
HAL Id: hal-04084581
https://hal.science/hal-04084581

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictable Two-Level Bus Arbitration for
Heterogeneous Task Sets

Roman Bourgade, Christine Rochange, Pascal Sainrat

To cite this version:
Roman Bourgade, Christine Rochange, Pascal Sainrat. Predictable Two-Level Bus Arbitration for
Heterogeneous Task Sets. 26th International Conference on Architecture of Computing Systems
(ARCS 2013), Feb 2013, Prague, Czech Republic. pp.341-351, �10.1007/978-3-642-36424-2_29�. �hal-
04084581�

https://hal.science/hal-04084581
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO) 

OATAO is an open access repository that collects the work of 
Toulouse researchers and makes it  freely available over the 
web where possible. 

This is an author-deposited version published in :
http://oatao.univ-toulouse.fr/ 
Eprints ID : 12337

To link to this article : DOI: 10.1007/978-3-642-36424-2_29 
URL : http://dx.doi.org/10.1007/978-3-642-36424-2_29

To cite this version : Bourgade, Roman and Rochange, Christine 
and Sainrat, Pascal Predictable Two-Level Bus Arbitration for 
Heterogeneous Task Sets. (2013) In: 26th International Conference 
on Architecture of Computing Systems - ARCS 2013, 19 February 
2013 - 22 February 2013 (Prague, Czech Republic).

Any  correspondance  concerning  this  service  should  be  sent  to  the 

repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Predictable Two-Level Bus Arbitration

for Heterogeneous Task Sets

Roman Bourgade, Christine Rochange, and Pascal Sainrat

IRIT - University of Toulouse, France
{bourgade,rochange,sainrat}@irit.fr

Abstract. In a multicore processor, arbitrating the shared resources so
as to ensure predictable latencies for hard real-time tasks is challenging.
In [1], we have introduced a two-level bus arbitration scheme that fits
the needs of heterogeneous task sets, when some tasks have a higher
demand to memory than others. In this paper, we show how this scheme
can be used to optimise the overall utilisation of the cores while enforcing
the schedulability of the whole task set. Our approach both configures
the bus arbiter and maps the tasks onto the cores. Experimental results
show that it reduces the global utilisation of the cores compared to the
traditional round-robin scheme.

Keywords: Real-time, multicore, bus arbitration, task mapping, task
scheduling.

1 Introduction

Multicore processors (CMP or chip multiprocessors) are becoming essential in
the design of constrained embedded systems due to their high performance and
efficiency in terms of power consumption, thermal dissipation, cost. This effi-
ciency is reached by sharing resources among the cores. For example, in a typ-
ical medium-scale multicore, the cores share a bus to the highest levels of the
memory hierarchy.

Resource sharing engenders conflicts between cores trying to accessing the
same resource simultaneously. A consequence is that the resource latency seen
by each core is higher than it would have been in a single-core processor. In real-
time systems, this can be acceptable if and only if a safe upper-bound of the
latency is known: this bound is required to determine the worst-case execution
times (WCETs) of critical tasks.

In this paper, we focus on shared buses. Several schemes have been studied
in the past to perform time-predictable bus arbitration, i.e. arbitration that
makes it possible to predict the worst-case bus latency seen by a core [2][3][4].
In a recent paper, we have introduced a two-level scheme that was specially
designed to support heterogeneous task sets, in which tasks exhibit various levels
of demands to the shared bus [1]. With this scheme, the cores undergo different
latencies, and the ones that see the shortest latencies should host the highest
demanding tasks. In this paper, we propose an approach to exploit such a scheme,



i.e. to select the best arbiter configuration and to map the tasks onto the cores,
so that the overall core utilisation is minimised.

We report a reduction of the global utilisation of up to 29.1% compared to a
solution with the traditional round-robin algorithm. In addition, we show that
our two-level bus arbiter combined to our mapping approach may allow mapping
a given task set on a smaller number of cores compared to round-robin.

The paper is organised as follows. Section 2 gives an overview of related work.
Our bus arbiter is described in Section 3 and the mapping approach is introduced
in Section 4. Section 5 reports experimental results. We conclude the paper in
Section 6.

2 Related Work

A real-time aware bus arbiter allows computing the worst-case latency for a
given core to be granted the bus. Several such schemes have been proposed in
the last years. In [2], a round-robin algorithm is considered. Each core is granted
the bus in turn, then the maximum delay it can undergo when requesting the
bus is a linear function of the total number of cores. The worst-case latency
is predictable and identical for all the cores. This approach fits homogeneous
workloads. However, for heterogeneous task sets, it may be desirable to fasten
the execution of high demanding tasks by granting them the bus more often than
less demanding tasks. For parallel applications with inter-task dependencies, it
may also be needed to accelerate the tasks on the critical path.

Time-Division Multiple Access (TDMA) policies allocate time slots for bus
access to the cores. The bus schedule is determined off-line [3][4]. However, it
may be hard to determine with enough accuracy whether an access to the bus
falls within a slot allocated to the hosting core or not, at WCET analysis time.
To predict latencies, the alignment of basic block time-stamps to the allocated
bus slots may be analyzed [5]. However, it makes the WCET analysis of one task
dependent on the bus scheduling and thus on the co-running tasks. We instead
aim at keeping the worst-case bus latencies for any task independent of the other
tasks. This simplifies the analysis and favours timing composition.

3 Time-Predictable Bus Arbitration

A round-robin bus arbiter generates the same worst-case latency for each core
in a shared-bus multicore: N × L, where N is the number of cores and L the
latency of the longest bus transaction. This latency, computed by considering
that each core is permanently requesting the bus, is generally overestimated
but safe. This may be acceptable when all the tasks exhibit homogeneous bus
demands. Otherwise, its impact might be negligible for low-demanding tasks but
disastrous for high-demanding tasks. For this reason, we have introduced a new
bus arbitration scheme that enforces different worst-case latencies for the cores:
some cores see a low latency and should host the most-demanding tasks, while
other cores undergo longer latencies and should run low-demanding tasks [1].



Figure 1 gives an overview of our two-level arbiter. The cores are organised
into groups, and the L1 arbiter grants permission to one group. Then the L2
arbiter selects one core in this group. The worst-case latency to be considered
for the tasks running on a given core depends on: (a) the number of groups and
the L1 arbitration policy; and (b) the number of cores in each group and the L2
arbitration policy.

Fig. 1. Two-level bus arbiter

For the sake of simplicity, we consider a round-robin algorithm in level L2.
This means that the cores that belong to the same group see the same latency,
which can be computed as: Lc = nc × Lg, where nc is the number of cores in
the group and Lg is the worst-case delay for the group to be selected by the L1
arbiter.

We consider two possible policies for the L1 arbiter: (a) the round-robin al-
gorithm, and (b) an original scheme which we call Geometric Latencies. The
resulting two-level schemes are denoted GRR and GGL, respectively.

For GRR, the worst-case bus latency for a group is given by Lg = ng × L,
where ng is the number of groups. As a result, the worst-case latency seen by
one core is Lc = nc × ng × L.

The Geometric Latencies arbitration policy generates worst-case latencies
that follow a geometric series: group G0 sees a latency of 2 × L, group G1 a
latency of 4×L, group G2 a latency of 8×L, etc. The two last groups have the
same latency. In [1], we provide a formal specification of the scheme that also
describes its possible implementation in logic. The worst case latency of group
Gi (∀i < ng − 1) is given by Lgi = 2i+1×L, and Lg(ng−1)

= 2ng−1×L (see proof

in [6]).



With the GGL scheme, the latency to be considered for a task running on one
core in group Gi is then:

⎧
⎨

⎩

Lc = nci × 2i+1 × L for 0 ≤ i < ng − 1

Lc = nci × 2ng−1 × L if i = ng − 1
(1)

where nci is the number of cores in group Gi.
To summarise, the worst-case latency seen by one core depends on the number

of cores in the same group in both schemes. In addition, it depends on the group’s
rank in GGL.

