Skip to main content

Multiple Gene Sets for Cancer Classification Using Gene Range Selection Based on Random Forest

  • Conference paper
Book cover Intelligent Information and Database Systems (ACIIDS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7802))

Included in the following conference series:

Abstract

The advancement of microarray technology allows obtaining genetic information from cancer patients, as computational data and cancer classification through computation software, has become possible. Through gene selection, we can identify certain numbers of informative genes that can be grouped into a smaller sets or subset of genes; which are informative genes taken from the initial data for the purpose of classification. In most available methods, the amount of genes selected in gene subsets are dependent on the gene selection technique used and cannot be fine-tuned to suit the requirement for particular number of genes. Hence, a proposed technique known as gene range selection based on a random forest method allows selective subset for better classification of cancer datasets. Our results indicate that various gene sets assist in increasing the overall classification accuracy of the cancer related datasets, as the amount of genes can be further scrutinized to create the best subset of genes. Moreover, it can assist the gene-filtering technique for further analysis of the microarray data in gene network analysis, gene-gene interaction analysis and many other related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paz, J.L., Seeberger, P.H.: Recent Advances and Future Challenges in Glycan Microarray Technology. In: Chevolot, Y. (ed.) Carbohydrate Microarrays, vol. 808, pp. 1–12. Humana Press (2012)

    Google Scholar 

  2. Pham, T.D., Wells, C., Crane, D.I.: Analysis of Microarray Gene Expression Data. Current Bioinformatics 1, 37–53 (2006)

    Article  Google Scholar 

  3. Liew, A.W.-C., Law, N.-F., Yan, H.: Missing value imputation for gene expression data: computational techniques to recover missing data from available information. Briefings in Bioinformatics 12, 498–513 (2011)

    Article  Google Scholar 

  4. Duval, B., Hao, J.-K.: Advances in metaheuristics for gene selection and classification of microarray data. Briefings in Bioinformatics 11, 127–141 (2010)

    Article  Google Scholar 

  5. Wu, D., Rice, C., Wang, X.: Cancer bioinformatics: A new approach to systems clinical medicine. BMC Bioinformatics 13, 71 (2012)

    Article  Google Scholar 

  6. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507–2517 (2007)

    Article  Google Scholar 

  7. Van Steen, K.: Travelling the world of gene–gene interactions. Briefings in Bioinformatics 13, 1–19 (2012)

    Article  Google Scholar 

  8. Hua, J., Tembe, W.D., Dougherty, E.R.: Performance of feature-selection methods in the classification of high-dimension data. Pattern Recogn. 42, 409–424 (2009)

    Article  MATH  Google Scholar 

  9. Wong, G., Leckie, C., Kowalczyk, A.: FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number. Bioinformatics 28, 151–159 (2012)

    Article  Google Scholar 

  10. Nanni, L., Brahnam, S., Lumini, A.: Combining multiple approaches for gene microarray classification. Bioinformatics 28, 1151–1157 (2012)

    Article  Google Scholar 

  11. Asyali, M.H., Colak, D., Demirkaya, O., Inan, M.S.: Gene Expression Profile Classification: A Review. Current Bioinformatics 1, 55–73 (2006)

    Article  Google Scholar 

  12. Lin, W.-J., Chen, J.J.: Class-imbalanced classifiers for high-dimensional data. Briefings in Bioinformatics (2012)

    Google Scholar 

  13. Boulesteix, A.-L., Bender, A., Lorenzo Bermejo, J., Strobl, C.: Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Briefings in Bioinformatics 13, 292–304 (2012)

    Article  Google Scholar 

  14. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  15. Diaz-Uriarte, R., Alvarez de Andres, S.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3 (2006)

    Article  Google Scholar 

  16. Moorthy, K., Mohamad, M.S.: Random forest for gene selection and microarray data classification. Bioinformation 7, 142–146 (2011)

    Article  Google Scholar 

  17. Ramaswamy, S., Ross, K.N., Lander, E.S., Golub, T.R.: A molecular signature of metastasis in primary solid tumors. Nature Genetics 33, 49–54 (2003)

    Article  Google Scholar 

  18. van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  19. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96, 6745–6750 (1999)

    Article  Google Scholar 

  20. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  21. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)

    Article  Google Scholar 

  22. Efron, B., Tibshirani, R.: Improvements on Cross-Validation: The .632+ Bootstrap Method. Journal of the American Statistical Association 92, 548–560 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moorthy, K., Bin Mohamad, M.S., Deris, S. (2013). Multiple Gene Sets for Cancer Classification Using Gene Range Selection Based on Random Forest. In: Selamat, A., Nguyen, N.T., Haron, H. (eds) Intelligent Information and Database Systems. ACIIDS 2013. Lecture Notes in Computer Science(), vol 7802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36546-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36546-1_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36545-4

  • Online ISBN: 978-3-642-36546-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics