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ABSTRACT

Juvonen, Antti
Intrusion Detection Applications Using Knowledge Discovery and Data Mining
Jyväskylä: University of Jyväskylä, 2014, 58 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 205)
ISBN 978-951-39-5977-7 (nid.)
ISBN 978-951-39-5978-4 (PDF)
Finnish summary
Diss.

Increasing network traffic and introduction of more and more complex web ser-
vices creates new vulnerabilities for attackers. As a result, attacks have become
more complex and unpredictable. New and previously unseen intrusions cannot
be detected using manual signature-based detection. For this reason, automatic
traffic analysis and anomaly intrusion detection systems are needed. Anomaly
detection faces many problems, such as high number of false alarms and lack of
validation with real data. This thesis focuses on analyzing real-world network
log data by using a knowledge discovery process and data mining methods. The
framework combines data preprocessing, dimensionality reduction, clustering
and anomaly detection. The proposed parts of the system are tested using real
data. The framework is capable of producing meaningful results, such as de-
tecting actual intrusion attempts that are present in the data. In addition, repre-
sentative visualizations of high-dimensional data can be created to provide more
information to the network administrator. The framework is also capable of dy-
namically analyzing and adding more traffic data as it’s being created in the net-
work. The study focuses on practical use and feasibility of the framework, and is
backed up by practical experiments presented in the included articles.

Keywords: knowledge discovery, data mining, intrusion detection, anomaly de-
tection, dimensionality reduction, clustering
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GLOSSARY

X Original feature data matrix
xi A single data point from X

n The number of input data points
D The original number of dimensions in the data
k The number of lower dimensions after dimensionality reduction
AD Anomaly detection
AIS Artificial immune system
ANN Artificial neural network
APT Advanced persistent threat
BMU Best matching unit
CIA Confidentiality, integrity, availability
CRA Contructive research approach
CRISP-DM Cross-industry standard process for data mining
DM Diffusion map
DoS Denial-of-service
FN False negative
FP False positive
GHSOM Growing hierarchical self-organizing map
IDES Intrusion detection expert system
IDS Intrusion detection system
KD Knowledge discovery
KDD Knowledge discovery in databases
KDDM Knowledge discovery and data mining
NIDES Next-generation intrusion detection expert system
OOS Out-of-sample
PCA Principal component analysis
R2L Remote-to-local
RE Rule extraction
ROC Receiver operating characteristics
RP Random projection
SOM Self-organizing map
SVD Singular value decomposition
SVM Support vector machine
TN True negative
TP True positive
U2R User-to-root
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1 INTRODUCTION

This chapter explains the background and motivation for the research, as well as
the research questions to be answered. In addition, the overall structure of the
thesis and included articles and the author’s contributions in them are covered.

1.1 Research motivation

Any system or organization needs many layers of security to ensure safe, reli-
able and efficient operation. Organizations security layers include network and
information security (Whitman and Mattord, 2011). These have become increas-
ingly important in recent times, since systems and services are becoming more
and more complex, offering new possibilities for attackers.

Information security can be generally summarized by using the CIA triad:

– Confidentiality
– Integrity
– Availability

Confidentiality means that only authorized parties have access to information
or data, integrity that the data are not modified in an unauthorized way, and
availability that the data are available to the parties that are authorized. These
principles are constantly threatened by a multitude of attacks.

At the same time, the amount of data in networks is increasing. This creates
new requirements for data analysis solutions and algorithms. There is a large
amount of data, often high-dimensional, leading to the curse of dimensionality,
which challenges many data mining methods (Houle et al., 2010). Using dimen-
sionality reduction might help solve the problems associated with the curse of
dimensionality in intrusion detection. For data analysis, a process called knowl-
edge discovery in databases (KDD) can be used (Fayyad et al., 1996). This kind
of process is sometimes referred to as knowledge discovery and data mining
(KDDM), since data mining is one of the most important steps in the analysis.
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Intrusion detection systems (IDS) (Patcha and Park, 2007) combine attack
detection and data mining methods into a system that dynamically finds intru-
sions from large amounts of traffic. Often the IDS, using anomaly detection meth-
ods, will try to find abnormal behavior. However, even though there has been ac-
tive research in the field of intrusion and anomaly detection, not many anomaly
detection systems are actually in use in real systems (Sommer and Paxson, 2010).
This could be due to impractical algorithms, poor performance or lack of vali-
dation with real data. A lot of research focuses on providing better performance
metrics and ROC curves, which leads to algorithms and systems that are cus-
tomized for specific data sets but do not work in practical real-life situations.

The combination of varied attacks, increasing amounts of data and lack of
practical anomaly detection systems makes securing organizations, systems and
services harder than ever before. If we ever wish to see anomaly intrusion de-
tection systems in operational use, the above-mentioned problems must be ad-
dressed.

1.2 Research questions and approach

To tackle the previously mentioned issues and to increase network security, this
research attempts to answer the following research questions:

1. How to detect anomalies from network logs automatically by using KDD
process and data mining algorithms?

2. Can we successfully incorporate dimensionality reduction as a part of in-
trusion detection framework to facilitate anomaly detection and to provide
meaningful visualizations?

3. How to dynamically and effectively add new traffic data for online detec-
tion?

4. Can the resulting system deal with large amounts of real network traffic
data and provide meaningful results to the administrator?

5. Is the system practical and usable in real-world applications?

To answer these questions, this research uses Constructive Research Approach
(CRA) (Lukka, 2006; Piirainen and Gonzalez, 2013). The aim is to develop a so-
lution (construction) to a real problem by using existing theoretical knowledge in
a way that also contributes to the particular field of science where the method is
being applied. In this research, the problem of web server intrusion and anomaly
detection is solved with the help of a construction of overall intrusion detection
framework using knowledge discovery and data mining methods. In addition,
existing theories and algorithms of the field are tested using real-world data.
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1.3 Structure of the work

The rest of this thesis is organized as follows. First, the theoretical background
on intrusion and anomaly detection as well as knowledge discovery and data
mining is introduced. Then, the results obtained in the research articles and new
unpublished results are explained. Finally, the thesis is concluded, including fu-
ture steps and research directions.

Chapter 2, with more detailed explanations, covers potential intrusions that
threaten systems. These intrusions include new types of attacks referred to as
advanced persistent threats. Also general information about intrusion detection
systems is provided. In addition, anomaly detection as a subset of intrusion de-
tection is explained more thoroughly in its own subsection.

Chapter 3 explains the theoretical background of knowledge discovery pro-
cess and its steps. Data mining, including dimensionality reduction, clustering
and anomaly detection, is covered along with the algorithms used in this re-
search. Many of these algorithms can be used to solve different kinds of prob-
lems, so each of the sections focuses on how they are used particularly in this
research.