Configuring our two-level arbiter means mapping the cores to groups. The
arbiter configuration impacts the bus latency seen by each core, and then the
worst-case execution times of the tasks it runs. In next section, we introduce an
algorithm to select an arbiter configuration together with a mapping of tasks
to cores that both minimise the overall utilisation of cores while ensuring the
schedulability of the whole task set.

4 Task Mapping Optimisation

The problem addressed in this section breaks down into: (a) determining the
best configuration of our bus arbiter for a given task set; (b) finding out the best
mapping of tasks to cores considering this configuration. Both should be solved
simultaneously.

Algorithm 1. Computation of time/utilisation vectors

1 for n← 1 to num cores do
2 Γn ← PossibleConfigurations(n);
3 Λn ← ∅;
4 foreach γ ∈ Γn do
5 Λn ← Λn ∪ PossibleLatencies(γ);
6 end
7 foreach task τ ∈ T do
8 foreach λ ∈ Λn do

9 tλτ ←WCET (τ, λ);

10 uλ
τ ← tλτ /Pτ ;

11 end

12 end

13 end



4.1 Preliminary Computations

The WCET of a task, and thus its core utilisation, depends on the bus latency
seen by the core that hosts it, which in turn depends on the arbiter configura-
tion. Algorithm 1 computes the WCET and utilisation of each task, considering
each possible value of the bus latency (the possible values result from the vari-
ous possible arbiter configurations). These results are later used to analyse the
schedulability of the task set.

4.2 General Approach to Task Mapping

The problem of mapping tasks together with configuring the two-level arbiter
exhibits several degrees of liberty: L1 arbitration policy (GRR or GGL), number
of groups, number of cores, number of cores in each group, assignment of each
task to a core. Only schedulable solutions should be retained.

Our approach is shown inAlgorithm 2. To keep the problem resolution tractable,
the problem is split into several sub-problems. Each sub-problem consists in find-
ing out the best task mapping for a given arbiter configuration (line 5 ): our ap-
proach is explained in Section 4.3. If one solution is found, it is added to the set
of possible solutions (line 7 ). The set of possible configurations is exhaustively
scanned in the two outer loops (lines 2 and 4 ). As we will see, splitting the whole
problem into sub-problems allows using Integer Linear Programming (ILP) tech-
niques.

Algorithm 2. General approach to task mapping

1 M← ∅;
2 for n← 1 to num cores do
3 Γn ← PossibleConfigurations(n);
4 foreach γ ∈ Γn do
5 (schedulable,m)← FindSolution(γ, T );
6 if (schedulable) then
7 M←M∪ {γ,m};
8 end

9 end

10 end

4.3 Task Mapping for a Given Arbiter Configuration

Overview. Algorithm 3 describes the process of searching the best task map-
ping for a given arbiter configuration. We consider the aggregated utilisation of
the cores (i.e. the sum of the individual utilisations) as the primary criterion to
estimate the quality of a particular mapping. A lower global utilisation leaves
computing resources to run additional tasks.



Now, to be acceptable, a task mapping must also be globally schedulable.
In this paper, we consider a partitioned scheduling strategy. Then each subset
of tasks assigned to one core must be shown schedulable on this core. In the
following, we assume non-preemptive EDF scheduling and we use the related
schedulability test [7].

In Algorithm 3, a loop (line 5 ) iterates until a schedulable solution has been
found or no other task mapping exists. In each iteration, an integer linear pro-
gram is used to find a task mapping (line 6 ). If a solution is found, it is tested
for schedulability on each core (line 10 ). When a subset assigned to one core is
found schedulable, it is locked to this core (line 11 ). Otherwise, it is appended to
the black list and the task mapping is invalidated (lines 13-14 ). In the next iter-
ation, the integer linear program is enriched with information about the locked
and black-listed subsets to search for another task mapping. Locking task subsets
is a way to accelerate the mapping process, as we will see in Section 5.

