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Abstract. In implementation of elliptic curve cryptography, three kinds
of finite fields have been widely studied, i.e. prime field, binary field and
optimal extension field. In pairing-based cryptography, however, pairing-
friendly curves are usually chosen among ordinary curves over prime
fields and supersingular curves over extension fields with small charac-
teristics. In this paper, we study pairings on elliptic curves over exten-
sion fields from the point of view of accelerating the Miller’s algorithm
to present further advantage of pairing-friendly curves over extension
fields, not relying on the much faster field arithmetic. We propose new
pairings on elliptic curves over extension fields can make better use of the
multi-pairing technique for the efficient implementation. By using some
implementation skills, our new pairings could be implemented much more
efficiently than the optimal ate pairing and the optimal twisted ate pair-
ing on elliptic curves over extension fields. At last, we use the similar
method to give more efficient pairings on Estibals’s supersingular curves
over composite extension fields in parallel implementation.

Keywords: pairing, elliptic curve over extension field, multi-pairing
technique

1 Introduction

Elliptic curve cryptography (ECC) has the shorter key length requirement in
comparison with other public-key cryptosystems such as RSA. This means faster
implementation as well as more efficient use of power, bandwidth and storage.
In particular, much research has been conducted on fast algorithms and imple-
mentation techniques of elliptic curve arithmetic over various finite fields. Up to
now, three kinds of finite fields are widely used for ECC, i.e. prime field, binary
field and optimal extension field. Binary fields F(2m) are especially attractive for
hardware circuit design, but does not offer the same computational advantages in
a software implementation. Similarly, prime fields F(p) also have computational
difficulties on standard computers. Optimal extension fields F(pm) introduced
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in [1, 2], offer considerable computational advantages in software by selecting p
and m specifically to match the underlying hardware used to perform the arith-
metic. Besides, efficient methods have been devised in [27, 3] for speeding up
field arithmetic for elliptic curves over general extension fields.

In recent years, there has been much interest in cryptographic schemes based
on bilinear pairings on elliptic curves. So efficient implementation of pairings is
of great importance. Miller [29] proposed the first effective algorithm named
Miller’s algorithm to compute Weil pairing and Tate pairing. As the important
breakthroughs, there are many optimizations and adaptations of these pairings
which offer implementation improvements, such as speeding up each Miller’s
iteration and the final exponentiation of the Tate pairing, and developing many
truncated loop variant pairings: Eta pairing [5], ate pairing and twisted ate
pairing [22], R-ate pairing [26], and optimal pairing [33]. Recently, pairing lattices
[21] were proposed as the generalization contained all former pairings.

On the other side, there is much research on the generation of suitable elliptic
curves for pairings, namely pairing-friendly curves, which contain the large prime
subgroup and the small embedding degree. Please refer to the in-depth overview
[12] for details. Whereas strong elliptic curves used in ECC can be generated
randomly, the pairing-friendly curves are rare and require specific constructions.
All the time, pairing-friendly curves are chosen among ordinary curves over prime
fields and supersingular curves over extension fields with the characteristic 2
and 3. In the latter case, pairings are suitable for hardware implementation
in lightweight cryptosystems. For higher security, pairings on ordinary pairing-
friendly curves are preferred in practice.

In implementation, there are always some strong requests to use curves de-
fined over certain extension fields, such as the extension fields with small charac-
teristics, and the optimal extension fields which possess the fast field multiplica-
tion and inversion. So there are theoretical advantages to using pairing-friendly
elliptic curves over carefully chosen finite fields. Recently, Hitt [23] and Benger et
al. [6] outlined possible security concerns for using pairing-friendly elliptic curves
defined over extension fields, and Benger et al. [6] gave a method for selecting
curves with the highest possible security against ECDLP and DLP solving at-
tacks, given currently known methods. To the best of our knowledge, there is
still no known example of an ordinary pairing-friendly curve defined over the
extension field Fpm or F2m . Hence, we present results which may motivate fur-
ther research into the generation of pairing-friendly elliptic curves defined over
extension fields.

In this paper, our main aim is to present further evidence of an advantage of
using pairing-friendly elliptic curves defined over extension fields by introducing a
pairing which can be computed using an accelerated version of Miller’s algorithm,
using the multi-pairing technique. We develop new pairings on an elliptic curve
over an extension field which could be computed more efficiently not relying on
the fast field arithmetic of the extension field. Concretely, for an ordinary curve E
over an extension field Fpm , we modify the ate pairing and the twisted ate pairing
to define new pairings as the products of several rational functions with the same
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Miller loop on the curves {E(pi)}0≤i<m defined by raising the coefficients of the
equations for E to the pi-power. These new pairings can be implemented with
the multi-pairing technique which was proposed in [31, 19] and first applied to
a single pairing computation by Sakemi et al. [30]. Then we give the optimal
versions of our new pairings according to the theory of pairing lattice [21], which
can make better use of the multi-pairing technique for efficient implementation.
Specially, our method can explain Sakemi’s acceleration [30] of the twisted ate
pairing on the BN curves and extend it further. Given a theoretical comparison
with some implementation skills, our new optimal pairings could have more
efficient performance than the optimal ate pairing and the optimal twisted ate
pairing. Specially in many protocols, with the fixed argument optimization, the
performance of our new optimal pairing could offer a speed up of between 30%
and 43% faster than the performance of the optimal ate pairing when m is
greater than 6. Finally, we develop similar pairings having much faster parallel
implementation on supersingular curves over composite extension fields, and
then construct concrete pairings on Estibals’s supersingular curves E1(F35×97)
and E2(F317×67) respectively.