Chapter 4 contains the results presented in the included research articles,
divided into meaningful section describing the different major results obtained
in the articles. In addition, some new results that have not yet been published are
added to support the research work.

Finally, Chapter 5 summarizes the work and provides future research direc-
tions as well as some discussion about the results.

1.4 Research contributions

The authors general contribution to the included articles consists of the design
and implementation of the overall system framework with co-authors, and ac-
quisition and preprocessing of real network log data for analysis. Figure 1 shows
the relationships between the included individual articles and their place in the
overall scheme. Papers PI; PII; PIII; PIV; PVI deal with anomaly detection from
real log data in general, including data preprocessing, dimensionality reduction
and anomaly detection. Articles PV; PVII extend the capabilities of the frame-
work by implementing and evaluating methods that can be used to dynamically
add new data samples to the system to enable online detection.

Article PI implements the basic idea of using n-gram preprocessing, dif-
fusion map dimensionality reduction and spectral clustering to detect anoma-
lies from network logs. In the experimental part, real-world network logs are
analyzed to find intrusions from traffic data. The author is responsible for im-
plementing the preprocessing software, acquiring network logs from the partner
company and contributing to the overall design of the framework as well as to
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FIGURE 1 The relationships and contributions of different papers.

the analysis process and writing.
Article PII directly expands the framework used in the previous article. Sev-

eral real-data sets are used to analyze network traffic, detect intrusion dynami-
cally and present meaningful visualizations to the user. In addition, DM method-
ology is compared to well-known PCA dimensionality reduction for more valida-
tion. The author implemented the preprocessing components, performed n-gram
analysis, acquired the real data and was involved with the overall framework de-
sign and results interpretation and presentation.

Article PIII uses a similar framework but focuses more on the clustering and
visualization aspects. As before, n-gram feature matrices are analyzed using DM
and PCA algorithms for reduced dimensionality. In addition, k-means clustering
is brought in to reveal more information about the underlying structures in the
data. The paper reveals significant differences in analysis results between DM
and PCA in some data sets. The author acquired the data from a real-life web
server used by a company, implemented and performed the n-gram preprocess-
ing, performed the k-means clustering, and contributed to the framework design,
article writing and results analysis and interpretation.

In Article PIV, growing hierarchical self-organizing map methodology is
used to find anomalies from preprocessed network logs. In addition, statistical
distribution models are applied for finding anomalous HTTP header fields. These
approaches are combined to detect different kinds of anomalies. The author ac-
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quired the data set and contributed to the ideas and overall design of the system,
especially for n-gram preprocessing.

Article PV expands the diffusion map-based framework explored previ-
ously. Preprocessed data is analyzed using dimensionality reduction and clus-
tering. Subsequently, the input data and output classification results are used to
create a rule set with the help of a conjunctive rule extraction algorithm. The rule
set then classifies the traffic to normal and anomalous in an efficient way and
without the need for heavy algorithms. This creates a hybrid intrusion system
that can be dynamically updated and facilitates online detection. The rules are
also easy to understand and might provide more semantic understanding to the
administrator using the system. The author performed the real network data ac-
quisition and preprocessing, contributed to the overall system design and analy-
sis, and designed and implemented the rule extraction system with the co-author.

Article PVI aims to improve speed and efficiency of the anomaly detection
system by using a fast random projection dimensionality reduction. Based on
the low-dimensional coordinates, Mahalanobis distance-based anomaly score is
calculated so that the data points with a score higher than a preset threshold will
be flagged as anomalies. The system is quick and can function in real time. The
author preprocessed real network logs by using n-gram analysis, implemented
the anomaly detection system that uses RP and Mahalanobis distance, and per-
formed the data analysis and results visualization and interpretation.

Finally, Article PVII combines many of the features individually explored in
other articles, compares several dimensionality reduction techniques as a part of
an IDS and adds out-of-sample extension capabilities to the system for facilitating
dynamic addition of new data points. The author acquired and preprocessed
the data set, implemented random projection algorithm and was involved in the
overall design and implementation of the framework as well as data analysis
process and results interpretation.



2 INTRUSION DETECTION

This chapter provides some background knowledge about intrusion detection.
First, different types of intrusions as well as more recent threats known as APTs
are explored. Then, intrusion detection systems as well as some of their charac-
teristics and classifications are explored with a more detailed focus on anomaly
detection systems.

2.1 Intrusions

An intrusion can be defined as any malicious activity that aims to compromise the
security principles presented in the CIA triad in Section 1.1. An attack consists of
several stages, which are often summarized in the literature as follows (Asaka et
al., 1999):

– Surveillance/probing stage
– Activity stage
– Mark stage
– Masquerading stage

In the first stage (probing), the attacker gathers information about the target sys-
tem and possibly carries out password cracking to find potential vulnerabilities.
The actual exploitation takes place during the second stage (activity) to get free
access to the system. Then, in the mark stage, the attacker may steal information,
destroy data or plant viruses or spyware on the target system. Finally, in the final
stage, the intruder attempts to hide the traces of the attack.

From these stages, we can derive a popular taxonomy of intrusions often
found in the literature (Lippmann et al., 2000):

– Denial of Service (DoS)
– Remote to Local (R2L)
– User to Root (U2R)
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– Surveillance/Probing

Surveillance attacks work as already explained above. DoS attacks create abnor-
mal amounts of traffic or corrupt messages or packets so that the target system
will not be available or working properly. R2L means that an attacker who does
not have access to a system sends certain packages to gain local access to the vic-
tim machine. Finally, when carrying out U2R attacks, the intruder already has
local access but is also able to gain root privileges to the target system, e.g., by
using some exploits or vulnerabilities. These attack types have been generally
used as a basis for theoretical knowledge in research literature for a long time.
However, the range of attacks is always constantly, and new types of intrusions
threaten services and systems.

2.1.1 Advanced persistent threat

Security landscape is always changing, and many new and complex attacks have
been discovered in recent years. A big and severe class of intrusions is that of ad-
vanced persistent threat (APT). The word “advanced” refers to a variety of meth-
ods used in combination to enable successful intrusion, and “persistent” means
that the goal is to achieve and maintain long-term access to the target system
for gaining information to perform malicious activities (Tankard, 2011). Another
way to understand APTs is that they are stealthy, targeted and data-focused, to
differentiate them from traditional threats (Cole, 2012).

Perhaps the best-known example of an APT is Stuxnet. It is highly complex,
targeted towards specific infrastructure and spread by using several propagation
methods (Virvilis and Gritzalis, 2013).

These new threats mean that conventional security measures like firewalls
and anti-virus software are not enough, since APTs can avoid them. Because of
this, sophisticated intrusion detection systems and log analyses comparing log
data to baseline traffic should be used (Tankard, 2011).

2.2 Intrusion detection system

An intrusion detection system (IDS) is a system or a tool for detecting unautho-
rized traffic, malware and potential intrusions (Patcha and Park, 2007). An IDS
is not a firewall or anti-virus software, but a dynamic tool used to complement
these. The system monitors network traffic like a sniffer and analyses it to find
intrusions by using manually generated signatures or automatic anomaly detec-
tion.

2.2.1 Types of intrusion detection systems

Intrusion detection systems work using different principles, behavior and audit
trail location. Therefore, there are many types of systems. One way to classify
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these systems is the following (Engen, 2010):

Audit source location: host based of network based.
Detection method: misuse or anomaly detection.
Detection behavior: passive or active.
Usage frequency: online (real-time) or offline.

An IDS can receive its audit trails from different locations. A host based system
works in a single host, whereas a network based IDS monitors the entire network
traffic. These two approaches complement each other, since not all malicious ac-
tivity generates network traffic. One of the most important classifications for an
IDS is the detection method. Misuse or signature-based systems use manually
generated signatures to find already known intrusions. Most current tools work
using this principle because it is accurate. Anomaly detection systems are theo-
retically capable of detecting unknown intrusions, but they might give more false
positives. Most systems work in a passive manner, only notifying the administra-
tor about potential intrusions, but it is also possible to take automatic actions to
prevent the attack or mitigate the damage. However, this might sometimes cre-
ate problems if the counter measures are directed at a legitimate user (Kemmerer
and Vigna, 2002). Finally, the IDS can work offline (analyzing historical data) or
online (analyzing in real time). It is obvious that online operation has several
benefits, even though it can be challenging especially in larger networks (Engen,
2010).

2.2.2 Anomaly detection systems

An anomaly detection system aims to find abnormal behavior that deviates from
a normal profile (Patcha and Park, 2007). Anomaly detection offers tools to de-
tect previously unknown threats, but, if the normal behavior is not correctly mea-
sured, the detection results can be poor. One of the early examples of intrusion
and anomaly detection is Denning’s popular model for statistical anomaly detec-
tion to find abnormal behavior (Denning, 1987).

From the anomaly detection point-of-view, there are four types of traffic
classified by the system (Kumar and Spafford, 1994):

– Intrusive but not anomalous: False negative (FN).
– Not intrusive but anomalous: False positive (FP).
– Not intrusive and not anomalous: True negative (TN).
– Intrusive and anomalous: True positive (TP).

False negatives are intrusions that are not detected but classified as normal, and
false positives are false alarms created by non-intrusive behavior. True negatives
means traffic correctly classified as normal, and true positives are actual intru-
sions detected. Many false positives or false negatives can render the anomaly
detection system unusable.
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FIGURE 2 NIDES intrusion detection framework (Lunt, 1993).

Anomaly detection can also be combined with signature detection to form
a hybrid system which uses some kind of hybrid model to make decisions about
normal and intrusive traffic (Patcha and Park, 2007). Perhaps the best-known
hybrid IDS, IDES (Lunt, 1990), uses a rule-based system in combination with
anomaly detection to find both known and unknown intrusions. This was later
followed by the next version of the system, NIDES (Lunt, 1993). A framework
diagram of the NIDES model can be seen in Figure 2. More recently proposed
systems use different data mining methods for anomaly detection, e.g., clus-
tering analysis (Palnaty and Rao, 2013), change point detection (Tartakovsky et
al., 2013), support vector machines (SVM) (Kim et al., 2014), neural networks
(Panchev et al., 2014) and artificial immune systems (AIS) (Parashar et al., 2013).
The data mining concepts and algorithms are explained in more detail in Chapter
3.



3 KNOWLEDGE DISCOVERY AND DATA MINING

This chapter first introduces the overall knowledge discovery process and its
phases and then explains the different components and some algorithms in more
detail. The focus is on data mining. The featured algorithms are the ones that are
used in this research and are relevant to the goals of this thesis. It is important
to note that even though many algorithms can be used for many different tasks,
for dimensionality reduction or clustering for example, the algorithm is placed
under the section that represents its use in this particular research and the overall
framework.

3.1 Knowledge discovery and data mining process

Knowledge discovery (KD) aims to find new knowledge about an application
area. It contains several steps, each step completing a single task, data mining
being one of the steps (Klosgen and Zytkow, 1996). Knowledge discovery in
databases (KDD) is the same process applied to databases. Since the data mining
phase is an integral part of knowledge discovery, knowledge discovery and data
mining (KDDM) has become a popular and descriptive name for the process.

The KDD process is illustrated in Figure 3. The process steps and the actions
performed in each step can be summarized as follows (Fayyad et al., 1996):

Selection:
Selection of target data set and a subset of features or samples to be ana-
lyzed.

Preprocessing:
Data cleaning, removal of noise and handling of missing data.

Transformation:
Reduction and projection of the data. Dimensionality reduction and trans-
formation to reduce the number of analyzed variables.

Data mining:
Choosing the data mining algorithm(s) to use based on the goal (regression,
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FIGURE 3 KDD process (Fayyad et al., 1996).

classification, clustering etc.), model selection. Performing the data mining
analysis resulting in patterns, trees, clusters and so on.

Interpretation:
Interpreting the results obtained in the previous step. Using the discovered
knowledge to perform actions and report the results to the involved parties.

As we can see in Figure 3, the process is iterative, and it is possible to loop back
to a previous step at any point in the analysis if needed (Fayyad et al., 1996). The
full process actually contains 9 phases, but these have been combined to better
correspond with the figure.

The process by Fayyad et al. is of academic nature, but there are many
other process models, some of them for industrial applications. In Table 1, there
is a comparison between the KDD process used and an industrial KD process
model called CRISP-DM (Shearer, 2000). It can be seen that the processes are
very similar, whereas the focus is slightly different.

When looked at more closely, data mining could be understood as analyzing
data present in databases, automatically solving problems there, finding patterns
from the data and using these patterns for prediction (Witten and Frank, 2005).
Problem solving in this case often involves using automated machine learning
algorithms.

3.2 Data acquisition and preprocessing

In this section, data selection and its challenges are explained in the context of the
KDD process. In addition, a preprocessing and feature extraction method called
n-gram analysis is described with an illustrative example.
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TABLE 1 A comparison of two different knowledge discovery processes (Kurgan and
Musilek, 2006).

Model Fayyad et al. CRISP-DM
Steps 1. Developing and understand-

ing application domain
1. Business under-
standing

2. Creating a target data set 2. Data understand-
ing

3. Data cleaning and preprocess-
ing

3. Data preparation

4. Data reduction and projection
5. Matching KDD process with
the data mining method
6. Choosing the data mining al-
gorithm
7. Data mining 4. Modeling
8. Interpretation of mined pat-
terns

5. Evaluation

9. Consolidating discovered
knowledge

6. Deployment

3.2.1 Data selection

Once an understanding of the application domain and the goal for the process
has been reached, a target data set must be created by acquiring the data as well
as possibly focusing on a subset of variables in the data (Fayyad et al., 1996).
This phase is not trivial, since acquiring real network data can be difficult due to
security concerns and for legal reasons (Sommer and Paxson, 2010). This leads to
the use of public test data sets or simulated data, and both of these approaches
contain problems, e.g., the traffic might not represent real network accurately. In
this research, real network data was acquired, mitigating many of the mentioned
issues.

3.2.2 N-gram analysis

In the context of this research, n-grams can be understood as a way to transform
textual data into numerical matrices for further analysis. An n-gram can be de-
fined as a consecutive sequence of n characters (Damashek et al., 1995). N-grams
are obtained by moving a sliding window with size n through a string or se-
quence. The parameter n can be freely selected. If we choose n = 1, we get a
simple character distribution. In many cases, it is feasible to select n > 1. If we
choose n ≥ 3, we get higher order n-grams (Hubballi et al., 2010). The bigger the
parameter n is, the more distinct theoretical n-grams we get. For example, us-
ing ASCII character strings (256 different characters), the theoretical maximum
number of different 2-grams in the data is 2562 = 65536. It is easy to see that the
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TABLE 2 An example of n-gram feature matrix X.

co om mp pu ut te er ti in ng
xcomputer 1 1 1 1 1 1 1 0 0 0
xcomputing 1 1 1 1 1 0 0 1 1 1

maximum number goes up rapidly as n increases. However, in a practical situ-
ation, most of the possible n-grams never appear in the data, which reduces the
size of the feature matrix. In anomaly detection applications, the choice of n is a
compromise between the feature matrix size and detection accuracy.

Feature vector and matrix generation can be illustrated with a practical ex-
ample. For example, let us assume that we have two strings: computer and
computing. If we choose n = 2 (sometimes called bigrams), we get distinct n-
grams co, om, mp, pu, ut, te, er, ti, in and ng. For each string, we calculate
the frequencies of occurrences of an individual n-gram in that particular string.
These form the feature vectors xcomputer and xcomputing, which in turn form the en-
tire feature matrix X. The calculated feature matrix for this example case can be
seen in Table 2.

N-grams have been used in several application areas. They are particularly
helpful in the area of natural language and text processing (Suen, 1979). An-
other application area related to language is speech recognition (Hirsimaki et al.,
2009). N-grams have also been used for anomaly detection purposes, e.g., finding
abnormal sequences of system calls (Hubballi et al., 2011), detecting new and un-
known malicious code (Abou-Assaleh et al., 2004) and detecting anomalies from
packet payloads by using layered higher order n-grams (Hubballi et al., 2010). In
addition, n-grams can be useful for protein sequence analysis (Ganapathiraju et
al., 2002).

3.3 Dimensionality reduction

Many times data exist in a high-dimensional feature space. Dimensionality re-
duction aims to represent this data by using fewer dimensions while minimizing
the introduced error (Roweis and Saul, 2000). This may prove essential in dealing
with the curse of the dimensionality and in visualizing high-dimensional data as
well (Lee and Verleysen, 2007). Dimensionality reduction can be divided into
feature selection and feature extraction (Pudil and Novovičová, 1998). Feature
selection means selecting a subset from the original features which describe the
data accurately enough. Feature extraction (or feature generation) is the process
of creating completely new features based on the original ones. Both of these ap-
proaches achieve a similar goal: less dimensions with minimal error. An example
of dimensionality reduction where dimensions are reduced from 3 to 2 is pre-
sented in Figure 4. In the figure, the distances between points are preserved even
in the low-dimensional representation. This thesis uses feature extraction meth-
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Original dimensions Lower dimensions

FIGURE 4 The key idea behind dimensionality reduction: An example from 3D to 2D.

ods, because these methods are transformative, follow the KDD process steps and
provide us with meaningful visualizations. In this section, different dimension-
ality reduction methodologies are introduced.

3.3.1 Principal component analysis

Principal component analysis (PCA) is one of the best-known and widely used
dimensionality reduction techniques (Jolliffe, 2002). It has a long history and it
has been further developed by several researchers over the years (Pearson, 1901;
Hotelling, 1933). It has been used in various applications, and is especially useful
in the cases where there are many independent variables (dimensions) relative
to the number of observations or where the independent variables are highly
correlated (Rencher and Christensen, 2012).

PCA is defined as an orthogonal linear transformation that maps the data
into a coordinate system so that the first coordinate captures most of the variance,
the second coordinate captures the second highest variance, and so on (Jolliffe,
2002). An example of a dataset, with two dimensions and two principal compo-
nents and their directions, is presented in Figure 5.

Before performing PCA, the data must be centered (i.e., it must have a zero
mean), which can be done by subtracting the sample mean from the elements
of the data matrix (Lee and Verleysen, 2007). After this, covariance matrix Σ is
calculated. Subsequently, eigenvalues and corresponding eigenvectors are ob-
tained from Σ. These vectors are then ordered and put into the matrix W ordered
according to the eigenvalues, because eigenvalues are variances of the principal
components (Rencher and Christensen, 2012). Only k components are selected,
so that they capture a large proportion of the variance (Rencher and Christensen,
2012) and k � D, where D is the number of original dimensions in the data.
Given the original data matrix X, we get a low-dimensional representation of the
data (matrix XPCA) by performing the multiplication presented in Equation 1.
This way we will get the n original data points presented in k dimensions.

Xn×k
PCA = Xn×DWD×k (1)

Deciding how many components to retain (i.e., deciding k) is not trivial.
Some methods include the following (Rencher and Christensen, 2012):
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FIGURE 5 An example of PCA. The data points are grey dots, the principal components
are black arrows.

1. Retain components that capture a certain percentage of the variance.
2. Retain components whose eigenvalues are greater than the mean of all eigen-

values.
3. Plot the eigenvalues to a graph and look for a gap between larger and

smaller eigenvalues
4. Test the significance of larger eigenvalues

PCA has some limitations. The latent variables are assumed to have a Gaussian
distribution, and the method fails when dealing with data with nonlinear depen-
dencies (Lee and Verleysen, 2007). However, PCA can be extended to handle
nonlinear problems, e.g., by using the Kernel PCA algorithm (Muller et al., 2001).

3.3.2 Random projection

Random projection is an efficient and fast dimensionality reduction method. It’s
key idea is based on the Johnson-Lindenstrauss lemma, which states that points
in a vector space can be projected onto a subspace with suitably high dimensions
while approximately preserving the distances between points (Johnson and Lin-
denstrauss, 1984).

If we have the original data matrix Xn×D consisting of n data points in D
dimensions, random projection is obtained by multiplying matrix X with random
matrix R (Li et al., 2006). This can be seen in equation 2:

Xn×k
RP = Xn×DRD×k (2)

This way we end up with the new matrix XRP, which contains the data
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points using k dimensions so that k � D. The projection is computationally very
simple, as its complexity is of order O(Dkn) (Bingham and Mannila, 2001). If
the data matrix X is sparse with approximately c nonzero entries per column, the
method becomes even simpler and the complexity is of order O(ckn) (Papadim-
itriou et al., 1998). This means that random projection is especially efficient for
sparse data matrices.

The key question with this method deals with random matrix generation.
Random projection is an actual projection only if the matrix R is orthogonal.
However, orthogonalizing is computationally complex, and without orthogonal-
ization significant distortions can be introduced in the data (Bingham and Man-
nila, 2001). Thankfully, a result is found in the literature stating that in a high-
dimensional space there exists larger number of almost orthogonal directions
than orthogonal directions (Hecht-Nielsen, 1994). This means that in practice
vectors with random directions can produce sufficiently accurate results, which
is also backed up by experiments (Bingham and Mannila, 2001).

A random matrix can be generated in a way that is fast and easy to im-
plement. Let’s denote an individual element of random matrix R as rij. These
elements could be generated as shown in Equations 3 and 4 (Achlioptas, 2001).

rij =

{
+1 with probability 1

2
−1 .. 1

2
(3)

rij =
√

3 ×
⎧⎨
⎩

+1 with probability 1
6

0 .. 2
3

−1 .. 1
6

(4)

Alternatively, random matrix elements can be generated with the help of
a more general probability distribution as demonstrated in Equation 5 (Li et al.,
2006). With this distribution, Equations 3 and 4 proposed by Achlioptas et al. are
obtained by choosing s = 1 and s = 3, respectively. If we choose s � 3, e.g.,
s =

√
D or even s = D

log D we get a very sparse random projection (Li et al., 2006).

rij =
√

s ×
⎧⎨
⎩

+1 with probability 1
2s

0 .. 1 − 1
s

−1 .. 1
2s

(5)

From the above results it can be seen that random projection offers many op-
portunities for significant computational speedup, as long as proper care is taken
to ensure that not too much error is introduced when performing the projection
(e.g., choosing s too aggressively).

3.3.3 Diffusion map

Diffusion map is a geometric manifold learning method that embeds high-dimen-
sional data into low-dimensional diffusion space. The methodology is nonlinear
and focuses on finding the underlying manifold on which the data points lie.
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The low-dimensional embedding facilitates subsequent tasks such as visualiza-
tion and regression (Coifman et al., 2005). Furthermore, anomaly detection and
clustering are easier in this embedded space (Coifman and Lafon, 2006). For over-
coming the scaling problem in many datasets, localized diffusion folders have
also been introduced (David, 2009; David et al., 2010; David and Averbuch, 2012).

The diffusion map is constructed as follows. Let our original data be X =
{x1, . . . , xn}, xi ∈ RD, where n is the number of measurements and D denotes
the original dimensions of the data, i.e., the data is in a matrix with D features
as columns and n samples as rows. We begin by constructing affinity matrix W,
using Gaussian kernel and Euclidean distance in this case, as seen in Equation
6 (Coifman and Lafon, 2006; Nadler et al., 2008). When calculating W, we must
choose the parameter ε for defining the affinity neighborhood, which is not a
trivial task (Schclar et al., 2010).

wij = exp

(
−||xi − xj||2

ε

)
(6)

Next, we generate diagonal matrix D, which contains the row sums of W on
its diagonal. Using D, we normalize W so that the sum of each row is 1, which
results in matrix P (Equation 7).

P = D−1W (7)

After this, we obtain the eigenvalues from the transition probability matrix
(the probability of changing from one state to another). By substituting P in Equa-
tion 8 with the one from Equation 7, we get the symmetric probability matrix seen
in Equation 9.

P̃ = D
1
2 PD− 1

2 (8)

P̃ = D− 1
2 WD− 1

2 (9)

The matrix P̃ is then decomposed using singular value decomposition (SVD):
P̃ = UΛU∗. The eigenvalues on the diagonal of Λ correspond to the eigenvectors
of P̃, and the matrix U contains the eigenvectors of P̃ in its columns. To get the
eigenvectors of P in the columns of V, we use Equation 10.

V = D− 1
2 U (10)

Finally, to get the new data coordinates in the embedded space in matrix
Ψ using eigenvalues in Λ and eigenvectors in V, we use Equation 11. If the pa-
rameter ε is chosen correctly, only k (k � D) components are needed and not too
much information is lost. Now the dimensionality has been reduced from D to k.

Ψ = VΛ (11)
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3.4 Clustering

Any clustering algorithm attempts to automatically find the natural groupings of
data that is not labeled. We can outline the clustering problem as follows: Based
on representations of n observations, try to group them into k groups (clusters)
according to a similarity measure in such a way that (Jain, 2010):

1. The similarities between data points within a group are high.
2. The similarities between data points in different groups are low.

The similarity (or dissimilarity) can mean different things, e.g., it can be the dis-
tance between the data points.

In this section, some clustering algorithms relevant to this research are in-
troduced.

3.4.1 K-means clustering

K-means clustering is a famous and widely used clustering algorithm. Since
its introduction, many other clustering algorithms have been introduced, but k-
means has retained its popularity (Jain, 2010). Even though the algorithm has its
limitations, its use in this research is justified when used together with diffusion
map dimensionality reduction (Lafon and Lee, 2006).

Given the original data matrix X = {x1, . . . , xn}, the goal is to cluster the
n data points into k clusters. Now an individual data point is xi, and the center
(i.e., the mean point) of cluster ck is μk. The squared error (distance) between data
points of ck and μk is (Jain, 2010):

J(ck) = ∑
xi∈ck

||xi − μk||2 (12)

If all the clusters are denoted by C, the k-means algorithm aims to minimize
the sum of all squared errors within clusters (Jain, 2010):

J(C) =
K

∑
k=1

∑
xi∈ck

= ||xi − μk||2 (13)

In an optimal solution, the clusters lie in their respective Voronoi regions
and the centroids are at the center of the mass of data points within one cluster
(Ostrovsky et al., 2006). The k-means algorithm (and thus the solution to the
problem described above) can be broken down into these steps (Jain and Dubes,
1988):

1. Select k initial cluster centers (centroids).
2. Based on the closest cluster centroid, assign each data point to a cluster.
3. Calculate the new cluster centroids by using the points assigned in the pre-

vious step.
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Original points Initial centroids Updated clusters

Updated centroids Updated clusters #2 Updated centroids #2
and convergence

FIGURE 6 A simple example of k-means clustering. The clusters are separated using
different symbols and the cluster centroids are black.

4. Repeat steps 2 and 3 until convergence takes place.

In practice convergence means meeting a certain stopping criterion, which usu-
ally is satisfied when there are no changes to clustering or centroids after the
previous iteration. At this point, a local optimum solution will have been been
found. A simple example with just few data points is illustrated in Figure 6.

Since k-means converges to a local minimum, cluster centroid initialization
impacts the clustering result greatly. If the initialization is done well, it is possible
to find a global minimum solution. Usually the aim is to find an initialization that
gives the most stable clustering (Bubeck et al., 2012). The most common approach
is to use random initialization (Forgy, 1965). However, this can sometimes lead to
unsatisfactory results. Many initialization methods have been introduced in at-
tempts to overcome this problem (Ostrovsky et al., 2006; Arthur and Vassilvitskii,
2007; Barakbah and Kiyoki, 2009; Bubeck et al., 2012).

Normally, before using k-means, some decision of the number of clusters
(k) must be made. However, it is possible to use the algorithm even when k
is unknown (Pham et al., 2005). In that case, a some kind of methodology for
choosing the appropriate number of clusters can be used, e.g., Davies-Bouldin
index (Davies and Bouldin, 1979) or the silhouette method (Rousseeuw, 1987).

Many extensions to k-means have been introduced to extend its capabilities
and overcome certain problems and shortcomings. For example, Kernel k-means
can be used even when the clusters are separated only nonlinearly in the original
input space (Dhillon et al., 2004). In addition, k-medoids is a more robust alter-
native to k-means (Kaufman and Rousseeuw, 1987). It aims to minimize the sum
of dissimilarities between cluster data points and its medoid.
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3.4.2 Spectral clustering

Spectral clustering has become a very popular approach to clustering problems,
because it is easy to implement and solve, and it often offers feasible results
(Von Luxburg, 2007). Spectral clustering does not refer to a single algorithm,
but rather a family of different algorithms that follow the same approach. For
example, the algorithms can differ in the way they generate affinity matrices or
how the Laplacian L is calculated.

Let us consider an example of a spectral clustering algorithm. Given a data
matrix X = x1, . . . , xn that we want to divide into k clusters, we can use the fol-
lowing algorithm (Ng et al., 2002):

1. Calculate the affinity matrix W ∈ Rn×n so that W = exp(−||xi − xj||2
/

2σ2)

when i �= j, Wii = 0. Here σ2 is a scaling parameter that controls how
quickly the affinity falls off as the distance between xi and xj increases.

2. Using diagonal matrix D, whose element (i, i) is the sum of the row i in W,
calculate the matrix L = D− 1

2 WD− 1
2 .

3. Find the k largest eigenvectors of L, denoted by u1, . . . , uk. Form the matrix
U = [u1 . . . uk] ∈ Rn×k so that eigenvectors are stacked in its columns.

4. Generate the matrix T by normalizing the rows of U to unit lengths by per-
forming Tij = Uij

/
(∑j U2

ij)
1
2 .

5. Using each row of T as a point in Rk, cluster the points by using k-means or
some other algorithm that tries to minimize distortion.

6. Assign the original data point xi to cluster j if the row i of matrix T was
assigned to cluster j.

It is important to note that even though the algorithm uses k-means or a similar
algorithm in one of its steps, spectral clustering is not the same thing as using
k-means clustering on its own (Ng et al., 2002).

We can clearly see that the diffusion map methodology is very similar to the
above algorithm. They are indeed closely connected.

3.4.3 Self-organizing Map

Self-organizing map (SOM) (Kohonen, 1982) is a neural network based on un-
supervised learning and creates a low-dimensional representation (map) of the
input vectors. It aims to preserve the topological relations in the data, and it
is a popular algorithm used in clustering and visualization (Shao et al., 2009).
It also works well in dimensionality reduction applications. SOM has been re-
searched extensively, with thousands of papers published on the subject (Kangas
and Kaski, 1998).

The map can be constructed in the following way (Shao et al., 2009). Just
as previously, we have the data points in matrix X in D dimensions and an indi-
vidual point is xj. The basic version of SOM consists of a layer of neurons that
exist on a low-dimensional lattice. The neurons are represented by weight vector



33

wi = {wi1, . . . , wiD}. In the beginning of each training step, a single data point
xj is selected randomly. Subsequently, one of the neurons is selected as a best
matching unit (BMU) c according to Equation 14.

||wc − xj|| = min
i

||wi − xj|| (14)

After this, the BMU and its neighboring nodes are updated and moved to-
wards xj by the following:

wi(t + 1) = wi(t) + α(t) · hci(t) · (xj − wi(t)). (15)

Now the α(t) is the learning rate and hci(t) is a neighborhood kernel that
defines a neurons neighborhood. One option for hci(t) is:

hci(t) = e
||pc−pi ||2

2σ(t)2 (16)

Where pc is the position of the BMU in the lattice, pi is the corresponding
position of BMU’s neighbor, and σ(t) is the width of the neighborhood function.
Both α(t) and σ(t) need to decrease over time, otherwise the algorithm might not
converge.

An example of SOM training with different number of iterations is pre-
sented in Figure 7. The units are moving and conforming to the data in the input
space. In this example the data has only two dimensions.

A well-known method for visualizing and classifying data points into a
cluster is the U-matrix (Ultsch and Siemon, 1990). U-matrix is constructed in a
way that shows the distances between the nodes in the input space while using
the low-dimensional output space. Different colors or a 3-D bump map can be
used for the visualization. The points that fall into a “valley” on the map belong
to the same cluster. Alternative methods for visualizing and detecting clusters
include the Adaptive Coordinates and Cluster Connections method (Merkl and
Rauber, 1997).

Over the years, many extensions to SOM have been introduced. One method
creating a more efficient mapping is Growing Grid, which starts with a small
rectangular grid of nodes (e.g., 2 × 2) and expands the grid by inserting rows or
columns so that the map adapts to the shape of the analyzed data (Fritzke, 1995).
However, this and other similar extensions do not take the inherent hierarchical
structure of the data into account (Rauber et al., 2002). To overcome this problem,
Growing Hierarchical Self-Organizing Map has been introduced (Dittenbach et
al., 2000). It starts as a small map and generates new mappings with different
sizes on different layers of hierarchy as needed. The sizes and structures of these
independent mappings are determined by an unsupervised learning process.
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FIGURE 7 An example of SOM training with 1, 10, 100 and 200 iterations. The data
points are in grey, the SOM units and their topological connections in black.
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3.5 Anomaly detection

An anomaly is a pattern in data that does not conform to normal behavior or a re-
gion (Chandola et al., 2009). Anomalies are introduced for different reasons, e.g.,
by malicious network activity. Anomalies can also be single points or collective
anomalies consisting of abnormal sequences of events. Many machine learning
methods, such as the support vector machine (SVM) (Jiang and Yasakethu, 2013;
Kim et al., 2014) and artificial neural networks (ANN) (Panchev et al., 2014) have
been used to detect anomalies in various applications.

One way used in this study to detect anomalies uses a statistical anomaly
detection method. First, some kind of anomaly score must be calculated for each
point. This score can be, for example, the distance from the center of the normal
cluster of points. If we assume that the data follows a Gaussian distribution, we
can use an anomaly indicator function:

g(y) =
{

1 , if distance(y, center) > μ + mσ

0 otherwise.
(17)

Here σ is the standard deviation and μ is the mean of the distances from the
mean point of the data. If the data point in low dimensions y is more than μ+ mσ

away from the mean, the point is classified as an anomaly. The choice of m is not
trivial, but in the case of a Gaussian distribution choosing m = 3 should cover
99.7% of the data. This kind of statistical distance-based method can be taken
advantage of with the help of any dimensionality reduction method mentioned
in Section 3.3.

The SOM algorithm is often considered a dimensionality reduction or a clus-
tering algorithm, but it can also be used for anomaly detection. For example, a
data point is classified as normal if it is close to its BMU, and as anomalous if the
distance between the point and the BMU is larger than the pre-defined threshold
(Ramadas et al., 2003). In addition to SOM, GHSOM has also been successfully
used to solve anomaly detection problems (Huang and Huang, 2013). GHSOM is
also used for network anomaly detection in this research in Article PIV.

3.6 Out-of-sample extension

If we consider dimensionality reduction, as explained in Section 3.3, as the train-
ing stage, meaning that the data present in the initial dimensionality reduction
phase is the training data, we have to choose what happens when new data that
was not present in training is introduced to the system. The new points must be
projected to the same subspace as the original training data. This is known as
out-of-sample extension. Some different methods for performing dimensionality
reduction are explained in this section.
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3.6.1 Random projection and PCA

The addition of new data points can be carried out very easily and similarly for
both random projection and PCA. Random projection is especially simple, since
it does not need a training data set at all. Random matrix R is generated indepen-
dent of the data anyway. If we get a new data point yi, we can very simply project
that point into the same subspace by performing the following multiplication:

yRP = yiR. (18)

In the simplest case, the same procedure for PCA is basically the same. If we
have the ordered eigenvectors of the covariance matrix in the columns of matrix
W as explained in 3.3.1, we can get a low-dimensional representation of the new
data point in the following way:

yPCA = yiW. (19)

3.6.2 Diffusion maps and Nyström extension

When performing out-of-sample extension for diffusion map dimensionality re-
duction (explained in 3.3.3), the aim is to interpolate the coordinates of new data
points that were unavailable at the training stage based on the mapping of the
training data. One option is to use the Nyström extension (Belongie et al., 2002;
Bengio et al., 2004; Fowlkes et al., 2004). It can be used together with many di-
mensionality reduction methods. In this research, it is coupled with diffusion
maps.

Let us denote an original data point present in the training data as xi. Now
a new added data point is yj ∈ RD, where D is the number of original high
dimensions. We collect the distances between the new data point and existing
training points into W̄ as shown in Equation 20.

W̄ = exp

(
−||xi − yj||2

ε

)
(20)

Once we calculated the column sums of W̄ into diagonal matrix D̄ii =
N
∑

i=1
W̄ij, the transition probabilities are

B = W̄D̄−1. (21)

Then, we get the eigenvectors as columns of matrix V̄ (the eigenvalues Λ

are the same as in the training phase):

V̄ = BTVΛ−1. (22)

Now, if the low-dimensional coordinates for the new points are Ȳ = V̄Λ,
we get the extended coordinate approximations in the columns of ȲDM (Equation
23).
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FIGURE 8 An example of the rule extraction process. Instead of using neural network
classification (1), the rule set is generated and it performs the classification
task (2).

Ȳ = BTV (23)

3.6.3 Rule extraction

In the context of rule extraction, a rule can be defined as a symbolic rule that
describes a certain classification result (Craven and Shavlik, 1994). Rule extrac-
tion is the rule generation phase. Once the rules have been extracted, the rule set
is expected to replicate the classification results of any algorithm in an efficient
way. Another motivation for using rule extraction is the fact that algorithms may
work as a black box. Since in many applications it is important for the user to
understand how the algorithm makes its decisions (Craven and Shavlik, 1994),
well constructed symbolic rules can provide this information in a meaningful
and understandable way. Some example algorithms and applications include
generating rules from a support vector machine for medical diagnosis (Barakat
and Diederich, 2004), rule extraction from trained neural networks for credit card
fraud detection (Ryman-Tubb and d’Avila Garcez, 2010) and automatic medical
database classification (De Falco, 2013). The rules can also be represented as de-
cision trees (Craven and Shavlik, 1996).

Figure 8 illustrates the main idea behind rule extraction. A rule set is ex-
tracted from a neural network classification, and the rule set, instead of the net-
work, is then used to save computational time and make the classification more
understandable for humans. The rule set also facilitates out-of-sample extension,
since new data points can be classified using the rules but without using a heavy
classification algorithm. Even though rule extraction based on a neural network
is very common, any classification algorithm can be used.

A rule extraction algorithm can be roughly divided into two main cate-
gories: decompositional and pedagogical (Andrews et al., 1995). Decomposi-
tional algorithms take the underlying classification algorithm into account. For
example, if rules are extracted based on artificial neural network classification,
different layers as well as hidden and output units of the network are used to
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construct the rules. Pedagogical approaches treat the classification algorithm as a
black box, meaning that only inputs and outputs are taken into account. Because
of this, pedagogical methods are more general and can work with any classifica-
tion methodology. On the other hand, the possible rule space can be large and
this can lead to inefficient rule generation (Ryman-Tubb, 2011).

Let us consider an example of symbolic rules. If we have four binary fea-
tures, a, b, c and d, this also means that we have four dimensions or four columns
in the feature matrix. In this case, a symbolic rule determines whether a feature
must be true, false or whether its value does not matter. Let’s look at an example
rule set: ⎧⎨

⎩
r1 = a for class c1,
r2 = ¬a ∧ b ∧ c for class c1,
r3 = a ∧ ¬b ∧ d for class c2.

All of the rules form whole rule set R. For example, rule r2 means that a
feature vector matches the rule if its symbol a is false or 0, its symbols b and c are
1, and the value of symbol d does not matter. Binary feature vectors matching
rule r2 would be v1 = [0, 1, 1, 0] and v2 = [0, 1, 1, 1]. If a vector matches r2, that
data point will be classified to group c1.