Algorithm 3. Mapping of tasks for a given arbiter configuration
(FindSolution(γ, T ))

1 foreach k ∈ [1..n] do
2 Bk ← ∅;Lk ← ∅;
3 end
4 mappable← true; schedulable← false;
5 while mappable && !schedulable do
6 (mappable,m)←Map(n, T,B,L);
7 if mappable then
8 schedulable← true;
9 foreach k ∈ [1..n] do

10 if IsSchedulable(mk) then
11 Lk ← mk;
12 else
13 Bk ← Bk ∪mk;
14 schedulable← false;

15 end

16 end

17 end

18 end
19 return (schedulable,m);

Basic ILP Formulation of the Task Mapping Problem. The mapping
of a task set onto cores for a given arbiter configuration γ is described by the
following set:

{μτ,k|τ ∈ T, 0 ≤ k < n}

with: μτ,k =

{
1 if task τ is mapped to core k
0 otherwise



Let λk,γ be the bus latency for core k considering configuration γ. The ILP
formulation is the following:

min : U =
∑n

k=0 Uk /* objective: minimising the global
utilisation */

∀k|0 ≤ k < n, Uk =
∑

τ∈T μτ,k.u
λk,γ
τ /* utilisation of one core is the sum of

the utilisations of the tasks it runs */
∀k|0 ≤ k < n, Uk ≤ 1 /* utilisation of one core cannot ex-

ceed 1*/

∀τ ∈ T,
∑n−1

k=0 μτ,k = 1 /* a task cannot be mapped on several
cores */

Additional Constraints for Locked Task Subsets and Black Lists. These
constraints are used to accelerate the search for a schedulable task mapping.
They avoid exploring new possible tasks subsets when one schedulable subset
has been found for a given core. In addition, they avoid considering subsets that
have already been shown unschedulable.

∀k|0 ≤ k < n, ∀τ ∈ Lk, μτ,k = 1 /* locked task τ is mapped onto
core k */

∀k|0 ≤ k < n, ∀τ /∈ Lk, μτ,k = 0 /* locked task τ is not mapped
onto core k */

∀k|0 ≤ k < n,
∑

τ∈Bk
μτ,k < |Bk| /* tasks in the blacklist for core

k cannot be mapped together on
core k */

5 Experimental Results

5.1 Methodology

In the following, we consider an 8-core architecture, with in-order 2-way su-
perscalar cores supporting the PowerPC ISA. Each core has a 2-Kbyte 2-way
associative level-1 instruction cache with 16-byte cache lines. We consider a per-
fect level-1 data cache 1.

We consider a 32-bit bus, with a bus latency of 1 cycle. The memory latency
is 5 cycles for the first word of a cache line and one additional cycle for each
subsequent word.

Our task set includes 32 tasks, that is four instances of each of the tasks
described in Table 1. They belong to the Mälardalen Benchmark Suite [8]
(nsischneu and statemate), the SPEC95 suite2 (compress) and the MiBench

1 This assumption is only due to the fact that our WCET analysis does not completely
handle data caches. We also have performed experiments considering no data cache,
which are not reported here for the sake of clarity, and we have found similar con-
clusions to the ones drawn with perfect caches.

2 www.spec.org



suite [9] (susan). These tasks have been selected because of their heterogeneous
demands to the bus. Figure 2 show the variability of the WCET for each of these
tasks as a function of the bus latency. The reference value is the WCET found
considering the 8-core round-robin scheme (that gives a 73-cycle latency). The
latency values are those observed in various configurations of our arbiter, as will
be shown later.

W
C

E
T 

se
ns

iti
vi

ty
 (%

) 

Fig. 2. Sensitivity of the tasks WCETs to the bus latency

For each task, considered as a real-time task, a period must be specified. In this
paper, we consider a uniform core utilisation among the tasks. The utilisation of
a task is computed as the ratio of its (worst-case) execution time to its period. To
choose its value, we have performed some experiments considering a round-robin
bus arbiter. We have observed that our task set is schedulable if the utilisation
of tasks is not higher than 0.21. Since the schemes we propose aim at performing
better than the round-robin algorithm, we have decided to use this value for the
rest of the experiments. Then, the period of each task (used to decide on the
task set schedulability) is computed as the ratio of its WCET to 0.21.

The worst-case execution times are analysed using our OTAWA/oRange
toolset [10][11]. It implements static analysis techniques to build a representa-
tion of the binary code of the application (a Control Flow Graph), to determine
flow facts (e.g. loop bounds), to derive the worst-case execution costs of basic
blocks, and to determine the global WCET with the IPET technique [12].



Table 1. Benchmark tasks

Task name Function

nsischneu Simulation of an extended Petri net

statemate Automatically generated code (STARC tool)

compress Data compression

susan corners quick

Image processing (SUSAN)
susan edges small

susan principle

edge draw

corner draw

The algorithms presented in this paper are implemented in Perl and the inte-
ger linear programs are solved with the CPLEX tool3.

5.2 Results

Quantitative results for eight cores are provided in Table 2. For each configura-
tion, described by the number of cores in each group (limited to three groups),
it gives:

– the latency seen by any core in each group;
– the minimum global utilisation and the number of iterations needed to find

it (see Algorithm 3), for both schemes (GRR and GGL).

When several configurations enforce the same values for bus latencies, only one
of them has been considered. Doubles do not appear in the table, or with their
latencies italicised. Configurations for which no schedulable mapping could be
found are marked n.s.

Reference Value. The first configuration (all the eight cores in group G0)
enforces the same latency for each core; it is equivalent to the traditional round-
robin scheme. The corresponding minimum utilisation (6.72) will then be con-
sidered as our reference value.

Performance of the GRR and GGL Schemes. Our two-level schemes both
help in lowering the global utilisation of the cores compared to the round-robin
algorithm: GRR can reduce it by 25.1% and GGL by 29.1%. GGL configurations
that have a low number of cores in the highest priority group (G0) perform better
than GRR.

In addition, our schemes may be able to map and schedule the task set on a
smaller number of cores. For example, the task set considered in these experi-
ments cannot be scheduled on six or seven cores with the round-robin scheme.
But we can find schedulable mappings considering both GRR and GGL. They

3 www.ibm.com/software/integration/optimization/cplex-optimizer/



Table 2. Minimum utilisation obtained for all the possible configurations (8 cores)

Configuration GRR GGL

N0 N1 N2 Lc0 Lc1 Lc2 Umin #iter Lc0 Lc1 Lc0 Umin #iter

8 - - 73 - - 6.72 101 73 - - - -

1 7 - 19 127 - 5.30 28 19 127 - - -

2 6 - 37 127 - 5.86 9 37 127 - - -

3 5 - 55 91 - 6.15 13 55 91 - - -

1 1 6 28 28 163 5.03 18 19 27 217 4.76 62

1 2 5 28 55 136 5.30 75 19 73 181 4.86 7

1 3 4 28 82 109 5.46 5 19 109 145 5.05 32

2 1 5 55 28 136 - - 37 37 181 n.s.

2 2 4 55 55 109 6.15 10 37 73 145 5.61 111

3 1 4 82 28 109 - - 55 37 145 5.72 20

3 2 3 82 55 82 6.35 19 55 73 109 6.42 18

4 1 3 109 28 82 - - 73 37 109 5.95 28

5 1 2 136 28 55 - - 91 37 73 5.86 10

even exhibit slightly lower utilisations: 5.01 and 4.70, respectively, for seven
cores.

Finally, both GRR and GGL have solutions for this task set considering an
utilisation of up to 0.27 for each task. The global utilisation then reaches 6.8 for
eight cores. On the contrary, the task set cannot be mapped and scheduled with
the round-robin scheme if the individual task utilisation exceeds 0.21.

Impact of Locking Schedulable Task Subsets. In Algorithm3, we have
introduced task subsets locking as a way of making the computation faster: as
soon as the mapping algorithm finds a solution with some of the task subsets
being schedulable on their assigned core, these task subsets are locked on their
core. Subsequent iterations of the loop, that may be necessary if some subsets
are still not schedulable, consider the locked task subsets as a starting point
and focus on mapping the remaining tasks only. Our experiments have shown
that this drastically limits the number of needed iterations: without this feature,
as many as 7 290 iterations are needed for some configurations; the maximum
number of iterations with subsets locking is lowered down to 111.

6 Conclusion

Time-predictable resource sharing is a key feature that will allow using multicore
architectures for hard real-time systems. In this paper, we propose an approach



to efficiently use a time-predictable bus arbiter which was introduced in a recent
paper [1]. This arbiter enforces different worst-case bus latencies for the differ-
ent cores in order to meet the requirements of heterogeneous workloads. The
approach presented here determines the best arbiter configuration and mapping
of the tasks to the cores. Experimental results show a reduction of the multicore
utilisation by more than 29% compared to a round-robin bus arbiter.

References

1. Bourgade, R., Rochange, C., Sainrat, P.: Predictable Bus Arbitration Schemes
for Heterogeneous Time-Critical Workloads Running on Multicore Processors. In:
Emerging Technologies and Factory Automation (ETFA). IEEE (September 2011)

2. Paolieri, M., Quiñones, E., Cazorla, F.J., Bernat, G., Valero, M.: Hardware sup-
port for wcet analysis of hard real-time multicore systems. In: Proc. 36th Annual
International Symposium on Computer Architecture, ISCA 2009, pp. 57–68 (2009)

3. Andrei, A., Eles, P., Peng, Z., Rosen, J.: Predictable implementation of real-time
applications on multiprocessor system-on-chip. In: International Conference on
VLSI Design, pp. 103–110 (2008)

4. Wandeler, E., Thiele, L.: Optimal tdma time slot and cycle length allocation for
hard real-time systems. In: Proceedings of the 2006 Asia and South Pacific Design
Automation Conference, pp. 479–484 (2006)

5. Chattopadhyay, S., Roychoudhury, A., Mitra, T.: Modeling shared cache and bus
in multi-cores for timing analysis. In: Proc. 13th Int’l Workshop on Software &
Compilers for Embedded Systems, SCOPES 2010, pp. 6:1–6:10 (2010)

6. Bourgade, R., Rochange, C., Sainrat, P.: Predictable bus arbitration schemes for
heterogeneous time-critical workloads running on multicore processors. Technical
Report 2011-19, IRIT (2011)

7. Jeffay, K., Stanat, D.F.: On non-preemptive scheduling of periodic and sporadic
tasks. In: Real-Time Systems Symposium (1991)

8. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET bench-
marks – past, present and future. In: Int’l Workshop on WCET Analysis (2010)

9. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: Mibench: A free, commercially representative embedded benchmark suite.
In: Int’l Workshop on Workload Characterization (2001)

10. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: Otawa: An open toolbox for
adaptive wcet analysis. In: IFIP WG 10.2 International Workshop on Software
Technologies for Embedded and Ubiquitous Systems (2010)

11. Michiel, M.D., Bonenfant, A., Cassé, H., Sainrat, P.: Static loop bound analysis of
c programs based on flow analysis and abstract interpretation. In: Int’l Conf. on
Embedded and Real-Time Computing Systems and Applications (2008)

12. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. In: ACM/IEEE Design Automation Conf., pp. 456–461 (June
1995)


	Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets
	Introduction 
	Related Work 
	Time-Predictable Bus Arbitration 
	Task Mapping Optimisation 
	Preliminary Computations 
	General Approach to Task Mapping 
	Task Mapping for a Given Arbiter Configuration 
	Basic ILP Formulation of the Task Mapping Problem.
	Additional Constraints for Locked Task Subsets and Black Lists.


	Experimental Results 
	Methodology
	Results

	Conclusion 
	References