The organization is given as: Section 2 recalls basics of pairing on elliptic
curve and multi-pairing technique, and lists known conditions on suitably chosen
extension fields for pairing-based cryptography; in Section 3 we propose new
faster pairings on ordinary curves over extension fields; then in Section 4 we
analyze the theoretical performance of our new optimal pairings compared to
the optimal ate pairing and optimal twisted ate pairing; in Section 5 we extend
the similar method to supersingular curves over composite extension fields.

2 Background

2.1 Bilinear Pairing

Let E be an elliptic curve defined over a finite field Fq where q is a prime power,
and the neutral element of which is denoted by O. Let r ≥ 5 be a prime factor of
|E(Fq)| and let k > 1 be the smallest integer such that r|qk − 1 which is named
the embedding degree with respect to r. Here we define G1 = E[r]∩Ker(πq − 1)
and G2 = E[r] ∩ Ker(πq − q) as the two eigenspaces of the q-power Frobenius
endomorphism πq on E. Let µr ⊂ F∗qk denote the group of r-th roots of unity. For

s ∈ Z and R ∈ E[r], let fs,R be a Fqk -rational function with divisor div(fs,R) =
s(R)− ([s]R)− (s− 1)(O).

Tate pairing and its variants. The reduced Tate pairing [4] is given by

tr : G1 ×G2 → µr, (P,Q) 7→ fr,P (Q)(q
k−1)/r.

Let s be an integer such that s ≡ q (mod r). When r - c ≡
∑k−1
j=0 s

k−1−jqj (mod r),
the modified ate pairing [22] is given by

as : G2 ×G1 → µr, (Q,P ) 7→ fs,Q(P )(q
k−1)/r.
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Assume that E/Fq admits a degree-d twist. Let e = k/ gcd(k, d) and s′ ∈ Z
satisfy that s′ ≡ qe (mod r). The modified twisted ate pairing [22] is given by

atwists′ : G1 ×G2 → µr, (P,Q) 7→ fs′,P (Q)(q
k−1)/r.

Then as and atwists′ are non-degenerate if and only if r - L = (sk − 1)/r.
For the convenience of the construction of new pairings, we use the variants

a(Q,P ) = fq,Q(P )(q
k−1)/r and atwist(P,Q) = fqe,P (Q)(q

k−1)/r instead of the
above ate pairing and twisted ate pairing in the rest of this paper.

Miller’s algorithm. Let fi,P be the rational function with divisor div(fi,P ) =
i(P )− ([i]P )− (i− 1)(O), and lR,S is the line passing through points R,S and
vR+S is the vertical line passing through point R + S with divisor div(lR,S) =
(R) + (S) + (−(R+ S))− 3(O) and div(vR+S) = (R+ S) + (−(R+ S))− 2(O).
Using the fact that fi1+i2,P = fi1,P fi2,P l[i1]P,[i2]P /v[i1+i2]P , Miller’s algorithm
[29] calculates the evaluation of fi,P (Q) recursively. In §2.2 Algorithm 1 is just
the classical Miller’s algorithm when assuming N = 1.

Optimal pairing. In [33], Vercauteren proposed an important conception of a
pairing having the “optimal” loop length. Let e : G1 × G2 → µr be a non-
degenerate pairing with |G1| = |G2| = r, then e is called an optimal pairing
if it can be computed in 1

ϕ(k) log2 r + ε(k) basic Miller iterations, with ε(k) ≤
log2 k. Furthermore, Vercauteren conjectured that any non-degenerate pairing on
an elliptic curve without efficiently computable endomorphisms different from
powers of Frobenius, requires at least O(log2(r)/ϕ(k)) basic Miller iterations,
where the O-constant only depends on k.

Pairing lattices. Hess [21] generalized the conception of the optimal pairing
to provide pairing lattices as a convenient mathematical framework to create
pairings with optimal degrees of the divisors of pairing functions. Let r ∈ Z be an
integer, and let s be a primitive n-th root of unity modulo ri for n ≥ 2 and i ≥ 1.
Define the Z-module I(i) = {h(t) + (tn − 1)Z[t]|h(s) ≡ 0 (mod ri)}, and ||h||1 =∑m
i=0 |hi|. For h(t) =

∑m
i=0 hit

i ∈ I(1) and R ∈ E(Fqk)[r], let fs,h,R be the Fqk -
rational function with divisor div(fs,h,R) =

∑m
i=0 hi

(
([si]R) − (O)

)
. It is easy

to deduce that div(fs,ht,R) = div(fs,h,[s]R) and div(fs,h+g,R) = div(fs,h,Rfs,g,R)

for g(t) ∈ I(1).
The evaluation of fs,h,R(P ) can be calculated analogously to the method for

the optimal ate pairing in [33] (also cf. [34]). Following this analysis, we may
assume that the length of the Miller loop for calculating fs,h,R is approximated
by log2 ||h||1 + ε, where ε ≤ log2 n.

Theorem 1. ([21], Theorem 6) Assume that r is a prime, and s is a primitive
n-th root of unity modulo r2. Let W denote the multiplicative group of functions
G1 × G2 → µr, and W bilin denote the subgroup of bilinear functions. Let as :
I(1) →W,h 7→ as,h be a map with the following properties:

1. as,g+h = as,gas,h for all g, h ∈ I(1),
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2. as,hx = ass,h for all h ∈ I(1) with as,h ∈W bilin,

3. as,r ∈W bilin \ {1} and as,x−s = 1.

Then Im(as) = W bilin, ker(as) = I(2). More precisely, as,h = a
h(s)/r
s,r for all

h ∈ I(1). There exists an efficiently computable h ∈ I(1) with ‖h‖1 = O(r1/ϕ(n)).
Any h ∈ I(1) with as,h 6= 1 satisfies ‖h‖1 ≥ r1/ϕ(n).

Especially, the optimal ate pairing and the optimal twisted ate pairing are
well-defined and probably constructed in the ate pairing lattice and the twisted
ate pairing lattice in [21] with the optimal loop length log2(r)/ϕ(k) + ε1 and
log2(r)/ϕ(d) + ε2.

2.2 Multi-Pairing Technique

In many protocols the evaluation of the products of the form
∏N
i=1 tr(Pi, Qi)

is required. A naive way to calculate it is to evaluate each tr(Pi, Qi) indepen-
dently, and then multiply the results. Since all tr(Pi, Qi) share some same Miller
operations, Scott [31] and Granger and Smart [19] showed the products can be
calculated in a single Miller algorithm rather than the naive way. The multi-
Miller algorithm only needs a single squaring in the extension field per doubling,
instead of N squarings in the naive method, and also combines the final pow-
erings required in each pairing evaluation. As far as we know, this method is
usually named multi-pairing algorithm given in Algorithm 1.

Algorithm 1 Miller’s Algorithm for Multi-pairing

Input: s =
∑L

j=0 sj2
j ∈ N (2-adic), N ∈ N, {P1, P2, · · · , PN}, {Q1, Q2, · · · , QN}

Output:
∏N

i=1 fs,Pi(Qi), {[s]P1, [s]P2, · · · , [s]PN}
1: f ← 1
2: for i from N downto 1 do
3: Ti ← Pi

4: for j from L− 1 downto 0 do
5: f ← f2

6: for i from N downto 1 do
7: f ← f · lTi,Ti(Q)/v[2]Ti

(Qi); Ti ← [2]Ti

8: if sj = 1 then
9: for i from N downto 1 do
10: f ← f · lTi,Pi(Qi)/vTi+Pi(Qi); Ti ← Ti + Pi

11: return f.

However, not only can the multi-pairing technique be used to calculate the
products of pairings, but it also can be applied to calculate a single pairing
defined as the products of several rational functions with the same Miller loop. In
[30], Sakemi et al. utilized the multi-pairing technique to calculate the improved
twisted ate pairing on the BN curves with the sophisticated reduction. We extend
this idea to the implementation of pairings considered in this paper.
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2.3 Suitable Extension Field for Pairing-Based Cryptography

In the rest of this paper we always assume that there is a pairing-friendly curve
E defined over an extension field Fq with q = pm. Let r divide |E(Fq)| but do
not divide any other |E(Fpi)| for 1 ≤ i < m. We list some well-known results
of the security extension fields for ECC and Pairing-Based Cryptography, and
show our suitable choice of the extension fields for the comparison in Section 4.

Attack on ECDLP over extension field. Weil descent proposed by Frey [13]
aims at transferring the DLP from E(Fqm) to the Jacobian of a curve C over
Fq and then computes the logarithm on this Jacobian by using index calculus.
Many researches [15, 17, 14, 20, 28] have studied on the scope of this technique
on the vulnerable curves over binary fields. Diem [9] extended this attack in odd
characteristic.

Later, Gaudry [16] developed decomposition-based index calculus, which ap-
plies to all (hyper-)elliptic curves defined over small degree extension field with
the running time O(q2−2/m) for m ≥ 3. Diem [10] proved that Gaudry’s algo-
rithm has subexponential running time when the field order pm increases in such
a way that m2 is of order log2 p. Later, Joux and Vitse [24] improved this index
calculus, when m > 5 and log2 p ≤ O(m3).

But, both Weil descent and decomposition-based index calculus are often
just a little more efficient than generic attacks, and ineffective for solving the
ECDLP in practice.

The static Diffie-Hellman problem The Static Diffie-Hellman problem (Static
DHP) on an elliptic curve consists of: for a secret integer d, given two points
P, [d]P ∈ E(Fq) and an oracle Q 7→ [d]Q, compute [d]R where R is randomly
chosen point. Recently Granger [18] discovered the best known algorithm that
solves the Static DHP problem on elliptic curves defined over a finite field of

composite extension degree Fqn by making O(q1−
1

n+1 ) Static DHP oracle queries

and in heuristic time O(q1−
1

n+1 ). Estibals [11] showed that a simple but efficient
protection against this attack is revoking a key after a certain amount of use.

Minimal embedding field. The embedding degree k should be small enough that
the pairing is efficiently computable, but large enough that the DLP in F∗qk is

hard. However, Hitt [23] showed that the minimal finite field ensures the ECDLP
of E(Fq)[r] secure is not necessarily Fqk , but rather is Fpordr(p) = Fqordr(p)/m . Then
Fqordr(p)/m is named the minimal embedding field and coincides with the tradi-
tional assumptions when m = 1. Later, Benger et al. [6] gave explicit conditions
on q, k, and r, which (when satisfied) imply that the minimal embedding field
of E with respect to r is Fqk .

Theorem 2. ([6], Corollary 2.10) Let A be an abelian variety over Fq, where
q = pm with p prime. Let r 6= p be a prime dividing |A(Fq)|, and suppose A has
embedding degree k with respect to r. Assume that r - km. Write m = αβ, where
every prime dividing α also divides k and gcd(k, β) = 1. (This factorization is
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unique.) Denote by e the smallest prime factor of β. If q, k, and r satisfy any
of the following conditions:

1. m = α (and β = 1);
2. β is prime and r > Φkα(p);
3. r > pkm/e;
4. 4|m or 2|k and r > pkm/2e + 1.

Then the minimal embedding field of A with respect to r is Fpkm .

Hence, in this paper we prefer to choose a large prime p and an integer m ≥ 5
to prevent the known attacks in practice. If there exist algorithms to generate
pairing-friendly curves over Fpm defined in [12], we may restrict m, p, k and r to
satisfy one of the conditions in Theorem 2. For the comparison in Section 4, we
use even embedding degrees of the form k = 2i3j and examine examples using:
m = 7, 11 (m > φ(k)), such that condition (2) of Theorem 2 is satisfied; and,
m = 8, 9, such that condition (1) of Theorem 2 is satisfied.

3 New Pairings on Elliptic Curve over Extension Field

In this section we propose new pairings on an elliptic curve E over an extension
field Fq which make better use of the multi-pairing technique to speed up their

implementation. We first transform the ate pairing a(Q,P ) = fq,Q(P )(q
k−1)/r

and the twisted ate pairing atwist(P,Q) = fqe,P (Q)(q
k−1)/r as follows.

Theorem 3. Let E be an ordinary elliptic curve defined over Fq with q = pm.
Let r be a prime such that r divides |E(Fq)| and gcd(r, p) = 1. Let k be the

minimal embedding degree with respect to r. Let E(pi) be denoted the curve defined
by raising the coefficients of the equation for E to the pi-power for 0 ≤ i < m.
Let πpi and π̂pi be the pi-power Frobenius isogeny and its dual isogeny from every

E(pj) to E(pj+i). For P ∈ G1 and Q ∈ G2, then

ā(Q,P ) =

(m−1∏
i=0

fp,π̂pi (Q)

(
πpm−i(P )

))(pmk−1)/r

defines a pairing.
Assume that E/Fq admits a degree-d twist E′/Fqe with e = k/ gcd(k, d) and

d ≥ 2. Let ψ be the associated twist isomorphism ψ : E → E′. Then

â(Q,P ) =

(m−1∏
i=0

fp,π̂pi◦ψ(Q)

(
πpmk−i ◦ ψ(P )

))(pmk−1)/r

and

ātwist(P,Q) =

(m−1∏
i=0

e−1∏
j=0

fp,π̂pi ([p
mj ]P )

(
πpmk−i(Qe−j−1)

))(pmk−1)/r

define pairings, where Qj = πpmj (Q) for 0 ≤ j ≤ e− 1.
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Proof. Since [pi] = πpi ◦ π̂pi with πpi : E(pm−i) → E for some i, it follows that
for R ∈ E(Fpk)[r], π∗pidiv(fp,[pi]R) = π∗pi

(
p([pi]R) − ([pi+1]R) − (p − 1)(O)

)
=

pi
(
p(π̂pi(R))−(π̂pi([p]R))−(p−1)(O)

)
= div(fp

i

p,π̂pi (R)), where π∗pi is the pullback

of πpi . Thus fp,[pi]R◦πpi = fp
i

p,π̂pi (R) ∈ Fqk(E(pm−i)). If R = Q, then fp,[pi]Q(P ) =

fp,π̂pi (Q)(πpm−i(P ))p
i

; ifR = P , then fp,[pi]P (Q) = fp,π̂pi (P )(πpmk−i(Q))p
i

. When

E admits a twist of degree d, if R = Q′ = ψ(Q) ∈ E′(Fqe)[r] and P ′ = ψ(P ) ∈
E′(Fqk)[r], then fp,[pi]Q′(P

′) = fp,π̂pi (Q
′)(πpmk−i(P ′))p

i

.

Since gcd(p, r) = 1, there exits an integer M such that Mpm−1 ≡ 1 (mod r).
Note that a power of a nondegenerate pairing is also a nondegenerate pairing
when the power and the pairing order are coprime. Thus we can do the following
reduction for a fixed power M of the ate pairing a(Q,P ).

a(Q,P )M = fq,Q(P )M(qk−1)/r =

m−1∏
i=0

fp,[pi]Q(P )p
m−i−1M(qk−1)/r

=

m−1∏
i=0

fp,π̂pi (Q)(πpm−i(P ))Mpm−1(qk−1)/r =

m−1∏
i=0

fp,π̂pi (Q)(πpm−i(P ))(q
k−1)/r.

When E admits a twist of degree d, then a(Q′, P ′) = fq,Q′(P
′)(q

k−1)/r also
defines a pairing from Theorem 1 in [7], where P ′ = ψ(P ) ∈ E′(Fqk)[r] and
Q′ = ψ(Q) ∈ E′(Fqe)[r]. So a similar reduction can be done for a(Q′, P ′)M as

a(Q′, P ′)M = fq,Q′(P
′)M(qk−1)/r =

m−1∏
i=0

fp,[pi]Q′(P
′)p

m−i−1M(qk−1)/r

=

m−1∏
i=0

fp,π̂pi (Q
′)(πpmk−i(P ′))Mpm−1(qk−1)/r =

m−1∏
i=0

fp,π̂pi (Q
′)(πpmk−i(P ′))(q

k−1)/r.

For the twisted ate pairing, since fp,π̂pi (P ) ∈ Fq(E(pm−i)), let Qj = πqj (Q) for

0 ≤ j ≤ e − 1, it follows that fp,π̂pi (P )(πpmk−i(Q))q
j

= fp,π̂pi (P )(πpmk−i(Qj)).

Thus we have that

atwist(P,Q)M = fqe,P (Q)M(qk−1)/r =

e−1∏
j=0

fq,[qi]P (Q)q
e−i−1M(qk−1)/r

=

e−1∏
j=0

m−1∏
i=0

fp,[pmj+i]P (Q)q
e−i−1pm−i−1M(qk−1)/r

=

e−1∏
j=0

m−1∏
i=0

fp,[pmj+i]P (Qe−j−1)p
m−i−1M(qk−1)/r

=

e−1∏
j=0

m−1∏
i=0

fp,π̂pi ([p
mj ]P )(πpmk−i(Qe−j−1))(q

k−1)/r.
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Write ā(Q,P ) = a(Q,P )M , â(Q,P ) = a(Q′, P ′)M = a(ψ(Q), ψ(P ))M and
ātwist(P,Q) = atwist(P,Q)M . Thus they define new pairings. ut

Theorem 3 shows that the ate pairing and the twisted ate pairing on the
curve E over Fpm can be modified as the products of several rational functions

with the same Miller loop on the curves {E(pi)}0≤i<m. Next we give the optimal
versions of the new pairings in Theorem 3 according to the theory of pairing
lattices.

Theorem 4. Use the notations in Theorem 3. Let s be a primitive (mk)-th root
of unity modulo r2 such that s ≡ q (mod r). Let h ∈ Z[t] satisfy h(s) ≡ 0 (mod r).
For P ∈ G1 and Q ∈ G2, following the respective assumptions for ā, â, ātwist of
Theorem 3, then

ās,h(Q,P ) =

(m−1∏
i=0

fs,h,π̂pi (Q)

(
πpm−i(P )

))(pmk−1)/r

,

âs,h(Q,P ) =

(m−1∏
i=0

fs,h,π̂pi◦ψ(Q)

(
πpmk−i ◦ ψ(P )

))(pmk−1)/r

,

ātwists,h (P,Q) =

(m−1∏
i=0

e−1∏
j=0

fs,h,π̂pi ([p
mj ]P )

(
πpmk−i(Qe−j−1)

))(pmk−1)/r

define pairings, which are nondegenerate if and only if h(s) 6≡ 0 (mod r2).
There exists an efficiently computable h ∈ I(1) with ‖h‖1 = O(r1/ϕ(mk)). Any

h ∈ I(1) with as,h 6= 1 satisfies ‖h‖1 ≥ r1/ϕ(mk).

Proof. Since fs,g+h,R = fs,g,Rfs,h,R and fs,hx,R = fs,h,[s]R for h, g ∈ I(1), it
follows that ās,g+h = ās,gās,h, âs,g+h = âs,gâs,h, ātwists,g+h = ātwists,g ātwists,h , and

ās,hx = (ās,h)s, âs,hx = (âs,h)s, ātwists,hx = (ātwists,h )s for the pairings ās,h, âs,h and

ātwists,h . Let t
(i)
r denote the Tate pairing on E(pi)[r]. Since fr,R = fs,r,R, we have

ās,r(Q,P ) =
(m−1∏
i=0

fr,π̂pi (Q)(πpm−i(P ))
)(pmk−1)/r

=

m−1∏
i=0

t(i)r (π̂pi(Q), πpm−i(P )).

Write ti(Q,P ) = t
(i)
r (π̂pi(Q), πpm−i(P )), then each ti(Q,P ) is a pairing on E[r].

As with the proof of Theorem 3, we have fr,[pi]Q(P ) = fr,π̂pi (Q)(πpm−i(P ))p
i

, and

furthermore t([pi]Q,P ) = ti(Q,P )p
i

. Thus ās,r(Q,P ) = tr(Q,P )m is a pairing
on E[r].

Let c ∈ Z satisfy s = p + cr and let c0 ∈ Z satisfy pmk ≡ 1 + c0r (mod r2),
then smk = (p + cr)mk ≡ 1 + c0r + mkpmk−1cr ≡ 1 (mod r2). Thus c0 ≡
−mkpmk−1c (mod r). We know that a(Q,P )kp

m(k−1)

= tr(Q,P )c0 in [22]. From

the proof Theorem 3, we have ā(Q,P )p
m−1

= a(Q,P ) = tr(Q,P )−mp
m−1c. We

conclude that ās,x−s(Q,P )−1 = ās,s−x(Q,P ) = ā(Q,P )ās,r(Q,P )c = 1.
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Similarly, it can be demonstrated that âs,x−s(P,Q) = 1, ātwists,x−s(P,Q) = 1,

and âs,r(Q,P ) = t(Q′, P ′)m, ātwists,r (P,Q) = t(P,Q)me are pairings.
From Theorem 1, we conclude that for every h satisfying the conditions, ās,h,

âs,r, and ātwists,h are nondegenerate if and only if h(s) 6≡ 0 (mod r2). ut

From Theorem 4, we may construct an optimal h satisfying the conditions
of Theorem 4 and ‖h‖1 = O(r1/ϕ(mk)) so that each pairing ās,h, âs,h and ātwists,h

has the optimal multi-Miller loop length log2(r)/ϕ(mk) + ε, which is smaller
than the traditional optimal loop length. We name these pairings the optimal
ās,h, âs,h and ātwists,h . However, the implementations of these pairings involve the
calculations of π̂pi(R) and πpj (R′) for some R and R′. In practice, the imple-
mentation of the Frobenius power costs little, but the implementation of the
dual Frobenius isogeny (also called Verschiebung) might be costly. We introduce
skills to perform this costly calculation in Section 4.

Explanation and extension of Sakemi’s method. In [30], Sakemi et al. proposed
a variant of the twisted ate pairing on the BN curves with e = 2 (and m = 1 in
the setting of this paper), whose pairing function is given as

f̂χ,P (Q) =
(
f2χ,P (πp(Q))f2χ,[p]P (Q)

)p10+1(
l[2χ]P,−P (πp(Q))l[2χp]P,[−p]P (Q)

)p10
·l[(2χ−1)p10]P,[2χ]P (πp(Q))l[(2χ−1)p11]P,[2χp]P (Q).

