot moves toward, and the omnidirectional sensor is lo-
cated atp.

e A-DETOURR: The robot moves toward a sub-goal vertigxhat generates a right
gapgR detour to the landmark.

There are five symmetrically equivalent states when the gaplis Ieftgg or the
landmark is chased with the omnidirectional sensor locatép (theL cases irM).
This establishes the details of the state macMne

The next section analyzes blockage detection and gap iseleélll possible
cases for chasing a gap are enumerated. For lack of spades ipatper only two
of them are described in detail. An appendix [12] is avadadnline, in which the
correctness of the remaining cases is proved.

4 Blockage detection and gap selection

In total there are 18 cases to chase a gap; see Figure 5. Thdyeagassified as
follows: The first categorization corresponds to a rightaft §ap, which is the first
level in M. There are nine cases for each of them. The cases for a lefi'gae
completely analogous to the ones for a right g&pFor a right gap, there are three
general cases (the second level in Figure 5), and each of hlasnthree subcases
(the third level in Figure 5). The second categorizatiorregponds to the type of
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Fig. 5 On the right, nine cases are shown as statéd ithat are obtained while chasing a gap.
Each level corresponds to a critical decision point.

rotation that the robot must execute: Clockwise rotatiopléte, clockwise rotation
w.r.t. rp, or counterclockwise rotation w.rkp. The rotation is used to scan the
environment for detecting a potential blockage and alsmtoectly align the robot
either with the goal gapp or with the vertexu that represents the subgoal. Note
that the vertex that corresponds to the subgoal might geneither a left or right
gap. For this reason there are different types of detoursexample, RBETOURL
means that the goal gap is a right gglp but a blockage was detected, and the
subgoal vertexi, generates a left gaq;iﬁ. This is the second level iM. The third
categorization corresponds to the execution of a straigatrhotion by the robot.
Either a detour (left or right) toward the subgoal vertex airact path toward the
goal gap represents the third categorization, which istthid tevel inM.

Figures 6 (a), (b), and (c) show case 2 in Figure 5. That isgtia gap is a right
gapgg‘, the robot is not touchingE, and the vertexip blocks the path toward the
goal gap. The sequence of states to be executdbtlisl NTOUCHING, R-ALIGN,
R-DETOURL. At the beginning of the task the robot is not touchig; henceM is
in state NTOUCHING. The gap to be chased is a right gap deng&dl’he machine
M then transitions to R-AIGN. The first motion primitive executed at state R-
ALIGN is a clockwise rotation in place to alighwith the goal gag§. At that robot
configuration (see Figure 6(a)), the condition to detechibekage during state R-
ALIGN is: If dg'. > di, then the path toward the right ggg)is blocked. To correctly
align |t with the vertexu, that blocks the path, the robot must execute a clockwise
rotation in place until the following condition is satisfielfl direction It detects a
left gap (a discontinuity from far-to-near occurs at direatt) andst+ > dy then
the gapg'f, is the subgoal gap to be chased (see Figure 6(b)). This fmRh&LIGN
and M transitions to RBETOURL, which causes a straight line execution of the
robot towardsu, until it touches the vertewmp at pointl p.

Figure 6(c) shows that i& the robot has crossed the bitangent line with respect
to JE; however, the corresponding bitangent in the configuramce (of the trans-
lating disc) has not been crossed. The figure shows with act#ddisegment, the
bitangent line frorup, to up. However, in the configuration space, the correspond-
ing bitangent is displaced. In the figure, the bitangent beeveenv, andvy is



10 Rigoberto Lopez-Padilla, Rafael Murrieta-Cid and SteMe LaValle

shown with a black dashed segment. This case appears diedsfacement of a
bitangent line due to the robot radius.

Lemma 1. The condition that R-ALIGN uses to detect a left detour is correct, and
the new gap selected as goal isthe gap that must be chased to obtain locally optimal
navigation.

Proof. If rt is aligned with a right goal gap, then the use of distartésandd,
is sufficient to detect the blockage, since both distamgésandd, are measured
at the extremal side robot points in the direction that digdithe area of the robot.
Therefore, ifds". > d, then the path is blocked.

The gap to be chased is the correct gap to obtain locally @btiravigation.
Given that the path is blocked the robot executes a clockwitsgion in place to
scan the environment and find the sub-goal vertex correspgrid the shortest
detour (in the sense of Euclidean distance). During roktatian, only two different
alignment might occur: 1) a left gap is aligned withor a right gap is aligned with
rt. In order to determine the shortest detour, there are ordypwesibilities: 1)t is
aligned to the previous vertew, in clockwise order w.r.t the goal vertey andup is
closer to the robot tham; up generates a left gap and consequently a left detour. 2)
rt is aligned to a next vertey, in clockwise order w.r.t the goal verter anduy is
closer to the robot tham; u, generates a right gap and consequently a right detour.
Consideringu, anduy, the vertex that can be reached by a straight line collisiea-
path is the correct vertex to select as subgoal. Notice thigitane vertex, eitheu,
or up can be reached by a straight line collision-free path.

