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Abstract

We introduce the notion of rate-limited secure function evaluation (RL-SFE). Loosely
speaking, in an RL-SFE protocol participants can monitor and limit the number of distinct
inputs (i.e., rate) used by their counterparts in multiple executions of an SFE, in a private
and verifiable manner. The need for RL-SFE naturally arises in a variety of scenarios: e.g.,
it enables service providers to “meter” their customers’ usage without compromising their
privacy, or can be used to prevent oracle attacks against SFE constructions.

We consider three variants of RL-SFE providing different levels of security. As a stepping
stone, we also formalize the notion of commit-first SFE (CF-SFE) wherein parties are com-
mitted to their inputs before each SFE execution. We provide compilers for transforming any
CF-SFE protocol into each of the three RL-SFE variants. Our compilers are accompanied
with simulation-based proofs of security in the standard model and show a clear tradeoff
between the level of security offered and the overhead required. Moreover, motivated by
the fact that in many client-server applications clients do not keep state, we also describe a
general approach for transforming the resulting RL-SFE protocols into stateless ones.

As a case study, we take a closer look at the oblivious polynomial evaluation (OPE)
protocol of Hazay and Lindell, show that it is commit-first, and instantiate efficient rate-
limited variants of it.
Keywords: secure function evaluation; secure metering; oracle attacks.
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1 Introduction

Secure function evaluation (SFE) allows a set of mutually distrustful parties to securely compute
a function f of their private inputs. Roughly speaking, SFE protocols guarantee that the
function is computed correctly and that the parties will not learn any information from the
interaction, other than their output and what is inherently leaked from it. Seminal results
in SFE show that one can securely compute any functionality [Yao82, Yao86, GMW87, BG89,
CCD88]. There has been a large number of follow-up work improving the security, strengthening
adversarial models, and studying efficiency. Recent work on practical SFE has also led to
real-world deployments [BCD+09, BTW12], and the design and implementation of several SFE
frameworks [MNPS04, BLW08, DGKN09, HKS+10, HEKM11].

In practice, most applications of SFE considered in the literature need to accommodate
multiple executions of a protocol. Depending on the application, a subset of the participants may
use the same input in different executions. Consider a client that searches for multiple patterns
in a large text via a secure pattern matching protocol [HL08, HT10], searches several keywords
in a private database via an oblivious keyword search [OK04, FIPR05], or an individual who
needs to run a software diagnostic program, or an intrusion detection system (IDS) to analyze
data via an oblivious branching program (OBP) or an oblivious automaton evaluation (OAE)
protocol [IP07, TPKC07].

Invoking an SFE protocol multiple times raises important practical issues that are outside
the scope of standard SFE, and hence are not addressed by the existing solutions. We point out
two such issues below, and introduce rate-limited SFE as a means to address them. The reason
for the choice of name is that rate-limiting is commonly used in network and web applications
to refer to restrictions put on clients’ usage (on a per user, or a per IP address basis). In this
work we consider similar restrictions on a user’s inputs to services that may be implemented
using SFE.

Secure metering of SFE. Service providers tend to charge their clients according to their
level of usage. Consider, for instance, a location-based service, where users are charged based on
the number of locations they use the service from. On the one hand, there must be a limit on
the number of locations queried by each user, in order to prevent users from learning too much
information and replicating the service; on the other hand, users might care about hiding how
many different locations they have accessed (in order to hide their speed).

Similar rate-limited settings include: A database owner charging clients based on the number
of distinct search queries, and an IDS provider charging customers based on the number of
suspicious files sent for vulnerability analysis. Service providers would be more willing to adopt
SFE protocols if it is possible to efficiently enforce such a metering mechanism. The challenge is
to do so without compromising the client’s privacy, or allowing the server or the client to cheat
the metering system.

Oracle attacks. Consider multiple executions of a two-party SFE protocol (such as those
mentioned above), where the first party’s input stays the same in different executions but the
second party’s input varies. A malicious second party who “adaptively" uses different inputs in
each execution, can gradually learn significant information about the first party’s input, and, in
the worst case, fully recover it. For instance, consider an oblivious polynomial evaluation (OPE)
protocol (e.g., used in oblivious keyword search) wherein the server holds a polynomial p while
the client holds a private point x and wants to learn p(x), but cannot learn more than that.
Evaluating the polynomial p on sufficiently many points allows a malicious client to interpolate
and recover p. A similar attack can be applied to OBP and OAE protocols to learn the private
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branching program or automaton which may embed propriety information. Learning attacks of
this sort are well-understood and have been previously identified as important threats in the
context of SFE; they are sometimes referred to as oracle attacks since the attacker has black-box
access to input/output values from multiple executions (e.g., see the discussion in [BFK+09]).

A naïve solution to the problems discussed above is to limit the total number of executions
of an SFE protocol, ignoring the actual input values. However, this approach does not provide
a satisfactory solution in most scenarios. For example, in case of secure metering, fixing an a
priori upper bound on the total number of executions would mean charging legitimate clients
multiple times for using the service with the same input; a disadvantage for clients who may
need to use the same input from multiple devices, or reproduce a result due to communication
errors, device upgrades, or perhaps to prove the validity of the outcome to a third-party by
re-running the protocol. Similarly, in case of oracle attacks, clients need not be disallowed to
use the same input multiple times since querying the same input many times does not yield new
information to an attacker.

Rate-limited SFE. A more accurate (and challenging) solution is to limit and/or monitor
the number of distinct inputs used by an SFE participant in multiple executions. Obviously,
this should be done in a secure and efficient manner, i.e., a party should not be able to exceed
an agreed-upon limit, and its counterpart should not learn any additional information about his
private inputs, or impose a lower limit than the one they agreed on.1 We refer to the number of
distinct inputs used by a participant as his rate, and call an SFE protocol that monitors/limits
this number, a rate-limited SFE.

Of course, achieving RL-SFE is more costly than the naïve solution discussed above. How-
ever, at a minimum we require the proposed solutions to avoid storing and/or processing the
complete transcripts of all previous executions. (We discuss the exact overhead of our solutions
in detail below.)

We note that the complementary question of what functions are unsafe for use in SFE
(leak too much information) has also been studied, e.g., by combining SFE and differential
privacy [BNO08, MMP+10], or belief tracking techniques [MHKS12]. These works are orthogonal
to ours, and can potentially be used in conjunction with rate-limited SFE as an enforcement
mechanism. For instance, the former works can be invoked to negotiate on a function f with
a measurable “safeness” from which the rate for each user can be derived. Subsequently, the
abidance of this rate can be enforced through our rate-limited SFE.

1.1 Our Contribution

Motivated by the discussion above, we initiate the study of rate-limited SFE in the two-party
setting.

Definitions. We introduce three definitions for rate-limited secure function evaluation: (i)
rate-hiding, (ii) rate-revealing and (iii) pattern-revealing. All our definitions are in the real-
world/ideal-world simulation paradigm and are concerned with multiple sequential executions
of an SFE protocol. They reduce to the standard (stand-alone) simulation-based definition for
SFE, under static corruptions, when applied to a single execution.

In a rate-hiding RL-SFE, in each execution, the only information revealed to the parties
is whether the agreed-upon rate limit has been exceeded or not. In a rate-revealing RL-SFE,

1Note that although the problem becomes trivial when the parties are assumed to be semi-honest, it is already
interesting in the augmented semi-honest setting [Gol09, Chapter 7], where the parties are allowed to modify
their inputs in each protocol execution.
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the parties additionally learn the current rate (i.e., the number of distinct inputs used by their
counterpart so far). In a pattern-revealing RL-SFE, parties also learn the pattern of occurrences
of each other’s inputs during the previous executions. These notions provide a useful spectrum
of tradeoffs between security and efficiency: our constructions become more efficient as we move
to the more relaxed notions, to the extent that our pattern-revealing transformation roughly adds
no overhead to the underlying SFE protocol.

Commit-first SFE. In order to design rate-limited SFE protocols, we formalize the auxiliary
notion of commit-first SFE (CF-SFE). Roughly speaking, a protocol is commit-first if it can be
naturally divided into a (i) committing phase, where each party becomes committed to its input
for the second phase, and (ii) a function evaluation phase, where the function f is computed
on the inputs committed to in the first phase.2 The notion of CF-SFE is related to the well
understood principle of “evaluating on committed inputs” (cf. Section 1.2).

We utilize CF-SFE as a stepping stone to design rate-limited SFE. It turns out that the
separation between the input commitment phase and the function evaluation phase facilitates
the design of efficient rate-limited SFE. In particular, now a party only needs to provide some
evidence of a particular relation between the committed inputs in the first phase. In contrast,
if we had not started with a commit-first protocol, such an argument would have involved the
complete history of the transcripts for all the previous executions, rendering such an approach
impractical.

In order to prove our RL-SFE protocols secure, we put forth a formal and general definition
for CF-SFE. We then show that several existing SFE constructions are either commit-first or can
be efficiently transformed into one. Examples include variants of Yao’s garbled circuit protocol,
the oblivious polynomial evaluation of Hazay and Lindell [HL09], the private set intersection
protocol of Hazay and Nissim [HN12], and the oblivious automaton evaluation of Gennaro et
al. [GHS10]. We also show that the GMW compiler [GMW87] outputs a commit-first protocol.
This is of theoretical interest as it provides a general compiler for transforming a semi-honest
SFE protocol into a malicious CF-SFE (and eventually a rate-limited SFE using the compilers
in this paper). We elaborate on these CF-SFE instantiations in Section 3.2.

Compilers & techniques. We design three compilers for transforming a CF-SFE into each
of the three variants of RL-SFE discussed above, and provide simulation-based proofs of their
security. All our compilers start from a CF-SFE protocol and add a “proof of repeated-input
phase” between the committing phase and the function evaluation phase. An exception is our
pattern-revealing compiler, where a proof of repeated-input is implicit given that we force the
commitments to be deterministic. In our first compiler (rate-hiding), whenever the j-th exe-
cution begins, party P1 first checks whether its input is “fresh” or has already been used in a
previous run. In the former case, P1 encrypts the value “1” and, otherwise, the value “0” using
a semantically secure public-key encryption scheme (E,D) for which it holds the secret key sk .
Denote the resulting ciphertext with cj . Party P1 forwards to P2 a zero knowledge (ZK) proof
of the following statement:

(“committed to old input” ∧ “encryption of 0”)
∨ (“committed to new input” ∧ “encryption of 1” ∧ “

∑
i≤j D(sk , ci) ≤ rate”).

Intuitively, the proof above only leaks the fact that the rate is not exceeded in the current
execution, but nothing else. In order to generate this proof (resp. verify the proof generated by

2Note that adding input commitments to the beginning of a protocol does not automatically yield a CF-SFE,
since parties are not necessarily bound to using the committed inputs in their evaluation.
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the counterpart), P1 needs to store all the commitments and ciphertexts sent to (resp. received
from) P2 in previous executions.

For our second compiler (rate-revealing), we can do without the encryptions. The parties
can instead prove a simpler statement giving evidence that the current (committed) input cor-
responds to one of the commitments the other party received earlier. Clearly, this approach
reveals the current rate, but as we prove nothing more.

Finally, our third compiler (pattern-revealing) exploits a PRF to generate the randomness
used in the committing phase of the underlying CF-SFE protocol. In this way, the commitment
becomes deterministic (given the input), allowing the other party to check whether the current
input has already been used and in which runs. This approach discloses the pattern of inputs
used by the parties; on the other hand, it is extremely efficient adding little computational
overhead (merely one invocation of a PRF) to the original CF-SFE protocol.

Making RL-SFE stateless. The above compilers suffer from the limitation that the parties
need to keep a state which grows linearly in the total number of executions of the underlying
SFE protocol. In many applications, clients do not keep state (and outsource this task to the
servers), either due to lack of resources or because they need to use the service from multiple
locations/devices. We show a general approach for transforming the stateful RL-SFE proto-
cols generated above into stateless ones. Here, the client keeps only a small secret (whose size
is independent of the total number of executions), but is still able to prevent cheating by a
malicious server, and preserve privacy of his inputs. At a high level, the transformation re-
quires the client to store its authenticated (MACed) state information on the server side and
retrieve/verify/update it on-the-fly as needed. We show how to apply this transformation to our
rate-revealing compiler to obtain a stateless variant and prove its security. A similar technique
can be applied to our rate-hiding compiler. Our pattern-revealing compiler is already stateless
for the party who plays the role of the client (as the client only needs to store a PRF key).

Case study. We take a closer look at the oblivious polynomial evaluation (OPE) protocol
of Hazay and Lindell [HL09]. Their protocol is secure against malicious adversaries. We show
that it is also a commit-first OPE, by observing that a homomorphic encryption of the parties’
inputs can be interpreted as a commitment to their inputs. This immediately yields an efficient
pattern-revealing RL-SFE for the OPE problem, based on the compiler we design. We also
provide an efficient rate-hiding and rate-revealing RL-OPE by instantiating the ZK proofs for
membership in the necessary languages, efficiently.

1.2 Additional Related Work

Our notion of CF-SFE is related to the notion of “committed oblivious transfer” [CvdGT95,
Gar04], and more generally of “evaluating on committed inputs” (see, e.g., [GMW87, JS07]);
however, to the best of our knowledge, ours is the first general definition of this feature.

Conference version. An abridged version of this paper appeared as [DMV13]. This is the full
version containing new material and significantly revised proofs. In particular, our compilers
for RL-SFE, the instantiations of CF-SFE, and the case study on OPE, were described and
analyzed only in a very high-level manner in the proceeding version (while they are treated in
full details here).

Subsequent to our work, RL-SFE has been suggested as a useful tool in different contexts,
including secure cloud storage [ADDV15, ADDV16], pattern matching [FHV13], and cooperative
linear algebra [DV14].
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1.3 Roadmap

We discuss some preliminaries in Section 2 and give our model for commit-first SFE in Section 3.
The definition of rate-limited SFE is introduced in Section 4. Our rate-hiding, rate-revealing
and pattern-revealing compilers are described and analyzed in Section 5, whereas Section 6
describes the stateless version of the rate-revealing compiler. Finally, Section 7 deals with
concrete instantiations for the case of OPE, and Section 8 explains the main problems left open
by our work.

2 Preliminaries

After setting some basic notation in Section 2.1, we review the definitions of the main crypto-
graphic primitives on which we build in Section 2.2.

2.1 Notation

Throughout the paper, we denote the security parameter by λ ∈ N. A function ν : N→ [0, 1] is
negligible in λ (or just negligible) if it decreases faster than the inverse of every polynomial in
λ. A machine is said to be probabilistic polynomial-time (PPT) if it uses randomness as parts
of its logic, and its number of steps is polynomial in the input size.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two distribution ensembles. We say X and Y are
computationally indistinguishable (and we write X ≡c Y ) if for every non-uniform polynomial-
time adversary A there exists a negligible function ν : N → [0, 1] such that |Pr [A(X) = 1] −
Pr [A(Y ) = 1] | ≤ ν(λ). Note that all our security statements can be straightforwardly proven
for uniform polynomial-time adversaries, as well.

If x is a string, |x| denotes the length of x. Vectors are denoted boldface; given vector x, we
write x[j] for the j-th element of x. If X is a set, #X represents the number of elements in X .
When x is chosen randomly in X , we write x← X . When A is an algorithm, y ← A(x) denotes
a run of A on input x and output y; if A is randomized, then y is a random variable and A(x; r)
denotes a run of A on input x and random coins r.

2.2 Basic Cryptographic Tools

2.2.1 Commitment Schemes

A non-interactive commitment scheme is a randomized efficient algorithm C taking as input a
message m ∈ M and random coins r ∈ R, and outputting a commitment γ ∈ C. A decommit-
ment of γ consists simply of revealing m and r. The setsM, R and C are called (respectively)
the message space, the randomness space, and the commitment space. A commitment scheme
satisfies two properties called hiding and binding. We recall such properties below.

The binding property says that it is hard to open a given commitment γ ∈ C in two different
ways.

Definition 2.1 (Binding). We say that a non-interactive commitment C is perfectly binding if
there do not exist pairs (m0, r0), (m1, r1) such that m0 6= m1 and, at the same time, C(m0; r0) =
C(m1; r1).

We recall that, in the plain model, the assumption of perfect binding (instead of computa-
tionally binding) is without loss of generality.

The hiding property says that for any pair of messages m0,m1 it is hard to tell whether a
given commitment γ is for m0 or for m1.
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Definition 2.2 (Hiding). We say that a non-interactive commitment C is computationally hid-
ing if for all messages m0,m1 ∈M the following holds:

{γ : γ ← C(m0)}λ∈N ≡c {γ : γ ← C(m1)}λ∈N .

Non-interactive commitment schemes exists based on explicit hardness assumptions, e.g.
Pedersen’s commitment [Ped92], and more in general from any one-way permutation [GL89].

2.2.2 Zero-Knowledge Arguments

A decision problem related to a language L ⊆ {0, 1}∗ requires to determine if a given string x is
in L or not. We can associate to any NP-language L a polynomial-time computable relation R
defining L itself, that is L = {x : ∃w s.t. R(x,w) = 1}, where |w| is at most polynomial in |x|.
The string w is called a witness for membership of x ∈ L.

An argument of membership (or simply an argument) for a given language L, is a possibly
interactive protocol (P,V) between two parties where the prover P convinces the verifier V
that some string x belongs to the language L at hand; the prover additionally holds a witness
w for x, i.e. R(x,w) = 1. At the end of the protocol execution, the verifier outputs a bit
(representing his decision); we write 〈P(w),V〉(x) for the random variable corresponding to the
verifier’s verdict. Similarly, we write P(x,w) � V(x) for the random variable corresponding to
transcripts of honest protocol executions. The prover and the verifier itself, constitute what is
called a (possibly interactive) argument system.

An argument system should satisfy at least two properties, completeness and soundness.
Completeness says that an honest prover (holding a valid witness) is able to convince the verifier.

Definition 2.3 (Completeness). Let (P,V) be an argument system for an NP-language L (with
corresponding relation R). We say that (P,V) satisfies completeness if for all (x,w) such that
R(x,w) = 1 there exists a negligible function ν : N→ [0, 1] such that

Pr [〈P(w),V〉(x) = 1] ≥ 1− ν(λ),

where the probability is taken over the randomness of algorithms P and V.

Soundness informally says that, whenever x 6∈ L, no computationally bounded prover can
convince the verifier into accepting x.

Definition 2.4 (Soundness). Let (P,V) be an argument system for an NP-language L. We say
that (P,V) satisfies soundness if for all PPT algorithms P∗, and for any x 6∈ L, there exists a
negligible function ν : N→ [0, 1] such that

Pr [〈P∗,V〉(x) = 1] ≤ ν(λ),

where the probability is taken over the randomness of algorithms P∗ and V.

Completeness and soundness do not quantify how much information an interactive argument
reveals about the witness, which in turn can be covered by the zero-knowledge property defined
below.

Definition 2.5 (Zero-Knowledge). Let (P,V) be an argument system for an NP-language L
(with corresponding relation R). We say that (P,V) satisfies zero-knowledge if there exists a
PPT simulator S such that for all PPT algorithms V∗, for all (x,w) such that R(x,w) = 1, and
for all auxiliary inputs z ∈ {0, 1}∗, the following holds:

{P(x,w) � V∗(x, z)} ≡c {SV
∗
(x, z)}.
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An important result in the theory of zero-knowledge is that every language in NP admits
a ZK argument system [GMW91]. In particular, if there exist argument systems for language
L1, L2 in NP, then it is possible to prove arbitrary combinations of statements from the two
languages, e.g., it is possible to prove statements of the form (x1 ∈ L1) ∧ (x2 ∈ L2) and
(x1 ∈ L1) ∨ (x2 ∈ L2).

2.2.3 Pseudo-Random Functions

Let PRF : K×M→ N be a function, where K represents the key space,M the message space,
and N the output space. Roughly, PRF is a secure pseudo-random function (PRF) if, for a
random key, it is indistinguishable from a truly random function mappingM into N .

Definition 2.6 (PRF). We say that PRF : K×M→ N is a PRF if for all PPT distinguishers
D there exists a negligible function ν : N→ [0, 1] such that∣∣∣Pr[DPRF(k,·)(1λ) = 1 : k ← K]− Pr[DF(·)(1λ) = 1]

∣∣∣ ≤ ν(λ),

where F is chosen at random from the set of all functions mappingM into N .

2.2.4 Public-Key Encryption

A public-key encryption (PKE) scheme is a triple of efficient algorithms (G,E,D) defined as
follows. Upon input the security parameter λ, the probabilistic algorithm G outputs a pair of
keys (pk , sk). Upon input the key pk and messagem ∈M, the probabilistic algorithm E outputs
c← E(pk ,m) where c belongs to ciphertext space E . Upon input the key sk and a ciphertext c,
the deterministic algorithm D outputs a message m ∈M.

A PKE scheme is correct if for all (pk , sk) ← G(1λ), and for all messages m, we have that
D(sk ,E(pk ,m)) = m. The standard security notion for PKE schemes is called CPA-security,
and is defined below.

Definition 2.7 (CPA Security for PKE). We say that a PKE scheme (G,E,D) is CPA secure
if for all PPT adversaries A there exists a negligible function ν : N→ [0, 1] such that

Pr

[
b′ = b :

(pk , sk)← G(1λ); b← {0, 1}; (m0,m1, τ)← A(pk)
c← E(pk ,mb); b

′ ← A(pk , c, τ)

]
≤ ν(λ),

where the probability is taken over the randomness of algorithms G, E, and A.

A PKE scheme is (additively) homomorphic, if there exist operations +h and −h on the
ciphertext space such that, given c1 ← E(pk ,m1) and c2 ← E(pk ,m2), computing c1 +h c2

(resp., c1 −h c2) results in an encryption of m1 +m2 (resp., m1 −m2).

2.2.5 Secret-Key Encryption

A secret-key encryption (SKE) scheme is a triple of efficient algorithms (G,E,D) specified as
follows. Upon input the security parameter λ, the probabilistic algorithm G outputs a key
k ∈ K. Upon input the key k and message m ∈ M, the deterministic algorithm E outputs c =
E(k,m) where c belongs to ciphertext space E . Upon input the key k and a ciphertext c, the
deterministic algorithm D outputs a message m ∈M.

An SKE scheme is correct if for all k ← G(1λ), and for all messages m, we have that
D(k,E(k,m)) = m. The standard security notion for SKE schemes is called CPA-security, and
is defined below.
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Definition 2.8 (CPA Security for SKE). We say that an SKE scheme (G,E,D) is CPA secure
if for all PPT adversaries A there exists a negligible function ν : N→ [0, 1] such that

Pr

[
b′ = b :

k ← G(1λ); b← {0, 1}; (m0,m1, τ)← AE(k,·)(1λ)
c = E(k,mb); b

′ ← A(c, τ)

]
≤ ν(λ),

where the probability is taken over the randomness of algorithms G and A.

2.2.6 Collision-resistant Hashing

We recall what it means for a family of hash functions to be collision resistant. Let l, l′ : N→ N
be such that l(λ) > l′(λ), and let I ⊆ {0, 1}∗.

Definition 2.9 (Collision-Resistant Hashing). A function family {Hι}ι∈I is called a collision-
resistant hash family if the following holds.

• There exists a probabilistic polynomial-time algorithm I that on input 1λ outputs ι ∈ I,
indexing a function Hι mapping from l(λ) bits to l′(λ) bits.

• There exists a deterministic polynomial-time algorithm that on input x ∈ {0, 1}l and ι ∈ I,
outputs Hι(x).

• For all PPT adversaries A there exists a negligible function ν : N→ [0, 1] such that

Pr
[
Hι(x) = Hι(x

′) : (x, x′)← A(1λ, ι); ι← I(1λ)
]
≤ ν(λ),

where the probability is taken over the coin tosses of algorithms I and A.

2.2.7 Message Authentication Codes

A message authentication code (MAC) (S,T,V) is a triple of efficient algorithms specified as
follows. Upon input security parameter λ, the probabilistic setup algorithm S outputs a key
s ∈ {0, 1}κ. Upon input the key s and a message m ∈M, the deterministic algorithm T outputs
a tag φ = T(s,m). Upon input the key s and a pair (m,φ), the deterministic algorithm V
returns 1 if and only if φ = T(s,m). Correctness requires that for any s ← S(1λ), and any
message m ∈M, we have that V(s,m,T(s,m)) outputs 1.

The standard security notion for MACs is called existential unforgeability under chosen-
message attacks (EUF-CMA), and is given below.

Definition 2.10. We say that a MAC (S,T,V) is EUF-CMA if for all PPT adversaries A there
exists a negligible function ν : N→ [0, 1] such that

Pr
[
V(s,m∗, φ∗) = 1 ∧m∗ 6∈ Q : s← S(1λ); (m∗, φ∗)← AT(s,·)(1λ)

]
≤ ν(λ),

where Q contains the list of all messages asked to the T oracle, and where the probability is taken
over the randomness of algorithms S and A.

3 Commit-First SFE

3.1 The Definition

In this section, we formally define the notion of commit-first secure function evaluation (CF-
SFE). Our compilers for designing rate-limited SFE, leverage commit-first protocols as a building
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block. We call a protocol π commit-first (w.r.t. a pair of commitment schemes C1,C2) if it can
be naturally divided into two phases. In the first phase (committing phase), both parties P1

and P2 become committed to their inputs (using C1 and C2, respectively). At the end of this
phase, no information about the parties’ inputs is revealed (the hiding property), and neither
party can use a different input than what it is committed to in the remainder of the protocol
(the binding property). In the second phase (function evaluation phase), the function f will be
computed on the inputs committed to in the first phase.

We now describe the two separate phases more precisely. Consider a polynomial-time func-
tionality f = (f1, f2) with fi : {0, 1}∗×{0, 1}∗ → {0, 1}∗. Then, a CF-SFE protocol π = (π1, π2)
for evaluating f on parties’ inputs x1 and x2 proceeds as follows.

Committing Phase: Parties P1 and P2 execute π1 which is defined by the functionality ((x1,
r1), (x2, r2)) 7→ ((x1, r1,C2(x2; r2)), (x2, r2,C1(x1; r1))). Note that the commitments C1,C2

(cf. Section 2.2) can be arbitrary schemes (often different for each CF-SFE protocol), as
long as they satisfy the required hiding and binding properties.

Function Evaluation Phase: Afterwards, P1 and P2 execute π2 on the same inputs as in
the committing phase; π2 is defined by the functionality ((x1, r1,C2(x2; r2)), (x2, r2,C1(x1;
r1))) 7→ (f1(x1, x2), f2(x1, x2)). Note that P1 and P2, can use their state information from
the previous phase in the function evaluation phase, too.

Next, we formalize the security definition for a CF-SFE using the real/ideal world simulation
paradigm.

The real world. In each execution, a non-uniform adversary A following an arbitrary efficient
strategy can send messages in place of the corrupted party (whereas the honest party continues
to follow π). Let i ∈ {1, 2} be the index of the corrupted party. A real execution of π =
(π1, π2) on inputs (x1, x2), auxiliary input3 z to A and the security parameter λ, denoted by
realcf-sfeπ,A(z),i(x1, x2, λ) is defined as the output of the honest party and the adversary upon
execution of π.

The ideal world. Let i ∈ {1, 2} be the index of the corrupted party. We define the ideal world
in two steps. During the ideal execution, the honest party sends its input x3−i, and a uniformly
random string r3−i used by the commitment scheme, to the trusted party. Party Pi which is
controlled by the ideal adversary S, called the simulator, may either abort (sending a special
symbol ⊥) or send input x′i, and an arbitrary randomness r′i (not necessarily uniform) chosen
based on the auxiliary input z, and Pi’s original input xi. Denote by ((x′1, r

′
1), (x′2, r

′
2)) the values

received by the trusted party. If the trusted party receives ⊥, the value ⊥ is forwarded to both
P1 and P2 and the ideal execution terminates; else the trusted party computes γ1 = C1(x′1; r′1)
and γ2 = C2(x′2; r′2), respectively. The TTP sends γ3−i to S, which can either continue or abort
by sending ⊥ to the TTP. In case of an abort, the TTP sends ⊥ to the honest party; otherwise,
it sends γi.

In the second phase, the honest party continues the ideal execution by sending to the TTP
a continue flag, or aborts by sending ⊥. S sends either ⊥ or continue based on the auxiliary
input z, Pi’s original input, and the value γ3−i. If the trusted party receives ⊥, the value ⊥ is
forwarded to both P1 and P2 and the ideal execution terminates; else the trusted party computes
y1 = f1(x′1, x

′
2) (resp. y2 = f2(x′1, x

′
2)).

3As usual, the auxiliary input represents some a priori information the adversary might know about the
parties’ inputs to the protocol.
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The TTP sends yi to S. At this point, S can decide whether the trusted party should
continue, and thus send the output y3−i to the honest party, or halt, in which case the honest
party receives ⊥. The honest party outputs the received value. The simulator S outputs an
arbitrary polynomial-time computable function of (z, xi, yi, γ3−i).

The ideal execution of f on inputs (x1, x2), auxiliary input z to S and security parameter
λ, denoted by idealcf-sfef,C1,C2,S(z),i(x1, x2, λ) is defined as the output of the honest party and the
simulator.

Emulating the ideal world. We define a secure commit-first protocol π as follows:

Definition 3.1 (Commit-First Protocols). Let π and f be as above. We say that π is a commit-
first protocol (w.r.t. C1,C2) for computing f = (f1, f2) in the presence of malicious adversaries with
abort if for every non-uniform PPT adversary A in the real world there exists a non-uniform
PPT simulator S in the ideal world, such that for every i ∈ {1, 2},{

realcf-sfeπ,A(z),i(x1, x2, λ)
}
x1,x2,z,λ

≡c
{
idealcf-sfef,C1,C2,S(z),i(x1, x2, λ)

}
x1,x2,z,λ

where x1, x2, z ∈ {0, 1}∗, with |x1| = |x2|, and λ ∈ N.

Notice that the above definition assumes that the parties (and adversary) know the input
lengths. We remark that such an assumption is unavoidable, as to some extent some information
on the inputs length can always be inferred (e.g., in the case of encryption).

3.2 Instantiations

3.2.1 The GMW Compiler

The GMW compiler [GMW87] is a general transformation for compiling any SFE with security
against semi-honest adversaries into one with security against malicious ones. We observe that
the malicious SFE resulting from the GMW compiler is also a commit-first protocol. This is
of theoretical interest: when combined with the compilers we introduce in this paper, it yields a
general compiler for transforming any semi-honest SFE into a rate-limited malicious SFE.

Recall the GMW compiler which consists of the following three phases.

(i) Input-committing phase: Each party commits to the input he will use in the protocol.

(ii) Coin-generation phase: Each party receives a uniformly random string to use in the
protocol emulation phase, while its counterpart obtains a commitment to that randomness.

(iii) Protocol emulation phase: Parties engage in a protocol where each message of the
semi-honest SFE is accompanied with proofs of correctness of the computation and its
consistency with the committed inputs and randomness.

We refer the reader to [Gol09] for a complete description of the compiler and a proof that it
yields an SFE with security against malicious adversaries. It turns out that the input-committing
phase of the GMW compiler is exactly what we need in a commit-first protocol. In particular,
the functionality of the input-committing phase for the first party is defined in [Gol09] as
((x, r), 1λ) → ((x, r),C(x; r)), where C is a hiding and binding commitment scheme. Then, a
construction is provided that realizes this functionality in presence of malicious adversaries.4

This is identical to the functionality computed by the trusted party (once for P1 and once for
P2) in the first phase of the ideal execution for a commit-first SFE we defined above. This
observation yields the following claim.

4Roughly speaking, the commitment is accompanied with a zero-knowledge proof of knowledge of the input
and the randomness fed to the commitment.
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Claim 3.2. The GMW compiler transforms any SFE protocol with security against semi-honest
adversaries into a commit-first SFE protocol with security against malicious adversaries.

3.2.2 Yao’s Garbled Circuits Protocol

Here, we investigate the commit-first property of Yao’s garbled circuit protocol [Yao82, Yao86].
Yao’s protocol is one of the most important general-purpose two-party SFE constructions. In
particular, due to its desirable efficiency properties, it has been the subject of multiple software
implementations [MNPS04, HKS+10, HEKM11]. Currently, the most efficient method for mak-
ing Yao’s protocol secure against malicious adversaries is the cut-and-choose approach [MF06,
LP07].

We observe that Yao’s protocol is one-sided commit-first. In other words, one of the parties
in the protocol commits to his input during the protocol in such a way that the simulator in
the ideal world is able to extract the corresponding message and randomness. We note that the
one-sided commit-first property is indeed sufficient for many applications of rate-limited SFE
where one is only interested in monitoring the rate for one party. For instance, this is the case
in most client-server applications, where the server enforces the rate limit on the client.

Commit-first Yao via commit-first OT. We do not discuss the details of Yao’s construc-
tions here and refer the reader to [LP09] for a detailed description. However, we recall that in
the cut-and-choose approach, the first party (garbler) computes multiple garbled circuits while
the second party (evaluator) evaluates a fraction of these circuits. To proceed with the evalua-
tion, the first step taken by the evaluator in the protocol is a series of oblivious transfers (OTs),
one for each bit of its input. The evaluator plays the role of the receivers in each OT, and uses
one input bit in each. The garbler plays the role of the sender, and uses two garbled values
(corresponding to an input wire) as its input. For Yao’s garbled circuit protocol to be one-sided
commit-first (with respect to the evaluator in this case), we simply need to make sure that the
oblivious transfer being used is commit-first itself (in addition to being secure against malicious
adversaries). In particular, we need a guarantee that the receiver in the OT is committed to its
input, and that the simulator in the security proof is able to extract both the message and the
randomness used in the commitment.

Commit-first OT. There are multiple OT constructions that satisfy the commit-first prop-
erty. For example, consider the general construction of [Lin08] based on any homomorphic
encryption. We observe that if the homomorphic encryption scheme being used is randomness-
recovering (i.e., the decryption algorithm recovers both the message and the randomness), the
resulting OT will be commit-first. Consequently, the instantiation of their construction based
on Paillier’s encryption [Pai99] yields a commit-first OT.

A second option is to use the OPE construction we will discuss in Section 7 to instantiate the
OT in the Yao’s protocol. Note that the OPE problem is a generalization of oblivious transfer.
The OT sender with an input pair (a0, a1) can let its polynomial be p(x) = a0(1−x)+a1x, while
the receiver can use its input bit b as the input to the polynomial. It is easy to see that p(b) = ab
for b ∈ {0, 1}. There is one small issue with this OT construction: It is not fully-secure against
malicious adversaries in the form we describe it. In particular, a malicious receiver can choose
a value for b that is not a bit. This issue can, however, be easily fixed by adding an efficient ZK
proof of the statement that the plaintext corresponding to E(pk , b) is either the message 0 or 1.
Since the OPE construction we discussed is commit-first, so is the resulting commit-first OT.

Summarizing the above discussion, we conclude with the following claim:
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Claim 3.3. When instantiated via a commit-first OT, cut-and-choose compilations of Yao’s
garbled circuit, are one-sided commit-first (with respect to the circuit evaluator) with security
against malicious adversaries.

3.2.3 Secure 2PC of Jarecki-Shmatikov

Jarecki and Shmatikov [JS07] design a variant of Yao’s garbled circuits protocol for securely
computing any two-party circuit on committed inputs. Their protocol is secure in a universally
composable way in the presence of malicious adversaries, in the common reference string (CRS)
model.

Their construction starts by having the two parties commit to their inputs. Then, a variant of
Yao’s protocol is design to operate on these committed inputs. Both the commitment scheme and
the symmetric-key encryption needed in Yao’s garbled circuit construction are instantiated via
a simplified variant of the Camenisch-Shoup (CS) encryption scheme [CS03]. The computation
is accompanied with efficient ZK proofs that are specially designed to work with the CS scheme.
We refer the reader to [JS07] for a complete description of their construction.

Their construction can be easily transformed to a commit-first protocol in the CRS model.
The protocol starts with each party committing to its input and proving the validity of the
commitment. As mentioned above, the commitment scheme used is a simplified CS encryption.
Unfortunately, knowing the secret key for the encryption scheme does not allow one to recover
the randomness used for encryption as well. Our commit-first ideal execution, instead, requires
this property. In other words, the simulator in the proof needs to send both the message and the
randomness used by the commitment scheme to the TTP. However, as mentioned by the authors
themselves, a wide range of other commitment schemes can also be used for this purpose. To
satisfy the commit-first property, we simply need to make sure that the randomness used in the
commitment is recoverable given a trapdoor (or the secret key itself). This is efficiently realiz-
able, for example, using Paillier’s encryption scheme [Pai99], in which the decryption algorithm
recovers the randomness as well, hence yielding a commit-first variant of their construction.

Claim 3.4. The two-party protocol of [JS07] is a commit-first SFE with security against mali-
cious adversaries, in the CRS model.

3.2.4 PSI Protocol of Hazay and Nissim

In the private set intersection (PSI) problem, two parties P1 and P2, hold the setsX and Y . Their
goal is for one or both parties to learnX∩Y without revealing additional information about their
sets. The PSI problem has been the focus of active research, and to date, many constructions
with a variety of efficiency and security properties have been designed and implemented [FNP04,
CKT10, HN12, HEK12].

Here, we focus on the protocol of Hazay and Nissim [HN12], since it is secure against malicious
adversaries and we can easily show it to be a one-sided commit-first protocol as well. Once again,
we do not describe the details of their construction but mostly focus on the components we need
to prove the commit-first property. In particular, we observe that one of the parties engaged
in the protocol, say P1 holding the set X = {x1, . . . , xn} starts by computing the commitments
C(xi; ri) for 1 ≤ i ≤ n and proving knowledge of xi and ri to P2. This indeed constitutes a
commitment to the set X, and allows the simulator in the proof to extract both the set X and
the randomness used in the commitments, hence yielding a commit-first protocol with respect
to P1.

Claim 3.5. The private set intersection protocol of [HN12] is one-sided commit-first with security
against malicious adversaries.
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3.2.5 Oblivious Automata Evaluation of Gennaro, Hazay and Sorensen

In an oblivious automata evaluation (OAE) protocol, party P1 holds a description of an automa-
ton Γ whereas party P2 holds a string x. After the execution of OAE, party P1 obtains Γ(x),
and P2 learns nothing.

In [GHS10], Gennaro, Hazay and Sorensen introduce a secure OAE protocol in presence
of malicious adversaries. At a high level, party P1 and P2 first agree on a public key for an
encryption scheme. Then, party P1 sends the transition table of Γ in encrypted form together
with a ZK-proof of its validity. Party P2 is then able to work on this ciphertext in order to
evaluate its input string x. Eventually, P2 proves validity of the last ciphertext.

Similar to the OPE protocol in Section 7, the encryption and its proof of validity can be
seen as a commitment by party P1 to his input. This takes place before the actual automata
evaluation is performed. However, party P2 proves validity at the end of the execution. Hence,
we observe here a one-sided commit-first oblivious automata evaluation protocol with respect to
party P1.

Claim 3.6. The oblivious automata evaluation protocol of [GHS10] is a one-sided commit-first
OAE with security against malicious adversaries.

4 Rate-Limited SFE

In this section, we introduce three notions for rate-limited secure function evaluation (RL-SFE).
In particular, we augment the standard notion of two-party SFE by allowing each player to
monitor and/or limit, the number of distinct inputs (the rate) the other player uses in multiple
executions. The idea is that each party can abort the protocol if the number of distinct inputs
used in the previous executions raises above a threshold ˚rffl ∈ N. We call this threshold the rate
limit, i.e. the maximum number of allowable executions with distinct inputs.

Naturally, our security definitions for RL-SFE are concerned with multiple executions of an
SFE protocol and reduce to the standard (stand-alone) simulation-based definition for SFE,
under static corruptions, when applied to a single run. We call a sequence of executions of a
protocol π (˚rffl1, ˚rffl2)-limited if party P1 (resp. P2) can use at most ˚rffl1 (resp. ˚rffl2) distinct inputs
in the executions. In this work, we assume that the executions take place sequentially, i.e. one
execution after the other. We emphasize that the inputs used by the parties in each execution
can depend on the transcripts of the previous executions, but honest parties will always use
fresh randomness in their computation.

As discussed in Section 1.1, we provide three security definitions for rate-limited SFE: (i)
rate-hiding, (ii) rate-revealing, and (iii) pattern-revealing. In a rate-hiding RL-SFE, at the end
of each execution, the only information revealed to the parties (besides the output from the
function being computed), is whether the agreed-upon rate limit (threshold) has been exceeded
or not, but nothing else. In a rate-revealing RL-SFE, in addition to the above, parties also learn
the current rates (i.e., the number of distinct inputs used by their counterpart so far). Finally,
in a pattern-revealing RL-SFE, parties further learn the pattern of occurrences of each others’
inputs in the previous executions. In particular, each party learns which executions were invoked
by the same input and which ones used different ones, but nothing else.

High-level description. Let f = (f1, f2) be a pair of polynomial-time functions such that
fi is of type fi : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. Consider an arbitrary polynomial number ` of
sequential executions of a two-party SFE protocol π for evaluating f on parties’ inputs. During
the j-th execution, party Pi has input x

j
i and should learn yji = fi(x

j
1, x

j
2). We will define rate-

limited SFE in the general case where both parties are allowed to change their input in each
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execution. The case of oracle attacks and secure metering, where one party’s input is fixed and
the other party’s input changes, are found as a special case. (In the case of secure metering one
can also think that a change in the service provider’s input reflects a software update.)

In the ideal world, during the j-th execution, each party sends its input to a trusted authority.
The following is then performed for both i = 1, 2. The trusted party checks whether value xji
was already sent in a previous execution; in case it was not, a new entry (xji , j) is stored in
an initially empty array Xi. Else, the smallest index j′ < j corresponding to such input is
recovered. Whenever #Xi exceeds ˚rffli the trusted party aborts. Otherwise, the current outputs
yji = fi(x

j
1, x

j
2) are computed. Finally: (i) in the rate-hiding definition party Pi learns only y

j
i ;

(ii) in the rate-revealing definition party Pi learns also #X3−i, i.e. the (partial) total number
of distinct inputs used by P3−i until the j-th execution; (iii) in the pattern-revealing definition
party Pi learns j′, i.e. the index corresponding to the query where xji was asked for the first
time. Note that if the rate is exceeded, the trusted party aborts here, but, equivalently, we could
simply ignore this execution and still allow to query previous inputs in subsequent executions.

We formalize the above intuitive security notions for all three flavors using the simulation-
based ideal/real world paradigm. We first review the real execution which all three notions
share.