Using the method of this paper and the property of the twisted ate pairing [22],

we conclude that fT,[pje]P (Q) = fT,P (Q)p
je

for any T ∈ Z and j ≥ 1, and then

choose ĥ(t) = (2χ− 1)t10 − t+ 2χ to transform the pairing function of ātwist
s,ĥ

in

Theorem 4 under the final exponentiation (using subfield elimination) as follows.

fs,ĥ,P (πp(Q))fs,ĥ,[p]P (Q)

≡
∏
i=0,1

f2χ−1,[p10+i]P (πp1−i(Q))f2χ,[pi]P (πp1−i(Q))l[(2χ−1)p10+i]P,[2χpi]P (πp1−i(Q))

≡
∏
i=0,1

(
f2χ,[pi]P (πp1−i(Q))f[2χ]P,−P (πp1−i(Q))

)p10 · f2χ,[pi]P (πp1−i(Q))

·l[(2χ−1)p10+i]P,[2χpi]P (πp1−i(Q))

= f̂χ,P (Q).

As a further extension, we utilize h(t) = t3 − t2 + t+ 6χ+ 2, originally used for
the optimal ate pairing on the BN curves in [33], to obtain another variant as

fs,h,P (πp(Q))fs,h,[p]P (Q)

≡
∏
i=0,1

f6χ+2,[pi]P (πp1−i(Q))
(
l[p3+i]P,[−p2+i]P l[p3+i−p2+i]P,[p1+i]P

)
(πp1−i(Q)).

The linear part of the above pairing function of ātwists,h (P,Q) is calculated effi-
ciently by using the skew Frobenius map π̃p2 as in [30] and the new congruence
(1−2χ)p2−p+4χ−1 ≡ 0, and the hard part can be carried out by [p2]P = π̃p2(P ),
[p4]P = π̃2

p2(P ), [p]P = [4χ− 1]P − π̃p2([(2χ− 1)]P ), [p3]P = π̃p2([p]P ).
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4 Comparison

In this section we make a theoretical comparison between the optimal pairings
in the pairing lattices in Theorem 4 and the optimal ate pairing and optimal
twisted ate pairing, which depends on the assumptions of the existence of the
optimal pairings for all pairing lattices and the existence of the pairing-friendly
curves over extension fields.

Following the analysis in [19], we assume that Fpmk is a pairing-friendly field
with pm ≡ 1 (mod 12) and k = 2i3j , and quantify the cost of a multiplication
in Fpmk as 3i5j multiplications in Fpm (cf. [25]). In implementation, the loop
parameter usually has a negligible Hamming weight so that few addition steps
are encountered throughout the loop. Thus we only compare the operation counts
for the doubling steps in Miller’s algorithm. We list the up-to-date known results
[7] of operation counts for the doubling step in Table 1.

Let m1, me, mk denote multiplication in Fq, Fqe , Fqk ; let s1, se, sk denote
squaring in Fq, Fqe , Fqk . The cost part 1 is taken to update the point used for
constructing the new rational function; the cost part 2 is taken to evaluate the
new rational function at the right argument; then the cost part 3 is taken to
update the final rational function.

Curve & twist degree Cost part 1 Cost part 2 Cost part 3

ate
a(Q′, P ′)

y2 = x3 + ax, d = 2, 4
y2 = x3 + b, d = 2, 6

2me + 8se + 1da

2me + 7se + 1db
2( k

d
)m1 1mk + 1sk

twisted ate
atwist(P,Q)

y2 = x3 + ax, d = 2, 4
y2 = x3 + b, d = 2, 6

2m1 + 8s1 + 1da

2m1 + 7s1 + 1db
2( k

d
)m1 1mk + 1sk

Table 1. Operation counts for single doubling step for the ate pairing and the twisted
ate pairing.

Since the multi-pairing technique can save m − 1 squarings (using 2-basis)
in each iteration when computing the products of m pairings (or functions with
the same Miller loop), it follows that it is less efficient for the ate-like pairing
computation compared with the twisted ate-like case. However, when the high-
degree twist technique in [7] is available, the ate-like pairing computation can
be still more efficient with the multi-pairing technique. Thus we assume that
E admits a high-degree twist, and both the optimal ate pairing and twisted
ate pairing have the loop length dlog2(r)/ϕ(k)e, and both the optimal âs,h and
ātwists,h have the loop length dlog2(r)/ϕ(mk)e. We show that the optimal âs,h and

ātwists,h could be implemented more efficient than the optimal ate pairing and the
optimal twisted ate pairing when choosing suitable values of m and k in §2.3.

Precomputation vs. storage. The calculation of pairings in Theorem 4 involves
the calculation of π̂pi(R) for R ∈ E(Fpmk) and 1 ≤ i < m. As far as we know,
there is no efficient method to calculate the dual Frobenius isogeny on the general
curves. Here we rewrite π̂pi(R) = πpmk−i([pi]R) by using π̂pi ◦ πpi = [pi] and
πpmk(R) = R. Thus the costly part of this calculation is the multiplication by
pi. We introduce two skills to deal with it. One named the precomputation skill
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(P) utilizes the fixed argument optimization first pointed out by Scott [31] and
recently analyzed in more detail (cf. [8, 32]); the other named the storage skill
(S) is proposed in this paper for computing our new pairings.

The first skill can be applied to many protocols in which the fixed argu-
ment optimization is feasible. With the fixed argument optimization, we can
precompute all calculations depending solely on the lift argument R including
the calculations of all {π̂pi(R)}1≤i<m. Hence, in each Miller iteration, the op-
erations for the doubling step only involve the cost part 2 and the cost part 3
in Table 1. Besides, in this situation, there is no advantage of using a pairing-
friendly curve with the maximal twist, and calculating a pairing in the twisted
ate pairing family.

