Skip to main content

A Data-Driven Approach for Executing the CG Method on Reconfigurable High-Performance Systems

  • Conference paper
Architecture of Computing Systems – ARCS 2013 (ARCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7767))

Included in the following conference series:

Abstract

Employing reconfigurable computing systems for numerical applications poses an interesting and promising approach toward increased performance. We study the applicability of the Convey HC-1 for numerical applications by decomposing a preconditioned conjugate gradient (CG) method into several independent kernels that can operate concurrently. To allow overlapped execution and to minimize data transfers, we stream the data between the kernel units using a central buffer set. A microprogrammable control unit orchestrates memory accesses, buffer writes/reads and kernel execution, and allows for further algorithms to be executedon the available kernel units. Solving the Poisson problem can thereby be accelerated up to 10 times compared to a single-threaded software version on the HC-1 and up to 1.2 times compared to a 2-socket hex-core Intel Xeon Westmere system with 24 hardware threads for large problem sizes with only a single application engine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, R.S., Yung, E.K.N., Chan, C., Wang, D.X., Fang, D.G.: Application of the SSOR preconditioned CG algorithm to the vector FEM for 3D full-wave analysis of electromagnetic-field boundary-value problems. IEEE Transactions on Microwave Theory and Techniques 50(4), 1165–1172 (2002)

    Article  Google Scholar 

  2. Kunkel, J.M., Nerge, P.: System Performance Comparison of Stencil Operations with the Convey HC-1. Technical report, Research Group: Scientific Computing, University of Hamburg (November 2010)

    Google Scholar 

  3. Augustin, W., Weiss, J.P., Heuveline, V.: Convey HC-1 Hybrid Core Computer – The Potential of FPGAs in Numerical Simulation. In: HipHac 2011, pp. 1–8. KIT Scientific Publishing (2011)

    Google Scholar 

  4. Nagar, K., Bakos, J.: A Sparse Matrix Personality for the Convey HC-1. In: FCCM 2011, pp. 1–8. IEEE Computer Society (2011)

    Google Scholar 

  5. Morris, G.R., Prasanna, V.K., Anderson, R.D.: A Hybrid Approach for Mapping Conjugate Gradient onto an FPGA-Augmented Reconfigurable Supercomputer. In: FCCM 2006, pp. 3–12. IEEE Computer Society (2006)

    Google Scholar 

  6. Maslennikow, O., Lepekha, V., Sergyienko, A.: FPGA Implementation of the Conjugate Gradient Method. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 526–533. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. DuBois, D., DuBois, A., Boorman, T., Connor, C., Poole, S.: An Implementation of the Conjugate Gradient Algorithm on FPGAs. In: FCCM 2008, pp. 296–297. IEEE Computer Society (2008)

    Google Scholar 

  8. Kamil, S., Datta, K., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Implicit and explicit optimizations for stencil computations. In: Proc. of the 2006 Workshop on Memory System Performance and Correctness, pp. 51–60. ACM (2006)

    Google Scholar 

  9. Augustin, W., Heuveline, V., Weiss, J.-P.: Optimized Stencil Computation Using In-Place Calculation on Modern Multicore Systems. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 772–784. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Gaster, B.R., Howes, L.: Can GPGPU Programming Be Liberated from the Data-Parallel Bottleneck? IEEE Computer 45, 42–52 (2012)

    Article  Google Scholar 

  11. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Vo, H.T., Comba, J.L., Geveci, B., Silva, C.T.: Streaming-Enabled Parallel Data Flow Framework in the Visualization ToolKit. IEEE Computing in Science Engineering 13(5), 72–83 (2011)

    Article  Google Scholar 

  13. Willcock, J.J., Hoefler, T., Edmonds, N.G., Lumsdaine, A.: Active Pebbles: Parallel Programming for Data-Driven Applications. In: ICS 2011, pp. 235–244. ACM (2011)

    Google Scholar 

  14. Bomar, B.W.: Implementation of Microprogrammed Control in FPGAs. IEEE Transactions on Industrial Electronics 49(2), 415–422 (2002)

    Article  Google Scholar 

  15. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics (SIAM) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nowak, F., Besenfelder, I., Karl, W., Schmidtobreick, M., Heuveline, V. (2013). A Data-Driven Approach for Executing the CG Method on Reconfigurable High-Performance Systems. In: Kubátová, H., Hochberger, C., Daněk, M., Sick, B. (eds) Architecture of Computing Systems – ARCS 2013. ARCS 2013. Lecture Notes in Computer Science, vol 7767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36424-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36424-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36423-5

  • Online ISBN: 978-3-642-36424-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics