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Abstract. In several studies, brain atrophy measured by cortical thick
ness has shown to be a meaningful biomarker for Alzheimer's disease. 
In t.his research field, t.he level of granularity at which values are com
pared is an important aspect. Vertex- and voxel-based approaches can 
detect atrophy at a very fine scale, but are susceptible to noise from mis
registrations and inter-subject differences in the population. Regional 
approaches are more robust to these kinds of noise, but cannot detect 
va.riances at a local scale. In this work , an optimized classifier is pre
sented for a parcellation scheme that provides a trade-off between both 
paradigms by increasing the granularity of a regional approach. For this 
purpose, atlas regions are subdivided into gyral and sulcal parts at dif
ferent height levels. Using two-stage feature selection, optimal gyral and 
sulcal subregions are determined for the fina.l classification with sparse 
logistic regression. The robustness was assessed on clinical data by 10-
fold cross-validation and by testing the prediction accuracy for unseen 
individuals . In every aspect, superior classification performance was ob
served as compared to the original parcellation scheme which can be 
explained by the increased locality of cortical thickness measures and 
the customized classification approach that reveals interacting regions. 

1 Introduction 

Various image processing and classification methods to diagnose Alzheimer's 
disease (AD) and mild cognitive impairment (MCI) have been developed and 
gradually improved over the past decades. With dedicated segmentation, reg
istration and feature extraction methods, biomarkers based on structural and 
functional imaging can detect subtle neurodegenerative changes [1 J. As a re
sult, the amount of observed variance between health groups is increasing for 
the sake of improved discrimination. All these developments are important for 
an early classification and treatment of MCI and AD [2J. Amongst others, the 
structural biomarker cortical thickness (CoT) that is based on segmented data 
from magnetic resonance imaging (MRI) has shown to be a significant biomarker 
for dementia. Regarding MCI and AD, gray matter structures that are aflected 
by atrophy include the hippocampus, the parahippocampal gyrus, the cingulate, 
parts of the temporal, parietal and frontal lobe, and the occipital pole [3J. 

For the estimation of CoT, there exist two competing paradigms, the voxel
and the surface-based approach [4, 5J . In both cases, measures can be compared 
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at different levels of granularity: fine-grained methods using voxel and vertex val
ues or coarse-grained methods using mean values of anatomically distinct regions 
of interest (ROls). Fine-grained methods provide high dimensional feature sets 
for the detection of local changes. However, they are susceptible to noise intro
duced e.g. by registration to normal space or inter-subject differences . Also: the 
relatively small set of observations compared to the large number of variables 
renders dimensionality reduction a crucial problem. In contrast, region-based 
approaches create low dimensional spaces that are easier to handle and aver
aging of measurements compensates for noise such as subtle misregistrations. 
However, as a consequence changes at a local scale cannot be revealed. 

To close the gap between both extremes of the scale of granularity, an anatom
ical parcellation method was presented previously that subdivides the cortex into 
gyral and sulcal subregions at different levels of height for which mean CoT val
ues are computed [6]. In this work, this parcellation scheme is employed by a 
customized feature selection and classification approach that determines the op
timal set from the original ROls and the gyral and sulcal subregions. Section 2 
describes the subject population and the imaging data, presents our approach in
cluding a summary of preprocessing steps and CoT measurement, and describes 
the classification approach and the evaluation of robustness. In Sections 3 and 4, 
we present and discuss the improvements achieved on clinical data. 

2 Materials and methods 

2.1 Image data and preprocessing 

For this study, MRI images of 84 subjects were collected from the database 
of the Alzheimer's Disease Neuroimaging Initiative (ADNI) for the following 
four groups (diagnoses assigned according to the ADNI protocol available at 
http://adni.loni.ucla.edu): healthy elderly controls N (11 females / 10 males; 
age: 76.4 ± 6.6; education: 16.4 ± 2.8), patients with early MCI (eMCI) (10/11; 
age: 74.2 ± 8.0; edu.: 16.6 ± 2.8), late MCI (lMCI) (8/13; age: 72.3 ± 5.5; edu.: 
16.7 ± 2.7), and AD (8/13; age: 75.4 ± 10.2; edu,: 15.0 ± 3.2). One-way ANOVA 
ensured that sex, age and education were not significantly different between the 
groups. For all subjects, MRI data was acquired on 3T GE Signa HDxt scanning 
devices in the same format, but from diff'erent sites. The distribution of sites 
was random across subjects. An IR-SPGR sequence was applied with TR = 6.98 
ms, TE = 2.85 ms, and TI = 400 ms, resulting in 196 Tl-weighted sagittal slices 
with 1.0 x 1.0 mm in plane spatial resolution of dimension 256 x 256 voxels and 
1.2 mm slice thickness. 

The images were preprocessed in the same fashion as described in [6] with 
tools from the FMRIB Software Library (FSL, www.fmrib.ox.ac.uk/fsl). In 
short, manual neck cropping was followed by automatic skull stripping using 
the Brain Extraction Tool. The extracted brain was segmented into white mat
ter (WM) , gray matter (GM) and cerebrospinal fluid using FAST that provides 
probabilistic voxel-wise membership values for each of the tissue classes. ROls 
were defined according to the labels of the Harvard-Oxford probabilist.ic atlas 
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(distributed with FSL) which comprises 48 cortical ROls for each hemisphere. 
To transform the ROI labels from the atlas to each subject space, FLIRT and 
FNIRT performed spatial normalization of the original images to the MNI152 
space by affine multi-resolution registration with normalized correlation as sim
ilarity function followed by non-linear free-form deformations. The labels of 
the Harvard-Oxford atlas were spatially transformed to the subject space by 
inverting these registrations. Using the GM segmentation, voxelwise CoT was 
estimated using minimum line integrals measured along an approximation of the 
medial GM layer [4,6]. 

2.2 Feature selection and classification 

The anatomical subdivision of the cortex into gyral and sulcal subregions was 
achieved by an adaption of a robust skeletonization approach for discrete volu
metric objects with genus 0 [7]. Basically, the skeleton of the WM segmentation 
is computed that associates each skeleton point with at least two closest points 
on the WM surface. By measuring geodesic distances T between those surface 
points, a pruning function is defined that can be thresholded to separate gyri and 
sulci at different height levels. An extension of this pruning function prevents the 
false detection of noisy features as gyral regions. Using thresholds T E [8,20] mm 
in steps of 2 mm, seven gyral and seven sulcal subregions are created per ROI 
in addition to the ROI itself. These are denoted as 97' 57 and W, respectively. 
For the whole brain, this results in 15 regions per ROI times the 96 ROls of the 
Harvard-Oxford atlas, each represented by a mean CoT value. For a collection 
of n subjects, Tij denotes the feature vector containing the mean CoT values for 
all subjects for the cortex label 'i E [1,96] and the subregion j E [1 , 15]. Each Tij 

was corrected for the covariates sex, age, and education by a linear regression 
model estimated for the normal group and normalized to z-scores. 

As rather subtle differences in mean CoT are expected between the groups, 
and as the subregions of each ROI may contain redundant information, direct 
application of sparse logistic regression or a support vector machine might not 
be sufficient to maximize the ga.in of this rich feature set. Therefore, we propose 
a two-stage feature selection before the final classification, which comprises the 
following steps: The first stage eliminates redundancy in each ROI by deter
mining for the gyral and sulcal subregions 97 and 57 those that maximize the 
Pearson's correlation of their mean CoT values Tij with the group membership 
variable Y. The resulting set 7~j with i E [1 , 96] and j E [1, 3] contains the mean 
CoT values of the whole ROI, the best gyral and the best sulcal subregion. 

Within the second stage, interactions between pairs of variables of the set Tti 
were considered as the selection criterion since enforcing interactions might result 
in higher stability and better performance of the final classification. Similar to 
the linear discrimination for pairs of mean CoT values in [3], linear regression was 
applied to optimize the linear model Y = [TL T(ml fJ + E for each pair of variables 
T:j and 77m with (i,j ) f. (I ,m). Here, fJ and E denote the regression weights 
and error variables . Ranking each variable pair according to the coefficients 
of determination R2 , the best variables are filtered to form the set V LR. For 
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Table 1. AUC values of 10-fold cross-validation and prediction for the whole ROI 
set Dw , the best gyral and best sulcal set Dcr , D8" and the sets DCo lT and DLR 
optimized by correlation and linear regression. First and second best values in bold. 

10-fold Cross Validation Prediction 

Group Pair Dw Dc Ds Dcol'l' DLR Dw Dc Ds DCorr DLR 

N-eMCI .74 .58 .59 .80 .87 .64 .58 .50 .70 .81 

N-IMCI .69 .52 .44 .65 .83 .58 .47 .54 .67 .75 
N-AD .93 .93 .86 .97 .99 .87 .89 .88 .94 .96 

eMCI-IMCI .53 .48 .70 .62 · .93 .50 .51 .67 .65 .82 

eMCI-AD .84 .93 .89 .81 .99 .70 .78 .79 .75 .90 

IMCI-AD .60 .81 .71 .72 .86 .64 .76 .72 .72 .82 

comparison, 'DCOlT was created by selecting the best variables according to the 
correlation between T!j and Y, similar to the approach in [8]. For both sets, 
their size was fixed to 96 , equal to the size of the original partitions. 

For the six group pairs created from the four groups, the following feature 
sets were compared: 'D j = {Tij} with j E [1,15] which denotes the 15 sets (i.e. 
whole ROI, seven gyral and seven sulcal sets), 'Dcorr and 'DLR. For this purpose, 
sparse logistic regression with the elastic net (ENLR) was applied to each set [9]. 
The regression factor ex that combines features of lasso and ridge regression was 
set to 0.5 for a trade-off between low and high number of features. Two tests 
of robustness were applied: At first , stratified lO-fold cross-validation with 20 
repetitions for bias-free estimates, and second, evaluation of predictive accuracy 
by splitting the population into two equally sized training and test tests by 
random stratification and assessing mcan valucs from 20 repetitions. 

3 Results 

For the first comparison using 10-fold cross-validation, curves of the receiver 
operator characteristic (ROC) are presented in Figure 1 (top) for the group 
pairs N-eMCI, N-IMCI and N-AD. The corresponding discriminative regions are 
highlighted on the surface of one healthy subject in Figure 1 (bottom). The mean 
values of the area under the ROC (AUC) are listed for both validations and for 
all groups in Table 1. In all cases, 'D LJ~ shows superior performance, while 'DCOlT 

is better than all sets 'D j in only two cases for lO-fold cross-validation, and in 
three cases for prediction. The three top regions identified using 'DLR for N
eMCI are 98 in the right frontal pole, S14 in the left central opercular cortex, 
and W of the right planum temporale. For N-IMCI, the regions are S20 in the 
right middle temporal gyrus, 98 in the left parietal operculum cortex, and S20 

in the right superior temporal gyrus. For N-AD, the regions are 918 in the right 
inferior temporal gyrus, S20 in the right inferior temporal gyrus, and W of the 
right cingulate gyrus. 
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4 Discussion 

In this work, a classification method for Alzheimer's disease and mild cognitive 
impairment is presented that optimizes the selection of mean cortical thickness 
variables from a set provided by a cortical parcellation scheme. For this purpose, 
features are selected from this set by assessing the power to predict the group 
membership variable Y from each pair of mean CoT variables. In this way, the 
contribution of interacting variables could be enforced which was observed by 
a strong improvement in classification power validated for robustness by two 
different resampling techniques. 

Traditional feature selection methods consider the correlation between a sin
gle predictor and Y [8]. This is beneficial for large feature spaces that require 
efficient methods. However, classification performance might get impaired as 
interactions between multiple variables are completely ignored. In this work, 
this problem was solved properly with linear regression using pairs of predictors. 
Due to the quadratic complexity, this approach is not directly applicable to high 
dimensional data, but a divide-and-conquer approach could achieve at least a 
good approximation of the complete ranking for the sake of quality. 
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Fig.1. Top: ROC curves assessed by 20-times repeated stratified lO-fold cross
validation of ENLR. Dw (black) , best DCr (red) , best DSr (blue), DeolT (green dashed 
line), and IhR (green solid line). False positive rate on abscissa, true positive rate on 
ordinate. Bottom: Discriminative regions projected on the surface of one healthy sub
ject for the group pairs N-eMCI (left), N-IMCI (middle) and N-AD (right). Colors 
from white to red are proportional to the negative regression weight (decreasing CoT) . 
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