The real world. In each execution, a non-uniform adversary A following an arbitrary efficient
strategy can send messages in place of the corrupted party (whereas the honest party continues to
follow π). Let i ∈ {1, 2} be the index of the corrupted party. The j-th real execution of π on inputs
(xj1, x

j
2), auxiliary input zj to A and security parameter λ, denoted by real˚rffl

π,A(zj),i
(xj1, x

j
2, λ)j

is defined as the output of the honest party and the adversary in the j-th real execution of
π. We denote by real˚rfflπ,A(z),i(x1,x2, λ, `) the accumulative distribution at the end of the `-th
execution, i.e.,

real˚rfflπ,A(z),i(x1,x2, λ, `) = real˚rfflπ,A(z1),i(x
1
1, x

1
2, λ)1, . . . ,real˚rfflπ,A(z`),i(x

`
1, x

`
2, λ)`

where x1 = (x1
1, . . . , x

`
1), x2 = (x1

2, . . . , x
`
2) and z = (z1, . . . , z`).

The ideal world. The trusted party keeps two arrays X1, and X2 initially set to ∅. Let
i ∈ {1, 2} be the index of the corrupted party. During the j-th ideal execution, the honest party
sends its input to the trusted party. Party Pi, which is controlled by the ideal adversary S,
called the simulator, may either abort (sending a special symbol ⊥) or send input x′ji to the
trusted party chosen based on the auxiliary input zj , Pi’s original input x

j
i , and its view in the

previous j − 1 ideal executions. Denote with (x′j1 , x
′j
2 ) the values received by the trusted party

(note that if i = 2 then x′j1 = xj1).
If the trusted party receives ⊥, the value ⊥ is forwarded to both P1 and P2 and the ideal

execution terminates; else when the trusted party receives x′j1 as the first party’s input, it checks
whether an entry (x′j1 , j

′) ∈ X1 already exists; if so, it sets J1 = j′ for the smallest such j′.
Otherwise, it creates a new entry (x′j1 , j), adds it to X1, and sets J1 = j. An identical procedure
is applied to the input of the second party x′j2 to determine an index J2. At the end of the j-th
ideal execution if σ1 := #X1 ≥ ˚rffl1 or σ2 := #X2 > ˚rffl2, the value ⊥ is forwarded to both P1 and
P2 and the ideal execution terminates. Otherwise, the pair (yj1, y

j
2) = (f1(x′j1 , x

′j
2 ), f2(x′j1 , x

′j
2 )) is

computed.
At this point, the ideal output will be different depending on the variant of RL-SFE being

considered.
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Rate-Hiding. The trusted party forwards to the malicious party Pi the output yji . At this
point, S can decide whether the trusted party should continue, and thus send the pair
y3−i to the honest party, or halt, in which case the honest party receives ⊥.

Rate-Revealing. The trusted party forwards to the malicious party Pi the pair (yji , σ3−i). At
this point, S can decide whether the trusted party should continue, and thus send the pair
(yj3−i, σi) to the honest party, or halt, in which case the honest party receives ⊥.

Pattern-Revealing. The trusted party forwards to the malicious party Pi the pair (yji , J3−i).
The integer 1 ≤ J3−i ≤ j represents the index of the first execution where the input xj3−i
has been used. At this point, S can decide whether the trusted party should continue, and
thus send the pair (yj3−i, Ji) to the honest party, or halt, in which case the honest party
receives ⊥.

The honest party outputs the received value. The simulator S outputs an arbitrary polynomial-
time computable function of (zj , xji , y

j
i ).

The j-th ideal execution of f on inputs (xj1, x
j
2), auxiliary input zj to S and security parameter

λ, denoted by ideal˚rffl−type
f,S(zj),i

(xj1, x
j
2, λ)j is defined as the output of the honest party and the

simulator in the above j-th ideal execution. Here, type ∈ {rh, rr, pr} determines the flavor of
rate-limited SFE. We denote by ideal˚rffl−typef,S(z),i(x1,x2, λ, `) the accumulative distribution at the
end of the `-th execution, i.e.,

ideal˚rffl−typef,S(z),i(x1,x2, λ, `) = ideal˚rffl−type
f,S(z1),i

(x1
1, x

1
2, λ)1, . . . , ideal˚rffl−type

f,S(z`),i
(x`1, x

`
2, λ)`

where x1 = (x1
1, . . . , x

`
1), x2 = (x1

2, . . . , x
`
2) and z = (z1, . . . , z`).

Emulating the ideal world. Roughly speaking, ` sequential executions of a protocol π are
secure under the rate limit ˚rffl = (˚rffl1, ˚rffl2) if the real executions can be simulated in the above
mentioned ideal world. More formally, we define a secure (˚rffl1, ˚rffl2)-limited protocol π as follows:

Definition 4.1 (RL-SFE). Let π and f be as above, and consider ` = poly(λ) sequential execu-
tions of protocol π. For type ∈ {rh, rr, pr}, we say protocol π is a secure type ˚rffl-limited SFE for
computing f = (f1, f2), in presence of malicious adversaries with abort with ˚rffl = (˚rffl1, ˚rffl2), if for
every non-uniform PPT adversary A there exists a non-uniform PPT simulator S, such that for
every i ∈ {1, 2},{

real˚rfflπ,A(z),i(x1,x2, λ, `)
}
x1,x2,z,λ

≡c
{
ideal˚rffl−typef,S(z),i(x1,x2, λ, `)

}
x1,x2,z,λ

where x1,x2, z ∈ ({0, 1}∗)`, with |x1[j]| = |x2[j]| for all j, and λ ∈ N.

We remark that, while we only consider static corruptions, the corrupted player is allowed
to choose its input in each of the sequential executions in a fully adaptive manner (based on the
view so far). Also note that, in applications, the parameter ˚rffl typically depends on the function
f being evaluated; e.g., in the case of OPE ˚rffl is upper bounded by the degree of the polynomial.
The value `, instead, is a parameter of the security definition, but we decided to leave it implicit
as our compilers produce protocols which are secure for any polynomial number of sequential
repetitions.
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5 Compilers for Rate-Limited SFE

In this section, we introduce our three compilers to transform an arbitrary (two-party) CF-SFE
protocol into a rate-limited protocol for the same functionality.

Our first compiler Ψrh achieves the notion of rate-hiding RL-SFE through the use of ZK
arguments and public-key encryption. Our second compiler Ψrr achieves the notion of rate-
revealing RL-SFE and is more efficient in that it needs to prove a simpler statement and does
not rely on encryption. Our last compiler Ψpr introduces essentially no overhead and avoids the
use of zero-knowledge, yielding our third notion of pattern-revealing RL-SFE.

Let πf be a two-party (single-run) commit-first protocol for secure function evaluation of
a function f = (f1, f2) (cf. Definition 3.1). Our compilers get as input (a description of) πf ,
together with the rate ˚rffl = (˚rffl1, ˚rffl2), and the number of executions `, and output (a description
of) π̂f ← Ψ(πf , ˚rffl, `). The compilers are functionality preserving, meaning that protocol π̂f
repeatedly computes the same functionality f .

5.1 A Rate-Hiding Compiler

The overview. We naturally divide the CF-SFE protocol into a committing phase and a
function evaluation phase and introduce a new phase in between where P1 and P2 convince
each other that they have not exceeded the rate limit. The latter step is achieved as follows.
Whenever one of the parties is going to use a “fresh” input, it transmits an encryption of “1” to
the other party; otherwise, it sends an encryption of “0”. The encryptions are obtained using
a CPA-secure PKE scheme (G,E,D). Then, the party proves in ZK that “the last commitment
transmitted hides an already used input and it encrypted 0, or the last commitment transmitted
hides a fresh input and it encrypted 1 and the sum of all the plaintexts, encrypted until now,
does not exceed the rate”. A successful verification of this proof convinces the other party that
the rate is not exceeded, leaking nothing more than this. We instantiate such ZK proofs for the
OPE problem in Section 7. Notice that to generate such a proof each party needs to store all the
ciphertexts transmitted to the other player, together with all the inputs and randomness used
to generate the previous commitments. On the other hand, to verify the other party’s proof,
one needs to store the ciphertexts and the commitments received in all earlier executions. The
remainder of the messages exchanged during each execution, however, can be discarded.

The construction of our rate-hiding ˚rffl-limited compiler Ψrh is depicted in Fig. 1.

Theorem 5.1. Let πf = (π1
f , π

2
f ) be a commit-first protocol (w.r.t. C1,C2) securely evaluating

function f = (f1, f2), and assume that C1,C2 are perfectly binding and computationally hiding
commitment schemes, that (G,E,D) is a CPA-secure PKE scheme, and that (Pi,Vi) is a ZK
argument system for the language Li. Then π̂f ← Ψrh(πf , ˚rffl1, ˚rffl2, `) of Fig. 1 is a secure rate-
hiding (˚rffl1, ˚rffl2)-limited protocol for f .

Proof. Consider an adversary A = (A1, . . . ,A`) corrupting party Pi during the ` executions of
π̂f . In particular, Aj represents A’s strategy during the jth execution, and real˚rffl

π̂f ,A(zj),i
(xj1, x

j
2,

λ)j denotes the distribution of its output. We denote by real˚rffl-rhπ̂f ,A(z),i(x1,x2, λ, `) the joint
distribution of the output of all the Ajs combined. Note that each Aj passes the necessary state
information (i.e., her view) to Aj+1.

We describe a simulator S = (S1, . . . ,S`) in the ideal world—as discussed in Section 4—
that mimics A’s output. Before doing so, note that we are given as input to the compiler Ψrh

(besides the rates and `) the commit-first SFE protocol πf . According to the security definition
(cf. Definition 3.1), for any admissible adversary against πf , there exists a simulator Scf that
mimics her behavior in the CF-SFE’s ideal world. Moreover, due to the way the CF-SFE ideal
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Rate-Hiding Compiler Ψrh:

Let (G,E,D) be a public-key encryption scheme with message space {0, 1} and ciphertext space E . Parties P1

and P2, respectively, hold an auxiliary key pair (pk i, sk i) ← G(1λ). Given as input a commit-first protocol
(w.r.t. C1,C2) πf = (π1

f , π
2
f ), a rate ˚rffl = (˚rffl1, ˚rffl2), and a number of executions `, the compiled protocol π̂f

is made of three phases, described below. Party P1 and P2 keep the state variables Σi := (Γi, (Ω1,Ω2),Λi)
initially set to be empty. For each execution j ∈ [`], π̂f proceeds as follows:

Committing Phase: Parties P1 and P2, holding respectively inputs xj1 and xj2, run the protocol π1
f yielding

the output ((xj1, r
j
1, γ

j
2 = C2(xj2; rj2)), (xj2, r

j
2, γ

j
1 = C1(xj1; rj1))).

Proof of Repeated-Input Phase: When the input xji of party Pi is not fresh—i.e., it has already been
used in a previous execution—Pi computes cji ← E(pk i, 0). Otherwise, Pi computes cji ← E(pk i, 1) and
lets Λi := Λi ∪ {(xji , r

j
i )}. Then, add also cji to the state, i.e., Ωi := Ωi ∪ {cji}. Consider the following

languages:

Lrate
i =

{
Ωi ⊂ Ej :

∑
c∈Ωi

D(sk i, c) ≤ ˚rffli} Lbi = {c ∈ E : ∃r s.t. c = E(pk i, b; r)}

Lold
i =

{
γ ∈ Ci : ∃(x, r, r′) s.t. γ = Ci(x; r) and Ci(x; r′) ∈ Γ3−i

}
,

and let (Pi,Vi) be a ZK argument system for Li := (Lold
i ∧ L0) ∨ (Lold

i ∧ L1 ∧ Lrate
i ). If #Λi ≤ ˚rffli, party

Pi sends c
j
i and plays the role of the prover in (Pi,Vi); otherwise, it outputs ⊥ and aborts. Also, party

Pi receives c
j
3−i from P3−i, updates the state as in Ω3−i := Ω3−i∪{cj3−i} and plays the role of the verifier

in (P3−i,V3−i). If the verification fails, it outputs ⊥ and aborts. Otherwise, it lets Γi := Γi ∪{γj3−i} and
proceeds to the next step.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on the same inputs as in the committing phase,

yielding the output (yj1, y
j
2).

Figure 1: A compiler for rate-hiding rate-limited SFE.

world is defined, Scf can be naturally written as Scf = (S1
cf ,S2

cf) where basically S1
cf emulates the

commit-first phase (i.e., π1
f ), and passes its view to S2

cf who emulates the function evaluation
phase (i.e., π2

f ).
The simulator S = (S1, . . . ,S`) picks (pk , sk)← G(1λ), runs a copy of A, and keeps a state

Σ = (Γ, (Ω1,Ω2),Λ) initially set to be empty. The j-th execution is given below.

1. Sj takes (xji ,Σ, pk , sk , z
j) as input.

2. In the committing phase, Sj invokes S1
cf on input xji . The simulator S1

cf invokes Aj who
controls party Pi in π1

f . If S1
cf sends ⊥ to its CF-SFE TTP, Sj sends ⊥ to its own

trusted party leading to an abort of the execution. Otherwise, Sj receives x′ji , r
′j
i from

S1
cf and computes γ′ji = Ci(x

′j
i ; r′ji ). It also samples a random x′j3−i ∈ M3−i, computes

γ′j3−i = C3−i(x
′j
3−i; r

′j
3−i) using uniform randomness r′j3−i ∈ R3−i and sends the result to Aj .

If (x′j3−i, ∗) 6∈ Λ, update Λ := Λ ∪ {(x′j3−i, r
′j
3−i)}.

3. Sj sends x′ji to its TTP, and receives yji = fi(x
′j
1 , x

′j
2 ) back, where x′j3−i = xj3−i. Recall that

yji = ⊥ shows whether one of the parties has exceeded its own rate. If the returned value
is yji = ⊥, the simulator sends ⊥ to Aj and terminates the execution. On the other hand,
if the returned value is yji 6= ⊥ and x′j3−i has never been used before, Sj computes c′j3−i ←
E(pk , 1). Otherwise, it computes c′j3−i ← E(pk , 0) and stores the generated ciphertext, i.e.,
Ω3−i := Ω3−i ∪ {c′j3−i}.

Hence, the simulator forwards c′j3−i to Aj and runs internally the ZK simulator Szk for the
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argument system with language

(Lold
3−i ∧ L0

3−i) ∨ (Lold
3−i ∧ L

1
3−i ∧ Lrate

3−i ),

playing the role of the prover (with Aj being the verifier). (Note that the last step involves
the state Σ). Notice that Szk may itself need to rewind Aj . However, this is not an issue
because our simulator S invokes different simulators sequentially; in particular, Aj will
be in a consistent state when Szk terminates and thus S can proceed with the rest of the
simulation.

Sj also receives c′ji from Aj , plays the role of the verifier in the argument system (with Aj

being the prover) and updates the state to Ωi := Ωi ∪ {c′ji } and Γ = Γ ∪ {γ′ji }.

4. Finally, Sj invokes S2
cf on input (x′ji , r

′j
i , γ

′j
3−i); S2

cf itself runs Aj who controls party Pi in
π2
f . We emphasize S2

cf does not run a new instance of Aj but it continues with running
the same instance that has been running so far. If S2

cf sends ⊥, Sj sends ⊥ to its trusted
party leading to an abort of the execution. Else, S2

cf sends the continue flag. Sj replies
(on behalf of the CF-SFE TTP) by sending to S2

cf , the output yji he obtained earlier in
the simulation.

5. Afterwards, Sj passes yji to Aj and outputs whatever Aj does.

We now need to show that

ideal˚rffl-rhf,S(z),i(xi,x3−i, λ, `) ≡c real˚rffl̂πf ,A(z),i(xi,x3−i, λ, `).

By a standard hybrid argument (losing a factor 1/` in the computational distance), it suffices
to show indistinguishability for a single execution (i.e., the jth execution). Therefore, we need
to show that for all i ∈ {1, 2} and j ∈ [`]

ideal˚rffl-rhf,S(zj),i(x
′j
i , x

′j
3−i, λ)j ≡c real˚rfflπ̂f ,A(zj),i(x

j
i , x
′j
3−i, λ)j .

We consider a series of intermediate hybrid experiments. In the first experiment, we modify
the simulator by letting it abort the execution on the basis of the verification of the ZK proofs,
as it would be done in a real execution of the protocol. We argue that this modification is not
distinguishable by the adversary Aj due to the soundness of the ZK argument system. In the
second experiment, we assume that in contrast to the simulation above, the real input of the
honest party is used in the simulation. We argue that this modification is not distinguishable by
the adversary Aj due to the hiding property of the commitment and the IND-CPA security of
the PKE scheme. In the last experiment, we replace the simulated ZK argument with a real one.
The indistinguishability of the last two experiments follows naturally from the zero-knowledge
property of the argument system. Finally, it is easy to see that the distribution of Aj ’s output
in the last experiment is identical to the distribution of its output in the real protocol, which
concludes our proof. Details follow.

Hybrid Hyb1
A(zj)(x

′j
i , x

′j
3−i, λ)j: In the first hybrid experiment, we replace Sj by Sj1 who con-

trols Pi in the ideal world. Essentially Sj1 is different from Sj merely in the way it aborts
the simulation based on the execution of the argument system. Namely, in case the rate
˚rffl3−i is not exceeded, instead of looking at the output from the trusted party (cf. item 3.
in the description of Sj), it first plays the role of the verifier as party P3−i would do in a
real execution of the protocol. Hence, if the verification fails the value ⊥ is sent to Aj and
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the execution is halted. Everything else is identical to the previous simulation. Next, we
argue that

ideal˚rffl-rhf,S(zj),i(x
′j
i , x

′j
3−i, λ)j ≡c Hyb1

f,A(zj),i(x
′j
i , x

′j
3−i, λ)j .

In fact, the modification above only affects the way the execution is halted. Denote with
bad the event that A is able to come up with an accepting proof for a false statement,
i.e., A is able to convince P3−i that the rate ˚rffli is not exceeded even though it already
reached the rate itself. Note that the distribution produced by the two experiments above
is identical provided that bad does not happen. Due to the soundness property of the ZK
argument system, we must conclude that bad happens at most with negligible probability,
thus showing that the two experiments are computationally indistinguishable.

Hybrid Hyb2
A(zj)(x

′j
i , x

j
3−i, λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who

controls Pi in the ideal world and at the same time plays the role of the TTP playing all
the roles by itself. As a result, the simulator directly interacts with P3−i during the ideal
execution of the commit-first protocol. Essentially, Sj2 is identical to Sj1 with the exception
that it is able to compute and send the correct commitment γj3−i = C3−i(x

j
3−i; r

j
3−i) to Aj .

Also, Sj2 is able to compute the correct ciphertext cj3−i on the basis of the “freshness” of
the real input xj3−i. Everything else is analogous to the previous simulation.

Next, we argue that

Hyb1
f,A(zj),i(x

′j
i , x

′j
3−i, λ)j ≡c Hyb2

f,A(zj),i(x
′j
i , x

j
3−i, λ)j .

We first argue that the simulation of the values yj1, y
j
2 is perfect. This follows by the perfect

binding property of Ci, which implies that the function f is evaluated on the very same
input extracted by the simulator. Hence, the only difference between the previous hybrid
and the hybrid world described above is that the real input of the honest party is used in
the latter. In particular, Sj2 feeds both S1

cf and S2
cf with the commitment C3−i(x

j
3−i; r

j
3−i)

to the real input xj3−i as opposed to an arbitrary input x′j3−i; analogously the bit encrypted
in cj3−i is chosen accordingly to xj3−i.

However, due to the hiding property of the commitment and the CPA-security of the
PKE scheme, these two views are computationally indistinguishable. (In particular any
distinguisher between the two experiments can be turned into an adversary breaking either
the hiding property of the commitment or the CPA-security of the PKE scheme.) We rely
here on the fact that, in both worlds, the simulator emulates the ZK proof using Szk as
opposed to executing the real proof. In particular, the ZK simulator does not need the
parties’ private inputs for its simulation, and hence is not affected by the aforementioned
change in the inputs.

Hybrid Hyb3
A(zj)(x

′j
i , x

j
3−i, λ)j: We modify the previous hybrid world, by having Sj3 provide

an actual ZK proof that the rate is not exceeded or to output ⊥ if this is not case. For this
purpose, Sj3 uses the state Σ and the current inputs xj1, x

j
2. The zero-knowledge property

of the proof system automatically guarantees that the view generated using the real proof
and the simulator Szk are computationally indistinguishable which in turn implies the
computational indistinguishability of the output of the current hybrid experiment and the
previous one. Thus, we have

Hyb2
f,A(zj),i(x

′j
i , x

j
3−i, λ)j ≡c Hyb3

f,A(zj),i(x
′j
i , x

j
3−i, λ)j .
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To conclude the proof, it suffices to note that Hyb3
f,A(zj),i(x

′j
i , x

j
3−i, λ)j exactly equals the output

distribution of Aj in the real world, thus proving that π̂f ← Ψrh(πf , ˚rffl1, ˚rffl2, `) is a secure rate-
hiding (˚rffl1, ˚rffl2)-limited protocol for function f .

5.2 A Rate-Revealing Compiler

The overview. Once again, we divide the CF-SFE protocol into a committing phase and a
function evaluation phase and introduce a new phase in between where P1 and P2 convince
each other that the current input has already been used in a previous execution. Note that the
parties need to maintain a state variable Γ collecting the input commitments sent and received
in all earlier executions. During the j-th execution, given a list of input commitments (and the
corresponding inputs and randomness) for all the previous executions, party Pi can prove in ZK
that the input commitment generated in the current execution is for the same value as one of
the commitments collected previously; in case the input is repeated, party Pi simply omits the
ZK proof. Party P3−i also needs to collect the same set of commitments in order to verify the
statement proven by Pi.

A complete description of the compiler is depicted in Fig. 2. We prove the following result:

Theorem 5.2. Let πf = (π1
f , π

2
f ) be a commit-first protocol (w.r.t. C1,C2) securely evaluating

function f = (f1, f2), and assume that C1,C2 are perfectly binding and computationally hiding
commitment schemes and that (Pi,Vi) is a ZK argument system for the language Li. Then
π̂f ← Ψrr(πf , ˚rffl1, ˚rffl2, `) of Fig. 2 is a secure rate-revealing (˚rffl1, ˚rffl2)-limited protocol for f .

Proof. Consider an adversary A = (A1, . . . ,A`) corrupting party Pi during the ` executions
of π̂f . In particular, Aj represents A’s strategy during the j-th execution, and its output
distribution is denoted by real˚rffl

π̂f ,A(zj),i
(xj1, x

j
2, λ)j . We denote by real˚rffl̂πf ,A(z),i(x1,x2, λ, `) the

joint distribution of the output of all the Ajs combined. Note that each Aj passes the necessary
state information (i.e., her view) to Aj+1.

Rate-Revealing Compiler Ψrr:

Given as input a commit-first protocol (w.r.t. C1,C2) πf = (π1
f , π

2
f ), a rate ˚rffl = (˚rffl1, ˚rffl2), and a number of

executions `, the compiled protocol π̂f is made of three phases, described below. Party P1 and P2 keep the
state variables Γ1,Γ2 := ∅, respectively. For each execution j ∈ [`], π̂f proceeds as follows.

Committing Phase: Parties P1 and P2, holding respectively inputs xj1 and xj2, run the protocol π1
f yielding

the output ((xj1, r
j
1, γ

j
2 = C2(xj2; rj2)), (xj2, r

j
2, γ

j
1 = C1(xj1; rj1))).

Proof of Repeated-Input Phase: Consider the following language:

Li = {γ ∈ Ci : ∃(x, r, r′) s.t. γ = Ci(x; r) ∧ Ci(x; r′) ∈ Γ3−i},

and let (Pi,Vi) be a ZK argument system for Li. The following is executed for all i ∈ {1, 2}. When the
input xji of party Pi is not fresh—i.e., it has already been used in a previous execution—Pi plays the role
of the prover in (Pi,Vi). When the input xji is fresh, Pi just forwards the empty string ε. Also, party Pi
plays the role of the verifier in (P3−i,V3−i) (with P3−i being the prover and L3−i being the underlying
language). If the value ε is received or if the verification of the proof fails, Pi updates the rate by letting
˚rffl3−i := ˚rffl3−i − 1 and the state by letting Γi := Γi ∪ {γj3−i}. If ˚rffl3−i < 0, then party Pi output ⊥ and
aborts. Otherwise, if the verification is successful, the state and rate information will not be modified.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on the same inputs as in the committing phase,

yielding the output (yj1, y
j
2).

Figure 2: A compiler for rate-revealing rate-limited SFE.
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We describe a simulator S = (S1, . . . ,S`) in the ideal world that mimics A’s output. Our
simulator makes use of the simulator Scf = (S1

cf ,S2
cf) which exists due to the fact that our

compiler takes as input a CF-SFE protocol πf . The simulator S = (S1, . . . ,S`) runs a copy of
A, and keeps a state Γi initially set to be empty. The j-th execution is given below.

1. Sj takes (xji ,Γi, z
j) as input.

2. In the committing phase, Sj invokes S1
cf on input xji . The simulator S1

cf invokes Aj who
controls party Pi in π1

f . If S1
cf sends ⊥ to its CF-SFE TTP, Sj sends ⊥ to its own

trusted party leading to an abort of the execution. Otherwise, Sj receives x′ji , r
′j
i from

S1
cf and computes γ′ji = Ci(x

′j
i ; r′ji ). It also samples a random x′j3−i ∈ M3−i, computes

γ′j3−i = C3−i(x
′j
3−i; r

′j
3−i) using uniform randomness r′j3−i ∈ R3−i, and sends the result to

Aj .

3. Sj sends x′ji to its TTP, and receives (yji = fi(x
′j
1 , x

′j
2 ), σ3−i) back, where x′j3−i = xj3−i.

Recall that σ3−i shows the number of distinct inputs used by the honest party P3−i. If
σ3−i has been incremented since the last execution (this information is passed from Sj−1

to Sj), then Sj updates the state to Γi := Γi ∪ {γ′j3−i}. Otherwise, it internally runs the
ZK simulator Szk(γ′j3−i) proving to Aj that γ′j3−i ∈ L3−i. (Note that the last step involves
the state Γi.) Notice that Szk may itself need to rewind Aj . However, this is not an issue
because our simulator S invokes different simulators sequentially; in particular, Aj will
be in a consistent state when Szk terminates and thus S can proceed with the rest of the
simulation.

Sj also plays the role of the verifier in the zero-knowledge protocol (with Aj being the
prover). If the value ε is received, or in case the corresponding input x′ji is not used in
one of the previous executions (note that Sj can determine this by inspecting Γi), then
Sj updates the state to Γi := Γi ∪ {(x′ji , r

′j
i )}. Otherwise, the state is not modified. (Note

that at this stage Sj is not updating the state on the basis of the verification of the proof
itself.)

4. Finally, Sj invokes S2
cf on input (x′ji , r

′j
i , γ

′j
3−i); the simulator S2

cf itself runs Aj who controls
party Pi in π2

f . We emphasize S2
cf does not run a new instance of Aj but it continues

running the same instance that has been running so far. If S2
cf sends ⊥, Sj sends ⊥ to its

trusted party leading to an abort of the execution. Else, S2
cf sends the continue flag. Sj

replies (on behalf of the CF-SFE TTP) by sending to S2
cf , the output y

j
i it obtained earlier

in the simulation.

5. Afterwards, Sj passes yji to Aj and outputs whatever Aj does.

We now need to show that ideal˚rffl-rrf,S(z),i(xi,x3−i, λ, `) ≡c real˚rffl̂πf ,A(z),i(xi,x3−i, λ, `). By a stan-
dard hybrid argument (losing a factor 1/` in the computational distance), it suffices to show
indistinguishability for a single execution (i.e., the jth execution). Therefore, we need to show
that for all i ∈ {1, 2} and j ∈ [`]

ideal˚rffl-rrf,S(zj),i(x
j
i , x
′j
3−i, λ)j ≡c real˚rfflπ̂f ,A(zj),i(x

j
i , x

j
3−i, λ)j .

We consider a series of intermediate hybrid experiments.

Hybrid Hyb1
A(zj)(x

′j
i , x

′j
3−i, λ)j: In the first hybrid experiment, we replace Sj by Sj1 who con-

trols Pi in the ideal world. Essentially Sj1 is different from Sj merely in the way it updates
the state Γi. Namely, instead of looking at the output σ3−i and checking that x′ji is not
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used in one of the previous executions (cf. item 3. in the description of Sj), it first plays
the role of the verifier in the argument system as party P3−i would do in a real execution of
the protocol. Hence, if the verification fails or the value ε is received, the state is updated
as Γi := Γi ∪ {(x′ji , r

′j
i )}. The verification process is also applied to the proof returned by

the ZK simulator Szk, and the value γ′j3−i is eventually added to the state depending on the
outcome of the verification procedure. Otherwise, the state is not modified. Everything
else is identical to the previous simulation. Next, we argue that

ideal˚rffl-rrf,S(zj),i(x
′j
i , x

′j
3−i, λ)j ≡c Hyb1

f,A(zj),i(x
′j
i , x

′j
3−i, λ)j .

In fact, the modification above only affects the way Γi is updated. Denote with bad the
event that A is able to come up with an accepting proof for a false statement, i.e., A is
able to convince P3−i that a fresh input is equal to one of the previously used inputs. Note
that the distribution produced by the two experiments above is identical provided that
bad does not happen. Due to the soundness property of the ZK argument system, we must
conclude that bad happens at most with negligible probability, thus showing that the two
experiments are computationally indistinguishable.

Hybrid Hyb2
A(zj)(x

′j
i , x

j
3−i, λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who

controls Pi in the ideal world and at the same time plays the role of the TTP playing all
the roles by itself. As a result, Sj2 directly interacts with P3−i during the ideal execution
of the commit-first protocol. Essentially, Sj2 is identical to Sj1 with the exception that it
is able to compute and send the correct commitment γj3−i = C3−i(x

j
3−i; r

j
3−i) to Aj . Also,

Sj2 needs to simulate the values (σi, σ3−i) by itself. This is done as it would be done in
a real execution of the protocol. More precisely, σi (resp. σ3−i) is modified based on the
verification of the ZK argument for language Li (resp. L3−i). Here, the simulator will
also check whether the values σ1, σ2 exceed the rates ˚rffl1, ˚rffl2 and output ⊥ if so. Finally,
note that S2

cf is now invoked on the correct inputs, i.e., xj3−i and γ
j
3−i. Everything else is

analogous to the previous simulation. Next, we argue that

Hyb1
f,A(zj),i(x

′j
i , x

′j
3−i, λ)j ≡c Hyb2

f,A(zj),i(x
′j
i , x

j
3−i, λ)j .

We first argue that the simulation of the values (σi, σ3−i) is perfect. This is immediate
for the rate of the honest party σ3−i (as the honest party always produces a valid proof,
which is thus accepting by completeness of the argument system). As for the rate σi
corresponding to the corrupted party, it is sufficient to observe that the perfectly binding
property of Ci implies that the function f is evaluated on the very same input extracted
by the simulator. It follows that the only difference between the previous hybrid and the
hybrid world described above is that the real input of the honest party is used in the latter.
In particular, Sj2 feeds both S1

cf and S2
cf with the commitment C3−i(x

j
3−i; r

j
3−i) to the real

input xj3−i as opposed to an arbitrary input x′j3−i.

Given a PPT distinguisher D between the two hybrids, we can easily construct a PPT
distinguisher Dcom breaking the hiding property of the commitment scheme. Dcom takes as
input a commitment γ∗—which is either a commitment to xj3−i or to a random x′j3−i—and
perfectly emulates Sj2 except that it uses γ∗ in place of γj3−i. At the end of the simulation
Dcom outputs the same as D. This results in a perfect simulation, thus establishing the
computational indistinguishability of the two hybrids.

Note that we rely here on the fact that, in both worlds, the simulator emulates the ZK
proof using Szk as opposed to executing the real proof. In particular, the ZK simulator

22



does not need the parties’ private inputs for its simulation, and hence is not affected by
the aforementioned change in the inputs.

Hybrid Hyb3
A(zj)(x

′j
i , x

j
3−i, λ): We modify the previous hybrid world, by having Sj3 provide an

actual ZK proof that an input is re-used from a previous execution or to send an empty
string ε if this is not case. For this purpose, Sj3 uses the state (Γ1,Γ2) and the current
inputs xj1, x

j
2. The zero-knowledge property of the proof system automatically guarantees

that the view generated using the real proof and the simulator Szk are computationally
indistinguishable which in turn implies the computational indistinguishability of the output
of the current hybrid experiment and the previous one. Thus, we have

Hyb2
f,A(zj),i(x

′j
i , x

j
3−i, λ)j ≡c Hyb3

f,A(zj),i(x
′j
i , x

j
3−i, λ)j .

To conclude the proof, it suffices to note that Hyb3
f,A(zj),i(x

′j
i , x

j
3−i, λ)j exactly equals the output

distribution of Aj in the real world, thus proving that π̂f ← Ψrr(πf , ˚rffl1, ˚rffl2, `) is a secure rate-
revealing (˚rffl1, ˚rffl2)-limited protocol for function f .

5.3 A Pattern-Revealing Compiler

In this section, we introduce a more efficient compiler Ψpr for designing rate-limited SFE, a
detailed description of which appears in Fig. 3. Given as input a CF-SFE protocol, our compiler
Ψpr outputs a weaker form of rate-limited SFE where each party not only learns the current
rate for its counterpart during each execution, but also the pattern of already used inputs (see
Section 4). The main advantage is that this new compiler adds very little overhead to the
original CF-SFE.

The overview. The idea is as follows. Besides their input, each party also stores a secret key
for a PRF (with a different key for each party). Before invoking the commit-first SFE protocol,
each player generates the randomness it needs for the committing phase by applying the PRF
on the chosen input for this execution. With this modification in place, the committing phase
for each party becomes deterministic. If a party uses the same input in two executions, the
two commitments its counterpart receives will be identical. As a result, to check a repeated
input, each party can compare the commitment for the current execution with those used in
the previous ones, and determine if the input is new or being repeated (hence also learning
the pattern of used inputs). Note that the commitments still provide the required hiding and
binding properties. The only overhead imposed by this compiler is the application of a PRF to
generate the randomness for the committing phase.

A careful reader might observe that a malicious party is not obliged to use the PRF, and
thus it could either repeat a previously used input while changing the commitment or change the
input while repeating a previously used commitment. Note, however, that the former case does
not constitute an attack, as the adversary is actually decreasing its own rate even when using a
repeated input.5 The latter case, instead, contradicts the binding property of the commitment
scheme.

Theorem 5.3. Let πf = (π1
f , π

2
f ) be a commit-first SFE (w.r.t. C1,C2) securely evaluating

function f = (f1, f2), and assume that C1,C2 are perfectly binding and computationally hiding
commitment schemes, and that PRF is a pseudo-random function. Then π̂f ← Ψpr(πf , ˚rffl1, ˚rffl2, `)
of Fig. 3 is a secure pattern-revealing (˚rffl1, ˚rffl2)-limited SFE for f .

5Looking ahead, this behavior can be simulated by extracting the malicious party’s input and randomness.
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Pattern-Revealing Compiler Ψpr:

Given as input a commit-first protocol (w.r.t. C1,C2) πf = (π1
f , π

2
f ), a rate ˚rffl = (˚rffl1, ˚rffl2), and a number of

executions `, the compiled protocol π̂f consists of three phases, described below. Party P1 and P2 hold private
keys k1 and k2 (for a PRF) and the state variables Γ1,Γ2 := ∅, respectively. For each execution j ∈ [`], π̂f
proceeds as follows:

Randomness Generation Phase: Parties P1 and P2, holding respectively inputs xj1 and xj2 compute values
rj1 := PRF(k1, x

j
1) and rj2 := PRF(k2, x

j
2), respectively.

Committing Phase: Parties P1 and P2, run the protocol π1
f on the same inputs as in the first phase yielding

the output ((xj1, r
j
1, γ

j
2 = C2(xj2; rj2)), (xj2, r

j
2, γ

j
1 = C1(xj1; rj1))) where rj1, and r

j
2 are from the first phase.

If γj3−i /∈ Γi, party Pi adjusts his rate by letting ˚rffli = ˚rffli − 1. Party Pi then updates its state Γi =

Γi ∪ {(γj3−i, j)}. If ˚rffli equals 0, abort the execution.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on the same inputs as in the first phase, yielding

the output (yj1, y
j
2).

Figure 3: A compiler for pattern-revealing rate-limited SFE.

Proof. Similar to the proof of Theorem 5.2, we consider an adversary A = (A1, . . . ,A`) cor-
rupting party Pi during the ` executions of π̂f where Aj represents A’s strategy during the j-th
execution. Again, we denote by real˚rffl-prπ̂f ,A(z),i(x1,x2, λ, `) the joint distribution of the output of
all the Ajs combined.

We describe a simulator S = (S1, . . . ,S`) in the ideal world that mimics A’s output. Our
simulator makes use of the simulator Scf = (S1

cf ,S2
cf) which exists due to the fact that our

compiler takes as input a commit-first SFE protocol πf . The simulator S = (S1, . . . ,S`) runs a
copy of A, and keeps a state Γi and a list Γ′. Both Γi and Γ′ are initially set to be empty. The
j-th execution of S is given below.

1. Sj takes (xji ,Γi,Γ
′, zj) as input.

2. In the randomness-generation phase, Sj does nothing.

3. In the committing phase, Sj invokes S1
cf on input xji . The simulator S1

cf invokes Aj who
controls party Pi in π1

f . If S1
cf sends ⊥ to its CF-SFE TTP, Sj sends ⊥ to its own trusted

party leading to an abort of the execution. Otherwise, Sj receives x′ji , r
′j
i from S1

cf .

4. Sj sends x′ji to its TTP, and receives (yji = fi(x
′j
1 , x

′j
2 ), J3−i) back, where x′j3−i = xj3−i.

Recall that J3−i indicates an index J3−i < j of the first execution with its counterpart
P3−i where P3−i used the same input as in this jth execution. Let us denote t := J3−i.

5. Now, Sj computes γ′ji = Ci(x
′j
i ; r′ji ). If (γ′ji , ∗) /∈ Γi then Sj updates the state Γi by letting

Γi := Γi ∪ (γ′ji , j).

If t < j, Sj sets x′j3−i := x′t3−i for input x
′t
3−i previously chosen in the t-th execution, looks for

the element (x′j3−i, r
′) ∈ Γ′, and computes γ′j3−i = C3−i(x

′j
3−i; r

′); else it computes γ′j3−i =

C3−i(x
′j
3−i; r

′j
3−i) using uniformly sampled input x′j3−i ∈ M3−i and uniform randomness

r′j3−i ∈ R3−i. Thus, Γ′ (resp. Γ3−i) is updated to Γ′ := Γ′ ∪ (x′j3−i; r
′j
3−i) (resp. Γ3−i :=

Γ3−i ∪ (γ′j3−i, j)), and Sj sends γ
′j
3−i to Aj .

6. Finally, Sj invokes S2
cf on input (x′ji , γ

′j
3−i); S2

cf itself runs Aj who controls party Pi in π2
f .

If S2
cf sends ⊥, Sj sends ⊥ to its trusted party leading to an abort of the execution. Else,
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S2
cf sends the continue flag. Sj replies (on behalf of the CF-SFE TTP) by sending to S2

cf ,
the output yji he obtained earlier in the simulation.

7. Afterwards, Sj passes yji to Aj and outputs whatever Aj does.

We now need to show that ideal˚rffl-prf,S(z),i(xi,x3−i, λ, `) ≡c real˚rffl̂πf ,A(z),i(xi,x3−i, λ, `). By a stan-
dard hybrid argument (losing a factor 1/` in the computational distance), it suffices to show
indistinguishability for a single execution (i.e., the jth execution). Therefore, we need to show
that for all i ∈ {1, 2} and j ∈ [`]

ideal˚rffl-pr
f,S(zj),i

(x′ji , x
′j
3−i, λ)j ≡c real˚rfflπ̂f ,A(zj),i(x

′j
i , x

j
3−i, λ)j .

We consider two intermediate hybrid experiments. In the first experiment, we modify the sim-
ulator by generating the random coins for the commitments by an application of a PRF on the
input. We argue that this modification is not distinguishable by the adversary Aj due to the
pseudo-randomness property of the PRF. In the second experiment, we assume that in contrast
to the simulation above, the real input of the honest party is used in the simulation. We argue
that this modification is not distinguishable by the adversary Aj due to the hiding property
of the commitment scheme. It is easy to see that the distribution of Aj ’s output in the last
experiment is identical to the distribution of its output in the real protocol, which concludes our
proof. Details follow.

Hybrid Hyb1
A(zj)(x

′j
i , x

′j
3−i, λ)j: In the first hybrid experiment, we replace Sj by Sj1 who con-

trols Pi in the ideal world. Essentially, Sj1 is different from Sj merely in one point. In-
stead of computing the commitment γ′j3−i = C3−i(x

′j
3−i; r

j
3−i)—which in the simulation

belongs to the honest party—using a uniformly sampled randomness rj3−i, it computes
rj3−i by using a PRF (cf. item 5 in the description of Sj). More precisely, Sj1 computes
rj3−i := PRF(k3−i, x

′j
3−i) using secret key k3−i ∈ K which is sampled initially by the simu-

lator. Note that we explicitly do not instantiate the randomness of the malicious party Pi
by a PRF since in the real world the party could use possibly non-uniform randomness.

Next, we argue that

ideal˚rffl-pr
f,S(zj),i

(x′ji , x
′j
3−i, λ)j ≡c Hyb1

f,A(zj),i(x
′j
i , x

′j
3−i, λ)j ,

which intuitively follows by security of the PRF. In fact, the modification above only affects
the way the random coins of the commitments for the honest party are generated. More
precisely, given a PPT distinguisher D telling apart the two experiments we construct
another PPT distinguisher Dprf breaking security of the PRF as follows. Dprf behaves
exactly as Sj1 , except when it has to compute the commitment γ′j3−i which is now generated
by first forwarding the value x′j3−i to the target oracle and then using as randomness the
value rj3−i received from the oracle. Finally, at the end of the last execution, Dprf outputs
the same as D.
Notice that the above simulation is perfect, in that depending on Dprf ’s oracle being a
truly random function or a PRF, the simulation yields exactly the same distribution as
in the ideal experiment or in the first hybrid experiment (respectively). Thus, the two
experiments are computationally close.

Hybrid Hyb2
A(zj)(x

′j
i , x

j
3−i, λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who

controls Pi in the ideal world and at the same time plays the role of the TTP. As a result,
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Sj2 directly interacts with P3−i during the ideal execution of the commit-first protocol.
Essentially, Sj2 is identical to Sj1 with the exception that it is able to compute and send
the correct commitment γj3−i = C3−i(x

j
3−i; r

j
3−i).

Sj2 needs also to simulate the values (Ji, J3−i) by itself. This is done as it would be done
in a real execution of the protocol. More precisely, Ji (resp. J3−i) is the second entry of
(γi, ∗) ∈ Γi (resp. (γ3−i, ∗) ∈ Γ3−i). Note that an entry (γi, ∗) must be in Γi since Sj1 , and
thus Sj2 , updates the state Γi consistently.

The simulator will also check whether the values J1, J2 exceed the rates ˚rffl1, ˚rffl2 and output
⊥ if so. Finally, note that S2

cf is now invoked on the correct inputs, i.e., xj3−i and γj3−i.
Everything else is analogous to the previous simulation.

