UHWERSITA
| DEGLI STUDI
DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Mixed-Initiative management of online calendars

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/131751 since
Publisher:
Springer
Published version:
DOI:10.1007/978-3-642-36608-6
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

25 April 2024

UNIVERSITA DEGLI STUDI DI TORINO

This is an author version of the contribution published on:
Questa é la versione dell’autore dell’opera:

Web Information Systems and Technologies, Lecture Notes in Business Information Processing, volume

140, pagg.167-182

The definitive version is available at:
La versione definitiva e disponibile alla URL:
http://link.springer.com/chapter/10.1007%2F978-3-642-36608-6_11

Mixed-Initiative Management of Online Calendars

L. Ardissono, G. Petrone, M. Segnan, and G. Torta

Dipartimento di Informatica, Universita di Torino, Corso Svizzera 185, Torino, Italy
liliana.ardissono@unito.it, giovanna.petrone@Qunito.it,
marino.segnan@unito.it, gianluca.torta@unito.it

Abstract. Calendar management has been recognized as a complex, highly per-
sonal type of activity, which must take individual preferences and constraints into
account in the formulation of satisfactory schedules. Current calendar manage-
ment services are affected by two limitations: most of them lack any reasoning
capabilities and thus cannot help the user in the management of tight schedules,
which make the allocation of new tasks particularly challenging. Others are too
impositive because they proactively schedule events without involving the user in
the decision process.

In order to address such issues, we propose a mixed-initiative approach which
enables the user to select the events to be considered, receive safe schedule sug-
gestions from the system and select the preferred ones for revising a calendar. A
peculiarity of our system is the fact that, in the suggestion of alternative schedules
for an event, it searches for solutions which are very similar to the user’s current
schedule, with the aim of limiting changes to her/his daily plans as much as possi-
ble. Our calendar management service is based on the exploitation of well-known
Temporal Constraint Satisfaction Problems techniques, which guarantee the gen-
eration of safe scheduling solutions.

Keywords: Calendar scheduling, mixed-initiative interaction, temporal reason-
ing.

1 Introduction

The recent adoption of Web-based calendars has empowered people to holistically han-
dle their own life schedules by exploiting ubiquitous services for organizing their work
and personal commitments; e.g., see [1] for a discussion on the importance of this issue.
However, current calendar services are affected by limitations which reduce their use-
fulness: on the one hand, many services have no scheduling capabilities and thus leave
the user alone in the resolution of timing conflicts, which may occur in tight schedules
and are particularly difficult to handle, especially if they involve multiple actors. On
the other hand, as discussed in [2], the fully or semiautomated scheduling systems de-
veloped so far “fail to account for the personal nature of scheduling, or they demand
too much control of an important aspect of an individual’s working world.” A new,
mixed-initiative scheduling model is thus needed to mediate between too little and too
much proactivity: the idea is that of enabling the user to steer and control the system’s
operations, in order to receive a scheduling support that meets individual needs and
preferences.

As a first step towards addressing this issue, we propose an intelligent, mixed-
initiative scheduler supporting the management and revision of the user’s calendar,
given her/his commitments and those of the other actors involved in the shared ac-
tivities. The main feature of our scheduler is its mixed-initiative, conservative support:
besides the generation of complete schedule proposals, it helps the user to revise a
schedule by suggesting alternative allocations of the events/tasks to be moved, having
schedule stability as a priority.

— The mixed-initiative support is implemented as follows: by interacting with the rich
user interface offered by our system, the user can select the events to be moved and
explore their alternative allocations in order to decide which one should be applied.

— As far as stability is concerned, in the generation of the revision hypotheses, the
system proposes conservative changes to the user’s calendar in order to maintain
previous commitments as originally planned or with minor temporal shifts.

Our scheduler, an initial version of which was presented in [3], is based on the
exploitation of Temporal Constraint Satisfaction Problems (TCSP) techniques, used to
generate safe full schedule proposals as well as to present all of the admissible intervals
for the placement of specific tasks. At present, the system only offers a user interface for
standard Web browsers, but we will soon develop an analogous one for mobile devices.

In the remainder of this paper, Section 2 provides some background on event schedul-
ing and compares our work to the related one. Then, Section 3 describes a usage sce-
nario and the features offered by our mixed-initiative scheduler. Section 4 describes the
system and its underlying model. Section 5 provides some technical details and section
6 concludes the paper.

2 Background

The temporal allocation of events in calendars has been addressed from different view-
points, offering more or less complex features for event scheduling, but the research on
mixed-initiative interaction with the user has been rather limited so far. In the following,
we briefly review the main types of support offered by commercial and research tools.

The simplest services are the to-do-list managers, such as Remember The Milk [4],
which are connected to the user’s calendar but typically do not provide any scheduling
support. They only present the lists of items allocated in each time slot.

Most calendar management services (e.g., Google Calendar [5]) do not offer any
scheduling function: they only help the user to identify free time slots for shared tasks
and meetings by jointly visualizing the calendars of the actors to be involved, or by
listing the free time slots to choose from (e.g., see the Google Calendar smart sched-
ule feature). Other tools take actors and resources into account (e.g., Resource Central
[6] supports the allocation of meeting rooms, etc.) but have no scheduling capabilities
either.

Similarly, task managers such as Things [7], Dolt [8] and Standss Smart Schedules
for Outlook [9] support the management of tasks, deadlines and task dependencies but
they do not schedule any tasks.

Temporal reasoning and scheduling have been introduced in some process manage-
ment tools to address their lack of capability to reason about time. In [10] the authors
make use of the Oz multi-paradigm programming language [11] for solving scheduling
problems with CLP techniques similar to the ones used in our work. Some process man-
agement tools, such as the one described in [12], offer a complementary feature with
respect of our work: they estimate the dates of execution of future tasks to help the user
preview the organization of pending commitments. Other tools, such as WorkWeb Sys-
tem [13], schedule multiple workflows by taking the availability of actors and resources
(e.g., meeting rooms) into account. The main role of the actors’ personal schedulers is
that of automatically (or manually) accepting or rejecting new tasks and modifications
proposed by other agents.

Complex schedulers plan the execution of tasks according to deadlines and to the
surrounding context, e.g., in mission planning and/or robotic applications; for instance,
see Pisces [14]. However, they are not suitable for managing the user’s daily schedules,
either because they are developed for very specific execution environments, or because
they focus on allocating physical resources, without taking people’s needs into account.

Opportunistic schedulers, typically based on planning technology, synchronously
guide the user in the execution of activities according to the pending goals to be achieved.
However, they do not provide the user with an overview of long-term schedules, do not
manage the shared activities and are not mixed-initiative: they basically suggest oppor-
tunities of action, which the user may accept or ignore. For instance, see [15].

To the best of our knowledge, the only calendar management service which sup-
ports mixed-initiative scheduling is PTIME [2]. That system helps the user to organize
personal and shared events by selecting high-level schedule generation criteria (e.g.,
favoring the robustness of the schedules, in terms of fault tolerance, or their tightness,
and so forth). Our work differs in two ways with respect to PTIME:

— First, our system separates the selection of the scheduling policies to be applied
from the identification of the portions of a calendar to be affected. It enables the user
to revise a calendar by explicitly selecting the events and tasks to be rescheduled,
and to preview the possible solutions (if any) to choose from.

— Second, our system supports the management of conservative schedule revisions
which do not alter the relative order of the allocated tasks and events (except for
the one selected for modifications). It proposes changes which involve sliding the
other allocated items (e.g., postponing or anticipating them with respect to their
current timing) and, as such, reduces the changes in the actors’ calendars.

3 Sample Scenario

Let’s consider the sample calendar in Figure 1, where a set of events has been allocated
by user U using our mixed-initiative scheduler. As described later on, the user can (i)
manually set events/tasks in the calendar; (ii) create events/tasks to be automatically
allocated by the scheduler; (iii) select items to be moved to a different date and time
(benefiting from the help of the system in such an activity).

The placement of tasks in the displayed calendar satisfies some constraints given
by the user: for example, the Library meeting cannot take place at lunch time (13.00 to

f#88E Monday Tuesday Wednesday Thursday Friday Saturday Sunday

8

9 WTecl Library meet write paper WTec4

10 WTecl Library meet write paper WTec4 . Schedule start |
11 Progl WTec2 Prog2 WTec3 Prog3

12 Progl WTec2 Prog2 WTec3 Prog3

13

14 Meeting WOO | schedule end |
15 Meeting WOO Phd meet S
16 Meeting WOO Phd meet Faculty meet

17 Meeting WOO Ph Call Smith Faculty meet

18

19

Fig. 1. User interface of our mixed-initiative scheduler: week calendar view.

14.00; i.e., from 1pm to 2pm), nor after 17.00, and must end before Thursday 11.00.
Moreover, the Ph.D meeting and the phone call must take place on Wednesday before
20.00 and the phone call must be done after the Ph.D meeting.

Let’s assume that a new task arrives (e.g., meeting the plumber for fixing a leaking
sink), that takes 3 hours and has to be performed on Wednesday before 18.00. It is easy
to see that there is no free spot in the calendar where the new task can be placed. Then,
the user can ask for the help of our scheduler: first, (s)he asks when the task can be
allocated; in this case, the scheduler replies that it could start at 13.00, 14.00 or 15.00,
since this would only require to anticipate or postpone the afternoon tasks, without
affecting the order of the current ones. Indeed, if the new task is placed at 13.00 or
14.00, it is sufficient to delay a bit the Ph.D meeting and the phone call. Otherwise,
if it is placed at 15.00, a solution can be found by anticipating the Ph.D meeting and
deferring the phone call, and slipping the new task between them. If the user does not
want to meet the plumber in the afternoon, (s)he can try to move the Library meeting to
make room for the new task. For this purpose, the user points to the Library meeting task
and asks the temporal reasoner for help. The reasoner replies that, considering only the
user’s tasks in the current schedule, the Library meeting can be moved to Wednesday
at 8.00, 9.00, 14.00, 15.00 or to Thursday at 8.00 or at 9.00 (in which case, the write
paper task should be anticipated to Wednesday afternoon).

Notice that if, after exploring several possibilities with the help of the scheduler,
the user is still unsatisfied, (s)he can request a brand new schedule. However, this may
cause many of the other tasks to change their times and their relative order.

4 QOur Mixed-Initiative Scheduler

Our scheduler is integrated in a Collaborative Task Manager (CTM) service [16, 17]
that supports distributed collaboration by enabling users to synchronize with each other
in the execution of their shared activities. The CTM manages task nets that regulate the

execution of complex activities, possibly decomposed in simpler tasks which can be
organized in patterns typical of workflow nets; e.g., sequence, parallel split, exclusive
choice, synchronization, simple merge, etc. [18].

Our system manages calendar events and tasks which can involve multiple actors.
In our view, the task concept subsumes the event one, as an event can represent a very
simple “to-do”, or an appointment not necessarily associated to the execution of specific
operations. Thus, in the following we will only refer to tasks, assuming that events can
be treated in the same way. The design of our scheduler has been driven by the following
requirements:

— Safe scheduling: the proposed solutions must be consistent with the constraints
imposed on the tasks in the user’s calendar and with the commitments of the other
involved actors; i.e., the scheduler must propose task allocations that are feasible
for all the participants.

— User control: if the user wants to inspect the space of possible solutions, e.g., to
allocate a new task, or to move an existing one, (s)he must be enabled to steer
the system’s behavior in order to select the paths to be explored. This is very im-
portant to impose personal scheduling preferences (e.g., by explicitly selecting the
“victims” to be revised in order to solve a conflict).

— Mixed-initiative: even though the system has an important role in suggesting possi-
ble solutions to the existing conflicts, the user is in charge of exploring the available
alternatives and selecting the preferred one. In other words, the user has an active
role in guiding the scheduler’s operations rather than being only responsible for
accepting or rejecting the proposed solutions.

— Conservativeness: unless the user requests a new schedule, the system must search
for solutions that are as conservative as possible with respect to the existing com-
mitments in order to avoid a complete reorganization of the actors’ daily schedules.

— Collaboration support: tasks are scheduled for all the involved actors, taking into
account their calendars and the deadlines of their commitments.

Our mixed-initiative scheduler enables the user to define the tasks to be performed
by specifying their actors, earliest start time, duration, deadline, and other types of
information, such as, e.g., whether a task can be performed in parallel with other ones
(i-e., it can overlap with other tasks). Even though some tasks have a fixed starting time,
other ones can be scheduled at different time points and there is a safe starting time
window which spans from the instant when they are enabled (earliest starting time) until
the very last minute they have to be started to meet their deadline. In order to safely
schedule a task, it has to be allocated within its safe starting time window. However,
the specific allocation is not by itself a hard constraint to be met and can be modified
for re-scheduling purposes. We thus model two main types of information: the basic
constraints of tasks, which have to be met in any schedule proposal, and the specific
configuration of a calendar, which represents the user’s current decisions about how
to organize the activities, but can be modified. The representation of tasks, and the
temporal reasoning approach adopted in our work, reflect this idea.

As discussed later on, a critical aspect concerns the execution of shared tasks, whose
scheduling affects multiple actors. Our current system fully addresses the management

Task name: [T5 5]

Duration: [4]

Start: |Monday (¢s8 [¢]
End: |Monday (¢ 18/¢ |
Before: []
After: []

Schedule: |monday ¢ 14 2|
Users: [liliana marino If

Can overlap other tasks

| Add ||| Change ||| Remove ||| Where can| place

Fig. 2. User interface of our mixed-initiative scheduler: event/task specification.

of a single calendar but provides a partial solution to the synchronization of multiple
calendars, to be further developed in our future work.

4.1 User Interface

Figure 1 shows a portion of the user interface of our mixed-initiative scheduler. This
user interface, currently only available for standard web browsers, is aimed at testing
the scheduling capabilities of our prototype. We will restyle it, and develop another one
supporting mobile access (mainly for tablets, as schedule revision is a rather difficult
task to be performed using a smart phone), after having collected feedback from our
users.

— An interactive calendar shows the user’s schedule for the current week by display-
ing the names of the tasks in the time slots that have been associated with them.

— By clicking on a cell of the calendar the user can view and modify the details of the
allocated task or delete it. Figure 2 shows the portion of the user interface offering
this functionality (see the “Change” and “Remove” buttons).

— Figure 2 also shows the portion of the user interface supporting the definition of
new tasks (“Add” button) and the rescheduling of tasks (“Where can I place this
task?” button, partially displayed in the figure). If the user clicks on the “Where can
I place this task?” button, the system visualizes in a pop-up window the safe task
allocations that could be selected to revise the overall schedule, possibly by sliding
other tasks in order to make room for the selected one. All such alternatives are
handled as revision hypotheses and it is up to the user to decide whether applying
one of them (thus updating the calendar) or not.

— In Figure 1, at the right of the calendar, the Schedule start and Schedule end buttons
enable the user to request a new schedule following different task allocation poli-
cies. If at least one schedule solution exists, the Schedule start policy proposes one
where tasks that can be started earlier are allocated before the others. Differently,
the Schedule end policy produces a schedule where tasks are allocated depending

on their urgency, i.e., those having earlier deadline are allocated before the others.
The former policy produces tighter schedules, reducing the free time slots in the
user’s calendar. The latter is more cautious and generates more robust schedules
by reserving time after the expected termination of tasks, which might be possibly
exploited for recovery purposes.

4.2 Scheduling Modules

The mixed-initiative scheduling service offered by our system is based on the integra-
tion of two main software components:

— A basic scheduler (henceforth, scheduling module), which supports the generation
of brand new schedules satisfying the temporal constraints of the existing tasks.

— A temporal reasoner suggesting alternative allocations for a specific task in the
current calendar.

The scheduling module, given a set of tasks, their definition (e.g., duration, earliest
start time and deadline) and the allocation policy selected by the user attempts to place
the tasks in the calendars of the involved actors and proposes a solution, if any. Unless
specified by the user by checking the “Can overlap other tasks” box in the task definition
form (see Figure 2), we assume that tasks cannot be scheduled in parallel; e.g., the same
person cannot attend two meetings at the same time. Thus, the scheduler sequentially
allocates the non overlapping tasks.

The temporal reasoner, given the current schedule, the constraints imposed on the
tasks and a problem to be solved (e.g., adding a task to the schedule or moving a task to
a different time), searches for safe reallocation hypotheses concerning the problematic
task. For this purpose, the execution of other tasks might be shifted back or ahead,
within their start time windows, in order to reserve enough free time for it.

5 Mixed-Initiative Scheduling as a TCSP

5.1 Temporal Constraint Satisfaction Problems

As described later on in section 5.2, the constraints that must be satisfied by the tasks
in a user’s calendar can be represented as a Temporal Constraint Satisfaction Problem
(TCSP) [19]. We thus briefly introduce this concept.

TCSPs are a class of Constraint Satisfaction Problems (CSPs) [20] tailored to the
representation of temporal constraints.

A TCSP involves a set of variables X, ..., X, with continuous domains representing
time points. Constraints can be unary or binary; a unary constraint:

(Cll SXiSbl)V---V(an SXISbn)

constrains the value of one variable X; to be in one of the intervals [a1,b1], ..., [an, by].
A binary constraint:

(a1 SXj—XiSbl)V...V(an SXj—X,'Sbn)

constrains the difference between two variables X, X; to be in one of the intervals
[al,bl], e, [a,,,b,z].

As we shall see, TCSPs have the expressive power to capture all of the constraints
of interest to this work. We solve TCSPs with a Constraint Logic Programming (CLP)
solver; see Section 5.3.

For implementing some important features of our approach, we have to focus on a
subclass of TCSPs, the Simple Temporal Problems (STPs) [19], where all of the con-
straints are binary and do not contain disjunctions:

(aSXj—X,-Sb)

This class of problems can be represented as a graph named Simple Temporal Network
(STN) and has two important characteristics:

— checking whether a STN is consistent takes polynomial time [19,21]

— the same polynomial algorithm used for checking the consistency, also minimizes
the STN; i.e., for each pair of variables X;, X;, it computes an interval [@min, Dmin)
such that in every global solution, the following holds:

Amin < Xj = Xi < buin

and, vice versa, for each value 8 € [@pin, bmin] there is a global solution such that
Xi—X; =96
J i .

We solve STPs with a specialized STN solver, as described in section 5.4.

5.2 Task Representation

We express the time constraints in the user’s calendar as TCSP constraints. Starting
from the basic constraints defined for a task (earliest starting time, duration, deadline,
etc.), we associate two numeric variables Ty and 7, to the start and end time of each task
T. For simplicity, we assume that the value of a variable T (resp. T;) is the number of
one-hour slots in our calendar between Monday 8.00 and the start (respectively the end)
of task T'.

Let us start by considering deadlines, durations and precedences, following the ex-
ample schedule shown in Figure 1.

A deadline, such as “the Library meeting (LM) must take place before 11.00 on
Thursday”, is expressed as:

LM, <39

since in our calendar there are 39 one-hour slots between Monday 8.00 and Thursday
11.00 (see Figure 1). With a slight abuse, we use the term deadline also to indicate
constraints on the exact end of a task; for example, the fact that the Prog2 class (P2)
must end exactly on Wednesday at 13.00, is captured by:

P2,=29

which is equivalent to 29 < P2, < 29.

To express a duration, such as the fact that the Library meeting lasts 2 time slots,
we simply write:
LM, —LM; =2

A precedence, such as the fact that the Phone call to Mr. Smith (CS) must take place
after the Ph.D meeting (PM), is expressed as:

CSy—PM, >0

It is easy to see that all of the above constraints can be represented not only as a
TCSP, but also as a Simple Temporal Network. However, there is an additional kind of
constraints that is fundamental for computing an admissible schedule: the non-overlapping
constraints. A typical non-overlapping constraint states that a task 7' cannot overlap with
another task. For example, the fact that the Library meeting (LM) cannot overlap with
the Prog?2 class (P2) is expressed as:

P2, — LM, >0V LM;— P2, >0

i.e., either LM ends before P2 starts, or vice versa. Clearly, there must be one of these
constraints between each pair of non-overlapping tasks 7', T’ in the calendar.

There may be additional non-overlapping constraints. For example, in our scenario
of section 3, the Library meeting must not take place at lunch time (i.e. from 13.00 to
14.00), nor after 17.00. In order to express this constraint on Monday, we write:

IM, <5VIM, > 8
LM, <9VIM, > 14

similar constraints must be added for each day of the week under consideration.

5.3 The Scheduling Module

Given the set of tasks to be allocated in the user’s calendar, the scheduling module
generates a schedule by handling the task definitions as constraints to be solved in a
Constraint Satisfaction Problem. This type of activity has been largely explored in the
research on Constraint Satisfaction; thus, we briefly describe it, leaving space for the
temporal reasoning process, which is peculiar of our work.

If a task is not a precise appointment, its start and end times are time windows during
which the task has to be executed (unless its duration is the same as the distance between
such time points). The scheduling module thus represents the start and end time of
each task as time intervals themselves, defining them as Finite Domain Variables whose
domains represent the eligible time instants for starting/ending the task. For instance, if
a task T must start after t0, end by t1 and its duration is d, its starting time window is
[tO, t1-d].

Given the start and end Finite Domain Variables of the tasks to be scheduled and
the existing non-overlapping constraints, the scheduling module performs a domain re-
duction on such variables in order to restrict their domains to the feasible values. If
a solution exists (i.e., for each Finite Domain Variable, the domain is not null), the

scheduling module explores the solution space for setting such variables to specific val-
ues, which represent the proposed allocation times. Otherwise, the scheduling module
returns a “no solution” value, which describes the fact that the set of considered con-
straints is not satisfiable, i.e., a schedule addressing all the requirements specified by
the user cannot be generated.

Different strategies could be applied in the exploration of the solution space, lead-
ing to different schedules. We selected two sample strategies to start with: allocating
earlier tasks, or more urgent ones, before the others. Technically, such policies are im-
plemented by selecting the order of the variables to be set during the exploration of the
solution space (i.e., the set of possible configurations of the variables). In the Schedule
start policy, the variables having the smallest minimum values in their domains are set
before the others, which results in an early allocation of the tasks that can start earlier.
In the Schedule end policy the variables having the smallest maximum values in their
domains are set before the others, which results in an early allocation of the tasks that
must end earlier.

In order to support an incremental mixed-initiative scheduling of tasks, and the pos-
sibility of reasoning on a subset of all the tasks to be considered, the scheduling module
operates on a constraint set that is a clone of the original task specification. In this way,
at each instant of time, the set of constraints to be considered can be reset or modified
as needed. It is thus possible to create a history of the generated scheduling solutions
and allow the user to navigate it and choose the preferred alternative.

It should be noticed that the constraints to be solved in the generation of a schedule
might concern personal and shared tasks. Scheduling a shared task means allocating
it in the calendar of all the involved actors. The scheduling module fully supports the
allocation of shared tasks because the constraints belonging to the calendars of the
involved users can be fused to search for a global solution by merging their constraints:
in fact, even though each actor is committed to several tasks, those to be performed
by different actors can overlap in the overall schedule; thus, task constraints can be
merged to represent the complete set of activities to be scheduled.! If the overall set of
constraints is not satisfiable (because there is no free slot where the involved actors can
perform the task), the scheduling module returns a “no solution”. However, if the failure
is returned after the user has selected one of the (conservative) suggestions made by the
temporal reasoner (see next section), it may still be possible to request a complete (non
conservative) re-scheduling of all of the activities, to see if different solutions can be
found which accommodate the new task.

5.4 The Temporal Reasoner

The deadlines, durations and precedences can be straightforwardly expressed without
disjunctions, and therefore can be encoded in a Simple Temporal Network (STN). Fig-
ure 3 depicts the STN for the constraints of our running example regarding the Wednes-
day tasks. It shows the new task Meet Plumber (MP) to be inserted, as well as Library

L If more than one actor is involved in a task to be re-scheduled, the task instances present in the
various calendars are unified by imposing that their start and end times are equal.

LMs LMe P2
(22] P g ¢

[26,39]

[29,29]

MPs MPe
[33] [27,34]

[25,36]

[26,36] [27,36]

[26,35]

PMs PMe

[2,2] CSe

Fig. 3. Portion of the STN representing the basic constraints for the user tasks.

meeting (LM), Prog2 class (P2), Ph.D meeting (PM) and Phone Call to Smith (CS)
(assuming that the tasks cannot be performed before Wednesday).

The z time point represents Monday 8.00, while the intervals on the arcs express
the minimum and maximum distance between the connected time points; for example,
interval [26,39] on the arc connecting z and LM, represents:

26 < LM, —7<39

i.e., LM must end at most on Thursday 11.00, and at least on Wednesday 10.00. The
dotted arc represents the precedence between PM and CS; its associated interval (omit-
ted for readability) would be [0, +<9]; i.e., CS; must follow PM, by at least 0 hours.

The minimization of this STN only restricts the intervals of the arcs z—PM, and
7—CS, (the restricted intervals are depicted in italics in the figure). In particular, the
maximum value of PM, (end of Ph.D meeting) becomes 35 (Wednesday 19.00) because
there must be time for making the phone call to Mr. Smith afterwards. Similarly, the
minimum value of CS, becomes 27 (Wednesday 11.00) because there must be time for
the Ph.D meeting before.

Note that this STN does not take the non-overlapping constraints into account and,
in particular, its minimization does not affect the interval for the end PM, of the new
task (Meet plumber), which is still between 11.00 and 18.00 on Wednesday. Unfortu-
nately, not all of the time points within this interval are admissible, as can be seen by
considering, e.g., that the two time slots between 11.00 and 13.00 are rigidly allocated
to the Prog?2 class.

When the STN solver is invoked to show all the feasible time intervals for starting
the Meet plumber task, we want it to return only admissible time points. Let us start by
considering how we can take into account the non-overlapping between tasks (below,
we will also discuss the non-overlapping between a task and certain time slots, such as
lunch time for the Library meeting).

Algorithm 1 Feasible intervals for adding a new task.

input:

new task 7’

other tasks in current schedule order (73,...,T)

STN A (deadlines, durations, precedences)
Fint <0
fori=0...kdo

Ord <= (Ty,....T,T,Tir1,... Te)

A" < assert order Ord in A

A! <= minimize N’

Fint <= FInt U

{ getinterval [min;,max;] for Ty from A('}

end for
return Fint

From the current schedule (Figure 1), we can infer the current order of the tasks that
are already in the calendar. We make the assumption that the order of these tasks cannot
change, while Meet plumber can be placed between any two of them.

Algorithm 1 implements this idea. It takes as inputs a new task 7 to insert, the se-
quence of the other tasks (71,...,7;) in the order in which they appear in the current
schedule, and an STN A encoding the basic deadline, duration and precedence con-
straints for 71, ..., Ty and T. Each possible positioning of T in the sequence determines
a total order Ord among the tasks, including T'). Such a total order is asserted as a set of
precedence constraints into A, and the resulting net is minimized, yielding an interval
[min;, max;] of possible values for the start Ty of T'.

The algorithm returns a set Fint containing all of such intervals. If the current order
of the tasks is not allowed to change, the intervals in FInt represent all of the possible
choices for starting 7.

Going back to our example scenario, the new task is MP, the other tasks in the
current scheduled order are (LM, P2, PM,CS), and the basic STN 4(is the one depicted
in Figure 3. Figure 4 shows the net A’ computed by the algorithm at the 3rd iteration
(i = 2), when the new task MP is placed between P2 and PM.

First of all, several intervals are restricted due to the minimization. In particular, the
interval on the arc z—MP, is restricted to [32,33] (Wednesday from 16.00 to 17.00);
when we ask the STN for the interval on the arc z—MP;, we get [29,30] meaning that, if
MP is placed between P2 and PM, it can start on Wednesday between 13.00 and 14.00.

The full execution of the algorithm yields the following set of intervals:

when MP is the first task
when MP is between LM and P2
[29,30] when MP is between P2 and PM
[31,31] when MP is between PM and CS
0 when MP is the last task

0
0

If we take the union of the overlapping intervals, we conclude that the meeting with the
plumber can start on Wednesday from 13.00 to 15.00 (interval [29,31]).

LMs LMe

[26,39]

[29,29]

MPs MPe [27,34]
g [33] [32,33]
(el
'\z‘
\ [25,36]
: [26,36] [35,36]
[34,35]

PMs .* PMe Ccse

I11s [1,1] 11le 12s [3.3] 12e
~~s~ &'
‘s ”'
-~ -’
‘Q ¢'
h LMs LMe Lt
! [2,2]
'l
4 P

. .-
. "

. P e -

l" d " -
Pos IO VS PMe Css Cse
[2,2] P2e .. [2.2] [1,1]

DO—2Q .. »Oo—>0

Fig. 5. STN for a specific task order with forbidden time slots.

Let us now show how the non-overlap constraint between a task and certain time
slots can be handled by assuming that the user is not satisfied with the interval [29,31]
for PM, computed by Algorithm 1, because it would be preferable to meet the plumber
in the morning. The user then attempts to make room for MP by selecting the Library
meeting task and asking the STN solver to suggest where to move this task.

The computation of the possible start intervals of LM is made with an algorithm
similar to Algorithm 1, which explores the effects of placing LM in each position within
the current order of the other tasks (P2, PM,CS). However, there is a parallel ordering
to be explored; if we denote respectively as I1, 12 the lunch time (13.00 to 14.00) and
the late afternoon (17.00 to 20.00) on Wednesday, the algorithm must also explore the
placement of LM in each position within the order (/1,72). Figure 5 shows a portion
of the STN where LM has been placed between P2 and PM in the order of tasks, and
between I1 and 12 in the order of non-admissible slots.

The minimization of this particular network yields an interval [30,31] for starting
LM (14.00 to 15.00). The algorithm also explores all the other combinations of the

USR1 USR2 USR3

As Ae Ps Pe
o—>»Q O—>» Q[b LUs Ue
_-"‘ —" ..AO)O
............. N
P ...~ 4" ‘l
4 - ~ 4 -
' Bs bt Lammmmmmp e s, Qe | I .-

Fig. 6. Sample scenario involving multiple actors.

position of LM in the tasks order and in the non-admissible slots order, yielding the
following admissible starting intervals:

[24,25] LM first task before lunch

[30,31] LM between P2 and PM after lunch
[31,31] LM between PM and CS after lunch
[36,37] LM on Thursday after Write paper

If we take the union of the overlapping intervals, we conclude that we can start LM on
Wednesday from 8.00 to 9.00 or from 14.00 to 15.00, and on Thursday from 8.00 to
9.00. Going back to the user’s goal, the Library meeting can be moved to Wednesday
afternoon or Thursday morning, saving room for task Meet plumber on Wednesday
morning.

It should be noticed that the described techniques could be extended to handle
shared tasks. For example, after computing the slots where the Library meeting could be
placed, we have only taken the current user’s calendar into account. However, it might
be necessary or desirable to also take into account the calendars of the other people
attending the meeting.

It is out of the scope of this paper to present the extended techniques that address
this issue. In Figure 6 we give a hint of how a portion of STN encompassing multiple
calendars may look like. There, tasks B and Q of USR1 and USR2 represent the same,
shared task (e.g., a meeting), and this is expressed in the net by the fact that By — Qs > 0
and Q; — By > 0, i.e. By = Q,. Moreover, task U of USR3 must follow task P of USR2,
e.g., because the output of task P is an input for task U; this is expressed in the net by
the link Ug — P, > 0. The extensions needed to handle such an STN may benefit from
distributed solving of the Simple Temporal Problem [22] and may involve negotiations
among the schedules of different users (as partially done in [13], where a user affected
by a change made by another user can accept or refuse it).

5.5 Technical Details

We implemented our mixed-initiative scheduler as a Java Web application. The schedul-
ing module has been developed by integrating the JaCoP Constraint Solver [23], while
the temporal reasoner has been implemented in Perl using the Graph.pm extension mod-
ule [24] for representing and manipulating STNs; in particular, the minimization of the
STNs is performed by invoking the implementation of the Floyd-Warshall algorithm
included in Graph.pm.

The Java Web application calls the temporal reasoner as a local REST (REpresen-
tational State Transfer) service via the HTTP protocol. The user interface is developed
as a rich interface, based on the Google Web Toolkit (GWT [25]).

6 Conclusions

Calendar scheduling is a complex type of activity, which can dramatically benefit from
automated support, especially in tight schedules where the allocation of new events and
tasks can generate non-trivial timing conflicts to be addressed. At the same time, it can-
not be reduced to the identification of solutions satisfying all the existing constraints:
in fact, users handle scheduling problems in a very personal way, taking into account
individual preferences, as well as information about the other involved participants.
Moreover, any change which drastically modifies an existing schedule might be con-
fusing for the involved actors because it would strongly change their daily plans. For
such reasons, calendar management should support the user in finding solutions which
are under her/his control and have schedule stability as a priority.

The work described in this paper follows this concept: we described a mixed-
initiative calendar scheduler which proposes safe schedules and suggests conservative
revisions on demand. Our system helps the user to solve scheduling conflicts but also
to reschedule specific events by suggesting the time slots where they might be allocated
without breaking any existing temporal constraints in the respect of the commitments
of the other involved actors.

At the current stage, our mixed-initiative scheduler handles personal tasks but it only
partially supports the management of shared tasks: while it generates global schedules
if at least one solution satisfying the overall set of constraints exists, it cannot repair
scheduling failures. In our future work we will extend the system to deal with such
situations by improving the temporal reasoner that supports task re-allocation and by
developing an interaction protocol that helps the involved users to reach an agreement
on schedule modifications. Our future work will also be devoted to testing the scalabil-
ity of our scheduler and its usability with end-users, as well as to developing its user
interface for mobile access.

References

1. Grimes, A., Brush, A.: Life scheduling to support multiple social roles. In: Proceedings of
CHI 2008, Florence, Italy, ACM (2008) 821-824

2. Berry, P., Gervasio, M., Peintner, B., Yorke-Smith, N.: PTIME: Personalized assistance for
calendaring. ACM Transactions on Intelligent Systems 2(4) (2011) 40:1-40:22

[ee)

10.

11.

12.

14.

16.

17.

19.

20.

21.

22.

23.
24.
25.

. Ardissono, L., Petrone, G., Torta, G., Segnan, M.: Mixed-initiative scheduling of tasks in

user collaboration. In: Proc. of WEBIST 2012 - Eight International Conference on Web
Information Systems and Technologies, Porto, Portugal (2012) 342-351

. Remember The Milk: The best way to manage your tasks. never forget the milk (or anything

else) again., http://www.rememberthemilk.com/ (2011)

. Google: Google calendar, https://www.google.com/accounts/Servicel.ogin?service=cl
(2010)
. BilOl: Resource central - simplified resource management for meeting & event planners,

http://www.bil01.com/solutions/resource-central/ (2012)

. Cultured Code: Things Mac, http://culturedcode.com/things/ (2011)
. Dolt.im: Doit anywhere, any time!, http://www.doit.im/ (2011)
. Standss: Standss smart schedules for outlook, http://www.standss.com/smartschedules/default.asp

(2012)

Senkul, P., Toroslu, I.: An architecture for workflow scheduling under resource allocation
constraints. Information Systems 30 (2005) 399-422

Waurtz, J.: Constraint-based scheduling in oz. In: Selected Papers of the Symp. on Operational
Research. (1996) 218-223

Eder, J., Ninaus, M., Pitchler, H.: Personal schedules for workflow systems. In: Proc. of Int.
Conference on Business Process Management (BPM 2003), LNCS 2678, Eindhoven, NL.
(2003) 216-231

. Tarumi, H., Kida, K., Ishiguro, Y., Yoshifu, K., Asakura, T.. WorkWeb system - multi-

workflow management with a multi-agent system. In: Proc. of Int. ACM SIGGROUP Con-
ference on Supporting Group Work, New York, NY (1997) 299-308

Berry, P., Moffitt, M., Peintner, B., Yorke-Smith, N.: The design of a user-centric scheduling
system for multifaceted real-world problems. In: Proc. of ICAPS’07 Workshop on moving
planning and scheduling systems into the real world, Providence, RI (2007)

. Horvitz, E., Subramani, M.: Mobile opportunistic planning: methods and models. In: Lec-

ture Notes in Artificial Intelligence n. 4511: Proc. 11th Int. Conf. on User Modeling, Corfu,
Greece (2007) 228-237

Ardissono, L., Bosio, G., Goy, A., Petrone, G., Segnan, M., Torretta, F.: Collaboration sup-
port for activity management in a personal cloud. International Journal of Distributed Sys-
tems and Technologies 2(4) (2011) 3043

Ardissono, L., Bosio, G., Goy, A., Petrone, G., Segnan, M.: Integration of cloud services
for web collaboration: A user-centered perspective. In: Models for Capitalizing on Web
Engineering Advancements: Trends and Discoveries. IGI Global (2012) 1-19

. van der Aalst, W., Ter Hofstede, A., Kiepuszewski, B., Barros, A.: Conformance checking

of service behavior. ACM Transactions on Internet Technology (TOIT), Special Issue on
Service-oriented Computing 8(3) (2008) art. 13

Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49
(1991) 61-95

Dechter, R.: Constraint networks (survey). In Wiley, J., Sons, eds.: Encyclopedia of Artificial
Intelligence (2nd ed.). (1992)

Planken, L., de Weerdt, M., van der Krogt, R.: Computing all-pairs shortest paths by lever-
aging low treewidth. In: In Proceedings of the 21st Int. Conf. on Automated Planning and
Scheduling (ICAPS-11). (2011)

Boerkoel, J., Durfee, E.: A comparison of algorithms for solving the multiagent simple
temporal problem. In: In Proceedings of the 20th Int. Conf. on Automated Planning and
Scheduling (ICAPS-10). (2010)

JaCoP: JaCoP - Java Constraint Programming solver, http://www.jacop.eu/ (2011)
Hietaniemi, J.: Graph-0.94, http://search.cpan.org/ jhi/Graph-0.94/ (2010)

Google: Google Web Toolkit, http://code.google.com/intl/it-IT/webtoolkit/ (2010)