In this case, during the robot clockwise rotation in plabe,alignment oft with
up occurs before (w.r.t clockwise order) than the alignmemt @fith u,. Since robot
executed a clockwise rotation w.rp until It is aligned withup, and at this robot
configurationd,! < dg then a collision free path between that robot configuration
anduy, exists. SincceiLt+ > dy, thenup is the previous vertex in clockwise order w.r.t
the goal vertexi. Sinced, ! < d, thenup, is closer to the robot tham. Therefore,
vertexup corresponds to the sub-goal yielding the shortest detauarththe goal
gap. Consequently, the gap generatedifya left gap, is the new gap to be chased.
The result follows. O

Figures 6 (d) and (e) show case 4. The goal gap is a righg@ame robot is
touchingdE atlp, and there is a straight collision-free path to chase thé¢ gma
gi. The first motion primitive executed is a counter-clockwisgtion w.r.t point p
to alignlt with the goal ga@§. Note that at the beginning the omnidirectional sensor
was located at poirfp because it was chasing the gap related to varfexintil the
gap originated by this vertex split. The turret swap the atinactional sensor to
pointr p and the laser pointer to poihp. At that robot configuration (See Fig. 6(d)),
the robot starts scanning the environment to detect a bimckaince there is not a
blockage, the robot rotates counterclockwise w.r.t. piginintil rt is aligned togg‘.
Finally, the robot executes a straight line robot motionauﬂgg‘.

Figure 6(e) shows with a (red) doted line, the GNT-encodel parresponding
to a straight line toward the vertey (the bitangent line fronut to Up). In € there
is also a direct path (or bitangent line) betwegrandvg.
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Fig. 6 Blockage detection and gap selection: Case 2 (a,b,c) amd4céde). In figures c) and e)
the configuration space is shown with doted lines

Lemma 2. The condition that R-ALIGNLP uses to detect a collision free path is
correct, and the original goal gap is the correct gap that must be chased to obtain
locally optimal navigation.

Proof. Refer to Figure 6 (d) and (e). tf is aligned to a right goal gagﬁ, the use of
distanceslg' andd, is sufficient to detect a straight collision-free path, sifatis
connected and hence a path must exist, and both distdgcemdd, are measured
at the extremal side robot points in the direction that digithe area of the robot.
Therefore, ifds < di then the path toward the gap is free.

The feedback motion strategy: Although M represents the decision component
of the system, the commands to the motors can be implemegtaiiple sen-
sor feedback. Only four binary sensor observations affexztcontrol: 1) the robot
is touchingdE with the left side (point p); (2) it is touchingdE with the right
side (pointrp); (3) the robot is aligned to a gap; and (4) there is a blockBge
pending on the observation state, one of the four differestion primitives will

be executed: (1) straight line motion, (2) clockwise ratatin place, (3) clockwise
rotation with respect to poinpr and (4) counterclockwise rotation with respect to
pointlp. Recall that the angular velocities of the differentiailvdmwheels yield one
of these motion primitives. Hence, the feedback motiortestgacan be established
by: y: {0,1}* — {—1,0,1}2, which the sensor observation vector be denoted as
yi = (rp,Ip,aligned, blockage), to obtainy(yi) = (Wy,w;). The set of all 16 possi-
ble observation vectors can be partitions be letiirtpnote “any value” to obtain:
y1 = (%,%,1,0), y2 = (0,0,0,%), y3 = (0,0,%,1), ya = (X,1,0,X), ¥5 = (X,1,x,1),

ye = (1,%,0,x) andy7 = (1,x,X,1). The strategy can be encoded as

yiy1) = (1,1);  ¥(y2Vys) =(-11)
y(yaVys) = (0,1); ¥(¥eVy7)=(1,0)

, inwhichV means “or”.
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Fig. 7 a) A non-blocked GNT-encoded path that involves only nedeat gaps. b) A non-blocked
GNT-encoded path that involves both types of gaps (ne&artand far-to-near). ¢) Robot path.

5 Proof of optimal navigation

5.1 Non-blocked GNT-encoded paths

In this section we establish that the robot executes a Eeatiddistance-optimal
path in the absence of blockages.

The shortest path t@\ is encoded as a sequence of gaps in the GNT. Let
U = (Up,Un-1,...,Up) be the sequence of connected intervpls JE that the robot
contacts when the gap sensor (fixed to the robot boundarygsioem its initial
position to its final position im\. LetH = (gn,0n-1,.-.,d0) denote the correspond-
ing sequence of gaps that are chased, in whiehH is the gap that is being chased
on the path tay; or while traversingy;.

Now consider the problem in terms of the configuration spddbeorobot. The
obstacle region in the configuration space is obtained bwiggthe environment
obstacles by the robot’s radius,Let ¢ denote the projection of the obstacle region
into the plane, thereby ignoring rotation. Mt= (vy,Vn_1, ..., Vo) be the sequence
of intervalsv; C % obtained by transforming the interval sequeblcéom JE to
0%, element by element. The following lemma uses the definitica generalized
bitangent from [18].

Lemma 3. Chasing the sequence H of gaps produces the shortest path if and only
if: 1) there is a straight collision-free path from the center of the robot to vy, 2)
there is a (generalized) bitangent line between vi 1 and v;, 3) there is a straight
collision-free path from vp to the landmark center, and 4) ¢’ is connected.

Proof. Note that if any of the first three conditions is violated rtfikee robot move-
ment is blocked by an obstacle and therefore does not exanuwptimal path. For
the last condition, if6” is not connected then there is no solution patf.

Figure 7(a) shows an example of hdwvgenerates an optimal path for the non-
blocked case. In the figure, the GNT encodes the sequ¢nreégR, gf, o). In this
example, the machirnd traverses the following sequence of states while generatin
the appropriate motion primitives: NSUCHING, R-ALIGN, R-CHASE, TOUCHIN-
GRP, R-ALIGNRP, RCHASE, TOUCHINGRP, R-ALIGNRP, RCHASE, TOUCH-
INGRP,A-ALIGNRP, RA-CHASE.
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Now we describe the association of the states with each gaphenlandmark.
First, g is chased, executing states NICHING, R-ALIGN, R-CHASE. Next, g}
is chased, executing state®JCHINGRP, R-ALIGNRP, RCHASE. Next, of is
chased, executing again the states/THINGRP, R-ALIGNRP, RCHASE. Finally,
A is chased, executing state®@ GCHINGRP,A-ALIGNLP, RA-CHASE.

In the previous example all of the gapshhwere of the same type. Using the
example illustrated in Figure 7(b), we explain the operatid M when there are
different types of gaps. To reaeh the robot chases the sequebte: (gf, g(L)). The
resulting sequence is NSUCHING, R-ALIGN, R-CHASE (from chasinggf), then
TOUCHINGRP, L-ALIGNRP, L-CHASE, (from chasinggh), and finally Touch-
INGLP, A-ALIGNLP, LA-CHASE (from chasing)).

5.2 Blocked GNT-encoded paths

We now consider the cases for which either of the first threelitions of Lemma
3 is violated, meaning that the robot would become blockeémnwapplying the
GNT in the usual way. For these cases, various forms of “det@ue required. The
GNT-encoded path is based on the bitangent lines betwesnwats inE. However,
in the configuration space, some bitangent lines disapp&angent lines in the
workspace that remain in the configuration space are disglhy a distance or
are rotated by some fixed angle.

The GNT-encoded path cannot be executed by the robot whenithee blockage
to chasingg; € H (or A). If this happens it means that: 1) there is no bitangent line
betweenvi; andv; in €, 2) the robot is in a zone in which it cannot detect the
crossing of a bitangent line &, 3) there is no clear path to chadevhen the robot
sees/, or 4) ¥ is disconnected. These are the Lemma 3 conditions. We presen
a solution to deal with the first three cases presented albtawgever, we do not
handle the disconnection @f because there is no pathAo

If the robot detects a blocked path, then it performs a deétoavoid the obstacles
that blocks the GNT-encoded path. We cannot re-plan theegpaith toA because
the path depends on the gape H (or A) that is in the gap sensor field of view. For
this reason the detour to avoid obstacles is done when the dalbects a blocked
path while chasingj or A.

There are twelve possible cases of blocked paths while mypasgapg;, six of
them are related to a right gap (cases 2, 3, 5, 6, 8 and 9 in Figure 5), and other six
totally symmetric cases for a left gap. There are only two cases of blocked paths
while chasing a landmavk, one occurs when the vertexepresenting the subgoal
to reach a\ generates a right gag® and other occurs when the vertexenerates
a left gapg-. Now, we present the theorem that ensure globally optimébagion
when usingVl.

Theorem 1. The path that the robot center followswhen commanded by the automa-
ton M, using the information encoded in the GNT and making detourswhen the path
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to chaseg; € H isblocked or when the path to chase A is blocked, is optimal in the
sense of Euclidean distance.

Proof. The GNT-encoded path is the shortest path for a point in thi&space and
it is in the same homotopy class that the shortest pa#i mecausée and¢ are
simply connected. We have shown that the sequence of cathadervals inE
that the robot traverses is only changed when the conditbhemmas 3 are not
satisfied; therefore, the shortest path for a disc contamitervals irJ. Since each
detour is made between consecutive intervald pand they are locally optimal as
proved in Lemma 1 and the path that the disc robot travels etenthe path is not
blocked is also locally optimal as proved in Lemma&.2Therefore, the resulting
global path is optimal. O

Constructing a complete GNT: In [18], it has been proved that the construction of
the GNT for a point robot will terminate (Lemmas 2 and 3 in L8 completeness
of the GNT is caused by any non-primitive leaves (leaves ¢batespond to the
portions of the environment that have not been perceivechbyrdbot). The key
observation to prove the completeness of the GNT for a polbmttis that any time
that a new gap appears, it must be primitive. If the gap isethais cannot split.
Therefore, the only gaps that contribute to the incompktemf the GNT are ones
that either appeared in at the beginning of the construdiowere formed by a
sequence of splits of these gaps. Now, we prove that the ramtisin GNT for a
disc robot must also terminate. As mentioned above, cordpaitd the GNT for a
point robot, a path that the robot travels to chase a gap withttwo types: non-
blocked paths and blocked paths.

Lemma 4. The learning (construction) phase of the GNT for a disc robot always
terminates and producesthe same GNT asin [18].

Proof. Chasing a gap whenever the path is not blocked is equivalattase a gap
for a point robot. For blocked path toward a gap, in Lemn¥aitlhas been proved
that a blockage to reach a gap can be detected and that taryedttat generates the
chased gapg; can be reached by traversing detours toward the verticébliheks
the path. Furthermore, while the robot traverses the detibwill always have the
information about the identity of the original gap to be @t since it is codified
in the GNT. Therefore, the construction of the GNT for a didoat must terminate
whenever it terminates for a point robot

6 Implementation

We have implemented the method to further verify its comess. Figure 8 shows a
simulation of the optimal gap navigation for a disc roboteTigure shows snapshots

2 We have also proved other five lemmas for the the remainingsoaisa detour toward a right gap
and two lemmas for the remaining cases of unblocked path[12¢e

3 We have also proved other five lemmas for the remaining cdsedetour toward a right gap.



Optimal Gap Navigation for a Disc Robot 15

A

[— .ﬁ
L 3

@ (b) © (d) (€)

Fig. 8 A simulation of optimal gap navigation for a disc robot. P@} shows the path in the
projected configuration space that the robot traverses to tiee landmark.

of the simulation program. Figures 8(a) and 8(c) show th@tab different times
while following a sequence of gaps to reach the landmarkh&wight of each figure
is shown the complete GNT with the representation used ih & landmark to
be chased is marked as a blue triangle in the workspace ahe iBNT as a leaf
triangle node. Figure 8(a) shows the robot after the firstgmip and the robot is
chasing the gap that occludes the landmark. Finally, Figgcg shows the robot
chasing the landmark. Figure 8(e) shows the shortest p#tie iconfiguration space
that the robot traverses to navigate to the landmark. Thiswas computed based
in the information obtained by the robot sensors and usiagatitomatorM from
Section 3.

7 Conclusions

In this paper we have extended the GNT approach in [18] tocastiaped differential-
drive robot. The robot is equipped with simple sensors ansl itnable to build
precise geometric maps or localize itself in any Euclideamg. This problem is
considerably more challenging than in the case of a pointtrbbcause visibility
information does not correspond exactly to collision freghgs in the configura-
tions space. Consequently, the robot must execute detmmsthe bitangents in
the workspace. Indeed, critical information from the w&se is obtained from
the robot’s sensors, to infer the optimal robot paths in thefiguration space. To
solve this problem we developed a motion strategy basedmplsisensor feed-
back and then proved that the motion strategy yields glglmgitimal motions in
the sense of Euclidean distance by characterizing all plessijectories in terms
of sequences of states visited in a finite state machine. iEpegcise distance com-
parisons are not possible, the motion strategy is simpleeéfiedtive in a broader
setting. Important directions for future work include niply connected environ-
ments, disconnected configuration spaces, and boundstéspmtimality for the
cases in which all sensing conditions are not met.
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