Next, we argue that

Hyb1
f,A(zj),i(x

′j
i , x

′j
3−i, λ)j ≡c Hyb2

f,A(zj),i(x
′j
i , x

j
3−i, λ)j .

We first argue that the simulation of the values (Ji, J3−i) is perfect. This is immediate
for the index of the honest party J3−i (as the honest party always computes the random-
ness for the commitment by invoking the PRF on its own input). As for the index Ji
corresponding to the corrupted party, it is sufficient to observe that the perfectly binding
property of Ci implies that the function f is evaluated on the very same input extracted
by the simulator. It follows that the only difference between the previous hybrid and the
hybrid world described above is that the real input of the honest party is used in the latter.
In particular, Sj2 feeds both S1

cf and S2
cf with the commitment C3−i(x

j
3−i; r

j
3−i) to the real

input xj3−i as opposed to a random input x′j3−i.

Given a PPT distinguisher D between the two hybrids, we can easily construct a PPT
distinguisher Dcom breaking the hiding property of the commitment scheme. Dcom takes as
input a commitment γ∗—which is either a commitment to xj3−i or to a random x′j3−i—and
perfectly emulates Sj2 except that it uses γ∗ in place of γj3−i. At the end of the simulation
Dcom outputs the same as D. This results in a perfect simulation, thus establishing the
computational indistinguishability of the two hybrids.

To conclude the proof, it suffices to note that Hyb2
f,A(zj),i(x

′j
i , x

j
3−i, λ)j exactly equals the output

distribution of Aj in the real world, thus proving that π̂f ← Ψpr(πf , ˚rffl1, ˚rffl2, `) is a secure pattern-
revealing (˚rffl1, ˚rffl2)-limited protocol for function f .

6 Making the Compilers Stateless

One drawback of the compilers described in the previous section is that both P1 and P2 need
to maintain state. To some extent, this assumption is necessary. It is not too hard to see that
RL-SFE is impossible to achieve if neither party keeps any state information about previous
executions. However, as discussed earlier, in many natural client-server applications of SFE in
the real world, it is reasonable to assume that the servers keep state, while the clients typically
do not.

In this section, we show how to modify the compilers from Section 5 in such a way that only
one of the parties needs to keep state. Our solution is efficient and works for all three compilers
we discussed earlier. Throughout this section, we assume P1 is the client and P2 is the server.
Server P2 receives no output (as it is usually the case in the client-server setting) and wants to
enforce the rate limit ˚rffl for the client. Although P1 does not maintain any state, it needs to
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make sure that P2 handles the rate honestly. On the other hand, the server also needs to be
convinced that the client is not cheating, by exceeding the rate limit ˚rffl.

The overview. Note that in the stateful versions of our compilers, P1 needs to keep state in
order to generate a ZK proof of repeated inputs, and verify the corresponding statement being
proven by P2. Since we are only enforcing the rate for P1, we can eliminate the latter ZK proofs,
and focus on the first one. Although our approach is general, for the sake of simplicity, we
describe it in relation to our rate-revealing compiler from Section 5.2. The same idea can be
applied to make our rate-hiding compiler (cf. Section 5.1) stateless.6 The basic idea is simple:
We ask the server to store the list of all the commitments previously sent by P1 who sends the
list to the client, during each run. For this simple approach to work, we need to address several
important issues:

• For the client to learn the current rate and the previously queried inputs before each
execution, it needs to store these values on the server side in a secure way. This can be
easily addressed by having P1 encrypt the message and randomness for each commitment
(using a symmetric-key encryption scheme) and send it along with the commitment itself.
P1 will just keep the private key for the encryption scheme.

• The client needs to verify that the list of commitments it receives from the server are the
original commitments it sent in the previous executions. To do so, in each run P1 computes
a MAC φ of the string obtained by hashing all the commitments (i.e., the concatenation
of the list it obtains from the server and the one it creates in the current execution) and
sends it to the server. In each execution, it requests this MAC, the list of commitments
along with the ciphertext storing the inputs and random coins from the server. Due to the
unforgeability of the MAC, the server will only be able to use a correct list of commitments,
previously issued and MACed by the client itself.

• Clearly, the above described protocol allows the server to cheat and only send a subset
of the commitment list, along with a tag generated for that subset in one of the earlier
executions, to the client. Since the client does not keep any state, it will not be able
to detect this attack. For technical reasons, this will require us to slightly modify the
description of the ideal world in the definition of rate-revealing SFE.7

However, a more careful inspection shows that the above issue does not really constitute an
attack. In fact, the tag φ already binds the current rate to the current list of commitments,
and, in particular, makes it hard for the server to cook-up a state such that the verification
of the tag is successful, and the client will think its rate is already exceeded when it is
not. Essentially, coming up with such a state requires to either find a collision in the hash
function, or to forge a tag for a fake list of commitments.

A detailed description of the compiler is depicted in Fig. 4.
Let us specify the ideal world for (stateless) rate-revealing SFE a bit more precisely. In case

of a corrupted P1, the ideal distribution is exactly the same as the one defined in Section 4. In
case P2 is corrupted, at each execution j ∈ [`], the ideal adversary Sj is allowed to specify (along
with the modified input x′j2 ) an index t ≤ j; this will cause the TTP to use X ′1 = X1[1, . . . , t]
(i.e., the first t elements of X1) to compute the rate of party P1 at the j-th execution. We speak
of stateless rate-revealing SFE.

6In the client-server scenario, our pattern-revealing compiler from Section 5.3 is already stateless.
7Let us emphasize that we can achieve the “full-fledged” notion of rate-revealing SFE if we let the client store

(and update) the hash of the state that was recovered in the last execution. This requires the client to keep (and
update) a state of constant size.
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Rate-Revealing Compiler Ψrr (stateless version):

Let (S,T,V) be a MAC, (G,E,D) be an SKE scheme and {Hι}ι∈I be a set of collision-resistant hash functions.
Party P1 stores values (k, s, ι) where s ← S(1λ), k ← G(1λ), and ι ← I(1λ). Given as input a commit-first
protocol (w.r.t. C) πf = (π1

f , π
2
f ) for function f = (f1,−), a rate ˚rffl, and a number of executions `, the compiled

protocol π̂f consists of four phases, described below. Party P2 initializes the state variable Σ := ∅. For each
execution j ∈ [`], π̂f proceeds as follows.

Recovery of State Phase: Party P1 receives the state Σ = {Γ,Ω, φ} from P2, where

Γ = {γ1, . . . , γj−1} Ω = {(c1, c̄1), . . . , (cj−1, c̄j−1)},

and φ is a tag. Hence, P1 computes h = Hι(γ
1
1 , . . . , γ

j−1
1 ) and runs V(s, h, φ); if the verification fails,

P1 sends ⊥ to P2 and halts the execution. Otherwise, it uses the key k to extract xi1 = D(k, ci) and
ri1 = D(k, c̄i) for all i ∈ [j−1]. Letting Λj−1 = {(xi1, ri1)}ui=1, where u ∈ N denotes the number of distinct
xi1’s values, P1 proceeds to the next step.

Committing Phase: Party P1 (holding input xj1) runs the protocol π1
f yielding the output ((xj1, r

j
1), γj =

C(xj1; rj1)). It also computes cj = E(k, xj1), c̄j = E(k, rj1) and sends the result to P2.

Proof of Repeated-Input Phase: If xj1 is indeed being repeated, party P1 proceeds to give a ZK proof of
this fact, using the language L as described in the protocol of Section 5.2. (Notice that this involves the
recovered state Λj−1.) Otherwise, P1 checks that u ≤ ˚rffl and forwards the empty string ε if this is the
case. If the rate is exceeded, P1 outputs ⊥ and aborts. Provided that it did not abort, P1 updates the
hash value h := Hι(γ

1, . . . , γj), computes φ = T(s, h) and forwards φ to P2.

Party P2 verifies the proof and updates the rate ˚rffl as specified in the protocol from Section 5.2. Moreover,
it updates Σ by letting Γ := Γ ∪ {γj}, Ω := Ω ∪ {(cj , c̄j)} and storing the new φ.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on input xj1 (the same as in the committing

phase) and xj2, yielding the output (yj1,−).

Figure 4: Stateless version of the rate-revealing compiler Ψrr from Section 5.

Theorem 6.1. Let πf = (π1
f , π

2
f ) be a commit-first protocol (w.r.t. C) securely evaluating

function f = (f1,−), and assume that C is a perfectly binding and computationally hiding
commitment scheme, that (S,T,V) is EUF-CMA, that (G,E,D) is CPA-secure, that {H}ι∈I is
a collision-resistant hash functions family, and that (P,V) is a ZK argument system for the
language L. Then, π̂f ← Ψrr(πf , ˚rffl, `) is a secure stateless rate-revealing ˚rffl-limited protocol for f .

Proof. Since the protocol is asymmetric, we need to deal with the corruption of P1 and P2

separately.

The client is corrupted. Assuming P2 is honest, in each execution j ∈ [`] party P1 can
perfectly reconstruct the state Λj−1 thanks to the secret key k for the SKE scheme. Apart from
the way the state is reconstructed, the compiler is identical to the transformation of Section 5.2.
Hence, the same simulator S in the proof of Theorem 5.2 will do here.

The server is corrupted. Consider an adversary A = (A1, . . . ,A`) corrupting party P2

during the ` executions of π̂f . We describe a simulator S = (S1, . . . ,S`) in the ideal world—
as discussed in Section 4—that mimics A’s output. S initially picks s ← S(1λ), k ← G(1λ),
ι← I(1λ), runs a copy of A, and keeps an array Σ initially set to be empty. The j-th execution
is given below.

1. Sj takes (Σ, s, k, ι, xj2, z
j) as input.
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2. In the recovery of state phase, Sj receives (Γ′,Ω′, φ′) from Aj . Hence, it checks whether
there exists an entry in Σ such that Σ[i] = (Γ′,Ω′, φ′), for i ∈ [j − 1]. If the check fails, Sj
sends ⊥ to Aj and halts the simulation, otherwise, it proceeds to the next step.

3. In the committing phase, Sj invokes S1
cf on input xj2. The simulator S1

cf invokes Aj who
controls party P2 in π1

f . If S1
cf sends ⊥ to its CF-SFE TTP, Sj sends ⊥ to its own trusted

party leading to an abort of the execution. Otherwise, Sj receives x′j2 , r
′j
2 from S1

cf .

Sj also samples a random x′j1 ∈ M, computes γ′j1 = C(x′j1 ; r′j1 ) using uniform random-
ness r′j1 ∈ R, encrypts c′j = E(k, x′j1 ), c̄′j = E(k, r′j1 ), lets Ω := Ω ∪ {c′j , c̄′j} and sends
(γ′j1 , c

′j , c̄′j) to Aj .

4. Let Γ′ = {γ′11 , . . . , γ′t1 }, for some t ≤ j − 1. Sj sends (x′j2 , t) to its TTP. If the TTP
returns ⊥, meaning that the rate is exceeded, the simulator sends also ⊥ to Aj and aborts.
Otherwise, Sj receives (−, σj) back.

If σj has been incremented w.r.t. σt (this information is passed from St to Sj), then
Sj sends to Aj the value ε. Otherwise, the simulator invokes the ZK simulator for the
language

L = {γ ∈ C : ∃(x′j1 , r
′j
1 , r

′′j
1 ) s.t. γ′j1 = C(x′j1 ; r′j1 ) ∧ C(x′j1 ; r′′j1 ) ∈ Γ′},

with Aj acting as the verifier. Finally, Sj computes the value φ′ ← T(s,Hι(γ
′1
1 , . . . , γ

′t
1 ,

γ′j1 )). The value φ′ is forwarded to Aj and the state is updated as Γ := Γ ∪ {γ′j} and
Σ[j] := {Γ,Ω, φ}.

5. Sj invokes S2
cf on input (x′j2 , r

′j
2 , γ

′j
1 ); S2

cf itself runs Aj who controls party P2 in π2
f . We

emphasize S2
cf does not run a new instance of Aj but it continues with running the same

instance that has been running so far. If S2
cf sends ⊥, Sj sends ⊥ to its trusted party

leading to an abort of the execution. Else, S2
cf sends the continue flag. Sj replies (on

behalf of the CF-SFE TTP) by sending the empty string to S2
cf .

6. Finally, Sj outputs whatever Aj does.

We need to argue that for all j ∈ [`]

ideal˚rffl-rrf,S(zj),2(x′j1 , x
′j
2 , λ)j ≡c real˚rfflπ̂f ,A(zj),2(xj1, x

′j
2 , λ)j .

We consider a series of intermediate hybrid experiments.

Hybrid Hyb1
A(zj)(x

′j
1 , x

′j
2 , λ)j: In the first hybrid experiment, we replace Sj by Sj1 who controls

P2 in the ideal world. Sj1 is identical to Sj , with the only difference that it verifies the
state (Γ′,Ω′, φ′) as P1 would do in a real execution. Namely, upon input (Γ′,Ω′, φ′), the
simulator computes h′ = Hι(γ

′1, . . . , γ′t) and runs V(s, h′, φ′). If the verification fails, Sj1
sends ⊥ to Aj and halts the simulation; otherwise, it continues the simulation as Sj would
do. Next, we show that

ideal˚rffl-rrf,S(zj),2(x′j1 , x
′j
2 , λ)j ≡c Hyb1

A(zj)(x
′j
1 , x

′j
2 , λ)j .

In fact, there is a difference in the two hybrid experiments only when either of the following
bad events happen:

• bad1: The event becomes true whenever Aj finds a collision for some of the hash
values h′;
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• bad2: The event becomes true whenever Aj forges a tag φ′ for some Γ′ which is
different than the Γ′ generated by the honest client.

Let bad = bad1 ∨ bad2. It is easy to see that the two hybrids are identically distributed
provided that bad does not happen. By a union bound it is thus sufficient to bound the
probability of events bad1 and bad2. Clearly, any PPT distinguisher provoking event bad1

with non-negligible probability can be turned into a PPT adversary breaking collision
resistance of the hash function with roughly the same probability; thus bad1 only hap-
pens with negligible probability. Similarly, any PPT distinguisher provoking event bad2

with non-negligible probability can be turned into a PPT adversary breaking EUF-CMA
of the MAC with roughly the same probability; thus bad2 only happens with negligible
probability. We conclude that the two experiments are computationally close.

Hybrid Hyb2
A(zj)(x

j
1, x
′j
2 , λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who con-

trols P2 in the ideal world and at the same time plays the role of the TTP playing all
the roles by itself. As a result, Sj2 directly interacts with P1 during the ideal execution of
the commit-first protocol. Essentially, Sj2 is identical to Sj1 with the exception that it is
able to compute and send the correct commitment γj1 = C(xj1; rj1) and the right ciphertext
c′j = E(k, xj1) to Aj . Also, Sj2 needs to simulate the value σj by itself. This is done as it
would be done in the real protocol, by extracting the inputs in Λj−1 with the help of the
secret key k and verifying the proof of Aj . Finally, note that S2

cf is now invoked on the
correct inputs, i.e., xj1 and γj1. Everything else is analogous to the previous simulation.
Next, we claim that

Hyb1
A(zj)(x

′j
1 , x

′j
2 , λ)j ≡c Hyb2

A(zj)(x
j
1, x
′j
2 , λ)j .

We first argue that the simulation of the value σj is perfect. This is because the perfectly
binding property of C implies that the function f is evaluated on the very same input
extracted by the simulator. It follows that the only difference between the previous hybrid
and the hybrid world described above is that the real input of the honest party is used in
the latter. In particular, Sj2 feeds both S1

cf and S2
cf with the commitment C(xj2; rj2) to the

real input xj2 as opposed to an arbitrary input x′j2 ; analogously the ciphertext c′j contains
an encryption of xj2.
However, due to the hiding property of the commitment and the CPA-security of the
SKE scheme, these two views are computationally indistinguishable. (In particular any
distinguisher between the two experiments can be turned into an adversary breaking either
the hiding property of the commitment or the CPA-security of the SKE scheme.) We rely
here on the fact that, in both worlds, the simulator emulates the ZK proof using Szk as
opposed to executing the real proof. In particular, the ZK simulator does not need the
parties’ private inputs for its simulation, and hence is not affected by the aforementioned
change in the inputs.

Hybrid Hyb3
A(zj)(x

j
1, x
′j
2 , λ): We modify the previous hybrid world, by having Sj3 provide an

actual ZK proof that an input is re-used with respect to the state Σ′ declared by the
server, or to send an empty string ε if this is not case. The zero-knowledge property of
the proof system automatically guarantees that the view generated using the real proof
and the simulator Szk are computationally indistinguishable which in turn implies the
computational indistinguishability of the output of the current hybrid experiment and the
last. Thus, we have

Hyb2
f,A(zj),i(x

j
1, x
′j
2 , λ)j ≡c Hyb3

f,A(zj),i(x
j
1, x
′j
2 , λ)j .
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To conclude the proof, it suffices to note that Hyb3
f,A(zj),i(x

j
1, x
′j
2 , λ)j exactly equals the output

distribution of Aj in the real world, thus proving that π̂f ← Ψrr(πf , ˚rffl, `) is a secure (stateless)
rate-revealing ˚rffl-limited protocol for function f .

7 Rate-Limited OPE

Hazay and Lindell [HL09] design an efficient two-party protocol for oblivious polynomial eval-
uation (OPE) with security against malicious adversaries. In an OPE protocol, the first party
holds a value x while the second party holds a polynomial p of degree d. Their goal is to let the
first party learn p(x) without revealing anything else. The protocol takes advantage of an ad-
ditively homomorphic encryption scheme (Paillier’s encryption) and efficient ZK proofs of a few
statements related to the encryption scheme. While the authors (only) prove security against
malicious adversaries, we observe that, with a small modification, their construction is indeed a
commit-first protocol for OPE as well.

First party’s commitment. Consider an additively homomorphic encryption scheme (G,E,
D). The first few steps performed by the first party (the party holding the value x) are as follows:
(i) it runs the key generation for the encryption scheme to generate a key pair (pk , sk)← G(1λ),
accompanied by a ZK proof of knowledge of the secret key; (ii) then, it encrypts powers of x,
i.e. E(pk , x),E(pk , x2), . . . ,E(pk , xd), and sends the resulting ciphertexts along with a ZK proof
of the validity of the ciphertexts to the other party.

We observe that sending E(pk , x) constitutes a commitment by the first party to its input
t. This commitment scheme realizes the ideal functionality of the first phase in our definition of
commit-first protocols. (Recall that this means the simulator can extract both the input and the
randomness used to generate the commitment.) In particular, a careful inspection of the security
proof of [HL09] reveals that the simulator can extract both x and the randomness used to encrypt
it during the simulation. Extracting the randomness is possible since in Paillier’s encryption
scheme, given the secret key sk and a ciphertext c, one can recover both the randomness and
the message.

Second party’s commitment. The commitment of the second party to its input polynomial
is slightly more subtle, and requires a small modification to the original design. In the first few
steps, the second party does the following: (i) it runs the key generation to generate a key pair
(pk ′, sk ′)← G(1λ), accompanied by a ZK proof of knowledge of the secret key; (ii) it computes
((E(pk ′, q1),E(pk ′, p − q1)), . . . , (E(pk ′, qs),E(pk ′, p − qs)) where qi’s are random polynomials of
degree d for some security parameter s; (iii) it sends all the ciphertext pairs along with ZK
proofs of the fact that the homomorphic addition of every pair encrypts the same polynomial
(i.e., p), to the first party. We need to slightly modify this step to realize our ideal commitment
functionality: For the first pair of ciphertexts, the second party will also include a ZK proof of
validity of (E(pk ′, q1),E(pk ′, p− q1)).

The pair of ciphertexts (E(pk ′, q1),E(pk ′, p − q1)) and the accompanied ZK proof of their
validity, constitute the commitment by the second party to its input polynomial p. Once again,
we note that the simulator in the proof is able to extract q1, p, and the randomness used in the
two encryptions, due to the randomness recovering property of Paillier’s encryption. The proof
of security provided in [HL09] can be easily modified to show the commit-first property of the
above-mentioned variant of their OPE construction.

Claim 7.1. The modified oblivious polynomial evaluation protocol of [HL09] is a commit-first
SFE with security against malicious adversaries.
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In the following subsections, we explain how to derive rate-limited OPE protocols from the
scheme of [HL09], by giving concrete instantiation of our compilers from Section 5 and 6. In
order to simplify the exposition, we consider the case of rate-revealing OPE first.

7.1 Rate-Revealing OPE

Consider our rate-revealing compiler from Section 5.2. A proof of repeated-input, here, is equiv-
alent to proving a statement for the following language:

Lope(n) =

{
(pk , ĉ, c1, . . . , cn) : ∃λ, r s.t. (pk , sk)← G(1λ; r) and
(D(sk , ĉ) = D(sk , c1) ∨ . . . ∨ D(sk , ĉ) = D(sk , cn))

}
,

where the ciphertexts c1, . . . , cn are encryptions of the inputs for n previous executions of the
OPE protocol. The ciphertext ĉ is the encryption of the input for the current execution.

Given language Lope, the idea is to have the prover compute E(pk , (m̂−m1) · . . . · (m̂−mn)),
prove correctness of this computation, and show that the final ciphertext is an encryption of
zero. Consider the following languages:

Lzero = {(pk , c) : ∃r s.t. c = E(pk , 0; r)},

Lmult =

{
(pk , c′, c′′, c) : ∃(m′,m′′, r′, r′′, r) s.t. c′ = E(pk ,m′; r′)∧
∧c′′ = E(pk ,m′′; r′′) ∧ c = E(pk ,m′ ·m′′; r)).

}
Using the protocols in [DJ01], a proof for Lmult requires 15 exponentiations and a proof for Lzero

requires 8 exponentiations.
Given proof systems for the above languages, our proof πope can be constructed as follows.

Protocol πope (ZK proof for Lope(n))
• Joint statement: pk and (ĉ, c1, . . . , cn)

• Auxiliary inputs for the prover: sk
• Execution steps:

1. The prover sets e1 := ĉ −h c1. Note that ĉ and c1 are encryptions
obtained from an additive homomorphic encryption scheme, and −h
denotes homomorphic subtraction. Therefore, the prover can derive
the difference between the corresponding plaintexts in encrypted form.

2. For i = 2 . . . n, the prover
(a) computes di := ĉ−h ci;
(b) computes ei = E(pk ,D(sk , ei−1) · D(sk , di));
(c) proves that (ei−1, di, ei) ∈ Lmult.

3. The prover proves that en ∈ Lzero.

Proposition 1. Assume πmult (resp. πzero) implements a ZK argument for languages Lmult

(resp. Lzero). Then πope is a ZK argument for Lope(n).

Proof Sketch. We need to show completeness, soundness and zero-knowledge.
Completeness. Correctness is easily shown. If there exists an index i ∈ [n] such that
D(sk , ĉ) = D(sk , ci), then di is an encryption of 0. Since in step (2c) the prover shows, us-
ing πmult, that di is a divisor of ei and ei−1, this yields essentially that di is a factor of en. Thus,
by correctness of πzero the prover provides a valid proof.
Soundness. The prover is not able to proof a wrong statement but with negligible probability.
In particular, if ĉ encrypts a value different from all other plaintexts but en is indeed an encryp-
tion of 0, then it must have given a valid proof for a wrong statement for Lmult. That is, one of
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the divisors di’s (or e1) encrypts 0. This contradicts soundness of πmult. On the other hand, the
prover needs to provide a valid proof for en ∈ Lzero, which is also computationally hard since
πzero is computationally sound by assumption.
Zero-Knowledge. The prover communicates with the verifier only when invoking the ZK pro-
tocols πmult and πzero. Since both protocols satisfy the zero-knowledge properties, the sequential
execution of both protocols preserves zero-knowledge.

7.2 Rate-Hiding OPE

Next, we explain how to derive a rate-hiding rate-limited OPE protocol from the scheme
of [HL09], by giving a concrete instantiation of our compiler from Section 5.1. Note that besides
a standard proof of the statement “a ciphertext is a valid encryption of bit b", in our rate-hiding
compiler we also need proofs of membership in the following two languages:

Lrate˚rffl (n) =

{
(pk , c1, . . . , cn) : ∃λ, r s.t. (pk , sk)← G(1λ; r) and∑

1≤i≤nD(sk , ci) < ˚rffl
}

and the complement of the Lope(n) language (see Section 7.1), i.e.:

Lope(n) =

{
(pk , ĉ, c1, . . . , cn) : ∃λ, r s.t. (pk , sk)← G(1λ; r) and
(D(sk , ĉ) 6= D(sk , c1) ∧ . . . ∧ D(sk , ĉ) 6= D(sk , cn))

}
.

Given appropriate proofs for these languages, one can apply the techniques of [CDS94],
to efficiently construct a proof for any conjunctive and/or disjunctive formula over statements
proved in the components. As a result, we only need to show proofs for the above two languages.

We first show that in our case, proof of membership in Lrate˚rffl can in fact be reduced to a proof
for the language Lope(n), and then describe a proof for the latter. To observe why this is the
case, note that in our rate-hiding compiler ci’s are encryptions of 0 and 1. Thus, we compute
the following n ciphertexts c′i =

∑
1≤j≤i cj , where the sum represent the additive homomorphic

operation. It is easy to see that there is an encryption of t among the c′is if and only if there
are at least t encryptions of 1 among the cis. As a result, Lrate˚rffl (n) for (pk , c1, . . . , cn) reduces to
Lope(n) for (pk , c′1, . . . , c

′
n).

It remains to show a proof for Lope(n). The proof strategy is the same as the complement
language discussed above until the last step. In the last step, instead of proving that the resulting
ciphertext is encryption of 0, we need to prove that it is encryption of a non-zero. While it is
possible to show such a statement using “range proofs” [CCS08], we show a direct and more
efficient technique for proving this statement for the language

Lzero = {(pk , c) : ∃r,m 6= 0 s.t. c = E(pk ,m; r)}.

The idea is to multiply the underlying plaintext with a random value in the message domain
(both parties contribute to the random value to avoid cheating). If the plaintext was a 0, so is
the product, but if not, the result is non-zero with high probability. Furthermore, revealing the
product does not reveal any information about the original plaintext (hence zero-knowledge).

Protocol πzero (ZK proof for Lzero)
• Joint statement: (pk , c)
• Auxiliary inputs for the prover: sk
• Execution steps:

1. The prover generates a uniformly random message rp from the message
space and sends cp = E(pk , rp; r) to the verifier along with a standard
proof of knowledge of message and randomness.
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2. The verifier generates a uniformly random message rv from the message
space and sends rv, r′, cv = E(pk , rv; r

′) to the prover.
3. The prover lets c1 = cv +h cp, and c2 = E(pk , (rv + rp)m; r′′), and runs
πmult for the tuple (pk , c, c1, c2). The prover also reveals (rv+rp)m and
r′′.

4. The verifier accepts if (rv + rp)m is non-zero and the ciphertext c2 was
generated honestly.

The proof that the above protocol is indeed a ZK argument system follows along the lines of the
proof of Proposition 1, and is therefore omitted.

8 Conclusions and Open Problems

We have introduced the concept of RL-SFE as a useful tool for enforcing secure metering of
the number of distinct inputs used by the players in multiple executions of SFE protocols. In
particular, we defined three flavors of RL-SFE and designed three generic compilers yielding RL-
SFE protocols (one for each flavor of RL-SFE). Our compilers require each player to keep a state
whose size grows linearly with the number of protocol executions. Motivated by this limitation,
we have also shown how our compilers can be made stateless in the client-sever scenario, by
having the client outsource its state at the server (in an authenticated and verifiable manner).

Our compilers for RL-SFE rely on so-called CF-SFE protocols, a concept that we formalized
along the way and that we believe to be of independent interest. CF-SFE is a natural abstraction
to divide the design of SFE protocols with malicious security into two stages: (i) A first stage
where each party commits to its input; (ii) A second stage where the function to be computed is
evaluated on the inputs the player committed to at the end of the first state. Whilst almost all
SFE protocols with malicious security follow this blueprint, there are some exceptions, e.g. the
protocol of [AMP04] for computing the k-th ranked element. It is an interesting open question
how RL-SFE for such protocols can be achieved.

The present work focuses on (two-party) RL-SFE in the setting of sequential composition
under static corruptions, where each protocol execution starts after the previous execution ter-
minates, and moreover the identity of the corrupted player is fixed before the first execution
begins. Extending our framework to the setting of adaptive security and/or concurrent and
universally composable security [Can01] is left as an interesting direction for future research.

Finally, other natural extensions of our work would be to generalize RL-SFE to the multi-
party setting, and to reduce the communication complexity of our protocols.
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