When the fixed argument optimization is infeasible, the precomputation is
useless. But we could still store these calculations depending solely on the lift
argument in each pairing computation, which are useful for the calculations of
π̂pi(R), and then we do the other calculations depending on the right argument.
Taking the pairing ā(Q,P ) in Theorem 3 for example, we assume that π̂pi(Q) is
given for some i ∈ [1,m− 2]. Then the calculation of the coefficients of fp,π̂pi (Q)

involves [p]π̂pi(Q) = πpmk−i([pi+1]Q) = πp(π̂pi+1(Q)). Thus we can compute
π̂pi+1(Q) easily by using πpmk−1([p]π̂pi(Q)) = π̂pi+1(Q), which is essential to the
construction of fp,π̂pi+1 (Q). This process only increases a few costs for imple-

menting the Frobenius power, and needs the same additional memory compared
with the precomputation skill which may be feasible in modern devices. Hence,
we may omit the calculations of π̂pi(R) when using our storage skill, and then
give the comparisons below.

Optimal ate pairing vs. optimal âs,h. In Table 2 we make a theoretical imple-
mentation comparison between the optimal ate pairing and the optimal âs,h for
some suitable embedding degrees and extension degrees, when ignoring the final
exponentiation and using the precomputation skill or the storage skill. Table 2
shows that the implementation of the optimal âs,h improves the runtime cost of
the Miller iterations by between 30% and 43% when using the precomputation
skill, and between 14% and 34% when using the storage skill.

Skill
k = 8
d = 4

k = 12
d = 6

k = 16
d = 4

k = 18
d = 6

k = 24
d = 6

k = 32
d = 4

k = 36
d = 6

m = 7 S 1 : 0.860 1 : 0.795 — 1 : 0.794 — — —
P 1 : 0.701 1 : 0.688 — 1 : 0.686 — — —

m = 8 S 1 : 0.732 1 : 0.675 1 : 0.727 1 : 0.673 1 : 0.671 1 : 0.725 1 : 0.670
P 1 : 0.593 1 : 0.581 1 : 0.583 1 : 0.579 1 : 0.575 1 : 0.576 1 : 0.574

m = 9 S — 1 : 0.669 — 1 : 0.668 1 : 0.666 — 1 : 0.665
P — 1 : 0.574 — 1 : 0.573 1 : 0.568 — 1 : 0.567

m = 11 S 1 : 0.793 1 : 0.728 1 : 0.789 1 : 0.727 1 : 0.724 — —
P 1 : 0.669 1 : 0.621 1 : 0.623 1 : 0.619 1 : 0.614 — —

Table 2. The proportion of the runtime cost of the Miller loop of the optimal ate
pairing to the optimal âs,h.
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Optimal twisted ate pairing vs. optimal ātwists,h . Since the fixed argument tech-
nique is mainly used for pairings of the ate family in practice, we only compare
the theoretical implementation of the optimal twisted ate pairing with the opti-
mal âtwists,h for some suitable embedding degrees and extension degrees, by using
the storage skill and ignoring the final exponentiation. Table 3 shows that the
implementation of the optimal ātwists,h improves the runtime cost of the Miller
iterations by between 26% and 47%.

Skill
k = 8
d = 4

k = 12
d = 6

k = 16
d = 4

k = 18
d = 6

k = 24
d = 6

k = 32
d = 4

k = 36
d = 6

m = 7 S 1 : 0.736 1 : 0.693 — 1 : 0.662 — — —

m = 8 S 1 : 0.628 1 : 0.590 1 : 0.564 1 : 0.564 1 : 0.544 1 : 0.533 1 : 0.532

m = 9 S — 1 : 0.587 — 1 : 0.562 1 : 0.543 — 1 : 0.531

m = 11 S 1 : 0.683 1 : 0.641 1 : 0.616 1 : 0.615 1 : 0.594 — —

Table 3. The proportion of the runtime cost of the Miller loop of the optimal twisted
ate pairing to the optimal ātwist

s,h .

5 Our Method for Supersingular Curve over Extension
Field

As the earliest pairing-friendly curves utilized in pairing-based cryptography,
supersingular curves have embedding degree k = 2, 3, 4 and 6. However, for
the recommended supersingular pairing-friendly curves with k = 4 and 6, there
are two obstacles to applying our method: (1) their defining fields F2n and F3n

usually have large prime extension degrees; (2) the main advantage of applying
multi-pairing technique, namely saving squarings (using 2-basis) or cubings (us-
ing 3-basis) in each iteration, might be worthless for these supersingular curves,
since squaring or cubing can be implemented very fast.

But recently, Estibals [11] first considered the Tate pairing computation for
supersingular curves over moderately-composite extension fields taking advan-
tage of a much easier tower field arithmetic. Our method can be applied to
Estibals’s curves over composite extension fields to define new pairings η̄s,h,
which can be implemented in an efficient and parallel way.

Theorem 5. Let E be a supersingular curve over a composite extension field
Fqm with the embedding degree k. Let r be a large integer dividing |E(Fqm)| and
let ψ be the distortion map. Let s be a primitive (mk)-th root of unity modulo
r2 such that s ≡ q (mod r). Let h(t) ∈ Z[t] such that h(s) ≡ 0 (mod r). For
P,Q ∈ E(Fqm)[r], then

η̄s,h(P,Q) =

(m−1∏
i=0

fs,h,P

(
ψ([q−i]Q)

)qi)(qmk−1)/r

.

defines a pairing, which is non-degenerate if and only if h(s) 6≡ 0 (mod r2).

Proof. Given in Appendix A. ut



14

Write fi(P,Q) = fs,h,P
(
ψ([q−i]Q)

)pi
, then η̄s,h(P,Q) =

∏m−1
i=0 fi(P,Q)(q

mk−1)/r.
When precomputing all [q−i]Q for 1 ≤ i ≤ m − 1, we could compute these
fi(P,Q) in a natural parallel and efficient way, since they share the common
pairing function fs,h,P whose coefficients could be computed and stored first.

5.1 Estibals’s Supersingular Curve over Composite Extension Field

There are several supersingular curves of characteristic 2 and 3 on fields with
composite extension degree large enough for the 128-bit or 192-bit security level
given in [11]. Here, we take two most important curves E1(F35×97) (128-bit secu-
rity level) and E2(F317×67) (192-bit security level) for example to construct the
corresponding η̄s,h.

– E1(F35×97) : y2 = x3 − x− 1, (q1 = 397,m1 = 5, k = 6)
r1 = 434A97AFECDEB84F16624099C436CA9DE0CE4526690A8F0B24
09B61DACB97A4411F3ED1CD3F39A6647D45 (338 bits)

– E2(F317×67) : y2 = x3 − x+ 1, (q2 = 367,m2 = 17, k = 6)
r2 = 4A40FE5A48A1956BEEEC98D0147445A190711D0FCA4FCD5A65
598194911D4D9F5D32156CAB3B4C9D53D02B3793E8AA2B1BAD8383
2815DABA55EE9A2CD28A38027D2EB2FD0B6E4BEFD03DA273CD
DDC19A1507E36281BC212F28F78EA379AEE4A3353C8348E13F5890D
AA8367040520FC04B2E073193BE13922CEA13F106C9D8A8FE546D2F
27FE2FBEE373F79B198FC7F1A3FB5594FE97B2D6EE6ADA84E6D
726A709370D86FEEFAFD20300BFBD72B4F162A26C70F9F1927AB6
6111B1FD5E7C1197AAEDD81776BFE079449A11A1AC849 (1650 bits)

Using the method of [21] (or [33]) to construct the ϕ(mk) dimensional lattice
L = I(1) = {h(t)|h(s) ≡ 0 (mod r)}, we find a approximative “short vector” of
the polynomial form h1(t) = t5 + c1t

2 + 1 with c1 = 349 for E1(F35×97); and,
h2(t) = t17 + c2t

8 + 1 with c2 = 334 for E2(F317×67). Form the theory of pairing
lattice, it follows that

fs1,h1,P1
= fc1,P1

l[qm1
1 ]P1,[−q

m1
1 −1]P1

l−P1,P1

v−P1

,

fs2,h2,P2 = fc2,P2

l[qm2
2 ]P2,[−q

m2
2 −1]P2

l−P2,P2

v−P2

,

where Pi ∈ Ei(Fqmi
i

)[ri] and si ≡ qi (mod ri) for i = 0, 1. We note that the

calculations of [qmi
i ]Pi and [−qmi

i − 1]Pi are very fast by using Frobenius map
πqmi

i
and the trace equation. Thus, assuming that mi multiprocessors (i = 1, 2)

perform in parallel, the Miller’s loop length of η̄si,hi
for Ei[ri] can reach an

small value log3(ci), although which is still a little worse than the theoretical
minimal length log3(r)/ϕ(mk), when using 3-basis in Miller algorithm. Further,
with Estibals’s compact hardware implementation of these fields arithmetic, we
believe that our pairing η̄s,h would be implemented at much higher speed in
parallel way.
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6 Conclusion

We have shown that pairing-friendly curves over extension fields could be more
suitable for the pairing implementation not relying on a fast field arithmetic of
certain extension field. When assuming there exists a pairing-friendly curve de-
fined over an extension field, we have proposed new pairings and pairing lattices
on this curve making better use of the multi-pairing technique to obtain a fast
implementation. By the theoretical analysis in an ideal model, the performance
of the optimal ones of our pairings could offer a speed up of between 30% and
43% with the fixed argument optimization, or by up to 47% with our new storage
skill, compared to the performance of the optimal ate pairing and the optimal
twisted ate pairing, when m is greater than 6. In addition, we have extended the
similar method to supersingular curves over composite extension fields to con-
struct more efficient pairings in parallel implementation. To sum up, our work
has presented further important evidence of the advantage of pairing-friendly
curves over extension fields.

In future, there are needs for careful study of the generation of pairing-
friendly curves over suitably chosen extension fields, and further study of the
parallel implementation of η̄s,h on Estibals’s supersingular curves E1(F35×97)
and E2(F317×67).
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A Proof of Theorem 5

We do the similar reduction as Theorem 3 for the modified Eta pairing to obtain
that

η(P,Q) = fqm,P
(
ψ(Q)

)(qmk−1)/r
=

(m−1∏
i=0

fq,[qi]P
(
ψ(Q)

)qm−i−1
)(qmk−1)/r

.

Since the multiplication by qi on the supersingular curve is inseparable, it follows

that [qi]∗div(fq,[qi]P ) = div(fq
2i

q,P ) and then fq,[qi]P (ψ(Q)) = fq,P (ψ([q−i]Q))q
2i

.
Thus we have

η(P,Q) =

(m−1∏
i=0

fq,P

(
ψ([q−i]Q)

)qi)qm−1(qmk−1)/r

.

Since gcd(q, r) = 1, we can omit the power qm−1 to obtain the new pairing

η̄(P,Q) =

(m−1∏
i=0

fq,P

(
ψ([q−i]Q)

)qi)(qmk−1)/r

.

Then, as with the proof of Theorem 4, we can construct η̄s,h as

η̄s,h(P,Q) =

(m−1∏
i=0

fs,h,P

(
ψ([q−i]Q)

)qi)(qmk−1)/r

.

and demonstrate it defines a pairing using Theorem 1 similarly (omitted here).