A simple way to construct this kind of rule set is conjunctive rule extrac-
tion (Craven and Shavlik, 1994). The algorithm requires training data as well as
the classes obtained using some classification algorithm. The algorithm can be
presented in a simplified way as follows:

1. Get observation xi from data set X. Use it as a basis for a new rule.
2. Check if the observation already matches a rule in rule set R. If not, continue

to Step 3. If the observation is already covered by a rule, skip to Step 1.
3. Drop a symbol from xi. Again classify using the existing rule set. If the clas-

sification does not change, that symbol is not needed and can be omitted.
This is repeated for all the symbols. After this only the necessary symbols
are left and the rule pruned.

4. Add newly generated rule ri to set R.
5. Repeat from Step 1 until all the training observations have been used.

In short, to construct new rules, this greedy algorithm uses all the observations
that are not already covered by a rule. From these rules, all the unneeded sym-
bols (the ones that do not affect the classification result in the training data) are
removed. Most rule extraction algorithms are more complicated than this, but
conjunctive rule extraction is simple and efficient, and it can be used with any
classification algorithm.



4 RESULTS

This chapter presents the results obtained. The results are presented using a
bottom-up approach, meaning that the final overall framework and findings are
presented in the end of the chapter, because this approach follows the chronolog-
ical order of the research papers more accurately.

4.1 Anomaly detection from real network data

All of the included articles deal with real-world network log data. This is one of
the most important aspects since any intrusion detection system needs to be eval-
uated using real data to ensure its feasibility (Sommer and Paxson, 2010). Web
server logs were acquired from several companies, and they use the following
format:

127.0.0.1 - -
[01/January/2012:00:00:01 +0300]
"GET /resource.php?
parameter1=value1&parameter2=value2
HTTP/1.1" 200 2680
"http://www.address.com/webpage.html"
"Mozilla/5.0 (SymbianOS/9.2;...)"

The format includes information such as the IP address and timestamp, but the
most interesting part is HTTP query and it’s parameters, since it is possible to
inject malicious code into them or detect other intrusions from the query part.
For example, an attacker could inject SQL statements into the request parameter
values to log in to a system without knowing the password, or to wipe out a
database completely (SQL injection). In addition, more complex intrusions could
leave traces into HTTP logs. Many password crackers and vulnerability scanning
software, which are meant to be used for security auditing, are actually used for
malicious scanning and will leave entries in the log files.
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Article PI lays the foundations for anomaly intrusion detection. In the paper,
we analyze the above-mentioned real-life log data with the help of n-gram analy-
sis (as explained in Section 3.2.2), project the points to low-dimensional space by
using diffusion maps, and detect anomalies with the help of spectral clustering.
Normal traffic forms a dense cluster and anomalous traffic is rather simple to sep-
arate in this case. The results are compared to those of support vector machine
(SVM), and all the methods give practically feasible outputs, since all of the real
intrusions are found. Because all the tested methodologies perform well, we can
conclude that the n-gram feature extraction creates a data set where separating
normal from anomalous is rather simple.

The results are extended in Article PII. The focus is on further comparison
between DM and PCA methodologies and on using more real data for better
testing of the efficiency of the system. For this purpose, two different data sets
are used. The first one is a smaller one and is labeled manually to measure the
accuracy. The second data set is totally unknown, and we use a more exploratory
approach for this. For both data sets, real intrusions are found and representative
visualizations are acquired. The most important observation is related to the two
dimensionality reduction methods, DM and PCA. We find that, for the first data
set, both methodologies give almost identical results. At this point, PCA seems
a better choice due to its better performance. However, the second data reveals
that PCA gives unsatisfactory results while DM works much better. This might
indicate that there are nonlinear dependencies in the data, and PCA does not
work in that case (Lee and Verleysen, 2007).

In Article PIII, the analysis is extended with a more elaborate cluster anal-
ysis using k-means algorithm. Even though k-means has its limitations, there is
justification for its use in combination with diffusion maps (Lafon and Lee, 2006).
Again, the comparison between DM and PCA gives results similar to those al-
ready found in the previous papers. One of the new discoveries is that one data
file is separated into two clear clusters with similar size. In this case, we found
that a visualization can represent an underlying traffic structure that cannot be
directly seen by looking at the log files. This extends the system’s capabilities
beyond anomaly detection.

Article PIV continues the analysis of HTTP logs with n-gram preprocessing.
This time we a SOM extension known as growing hierarchal self-organizing map
(GHSOM). The algorithm dynamically extends SOM by starting with a small map
and hierarchically growing it. GHSOM is used for detecting anomalous HTTP
queries. In addition, another detection method is used in combination with GH-
SOM detection. a statistical distribution model is applied to find abnormal HTTP
headers by analyzing header lengths and non-alphanumeric symbols that appear
in them (Corona and Giacinto, 2010). Both methods when used together increase
the accuracy of detection. Many different types of intrusions, such as SQL in-
jections, directory traversals or buffer overflow attacks are detected with good
accuracy.

In the articles mentioned above, different methods are used for real-life log
analysis and anomaly detection. While the accuracy is good, there are still some



41

concerns related to the speed and efficiency of the system, and new data points
must be added dynamically. These problems are addressed in the following sec-
tion.

4.2 Increasing performance and adding new data points

The anomaly detection framework gives good results, but the analysis and ad-
dition of new incoming data points might not be fast enough. Article PV ad-
dresses this problem by introducing conjunctive rule extraction, explained in Sec-
tion 3.6.3. With unsupervised approach using the same preprocessing as before
and diffusion maps, training traffic is first classified into normal and abnormal.
The input data and its classification result is then used as a basis for a conjunctive
rule extraction algorithm (Craven and Shavlik, 1994). The end result is a simple
i f . . . then rule set that classifies any incoming traffic. This approach offers the
following benefits:

1. Rule based classification is much faster the use of a heavy machine learning
algorithm

2. The classification results approximate the algorithm classification, so detec-
tion of intrusions and anomalies is efficient

3. The rules can be manually inspected, offering insight to the system admin-
istrator

The advantage of the first point is clear, as we can use complex algorithms for
initial training and then classify the traffic with a compact rule set. The benefit
referred to in the second point is huge, but it can be argued that if the training
data set used to create the rules is different from new incoming traffic, classifi-
cation accuracy suffers dramatically. Finally, as explained in the third point, the
rules can sometimes give the user more detailed information about the classifica-
tion than an application of a “black box” algorithm. However, this also depends
largely on the data, and the rules can be too complex to be readable for humans.

Despite its benefits, rule extraction also has some problems that limit its use
in intrusion detection. It might be beneficial to look for performance increase
elsewhere. In Article PVI, instead of using a heavy algorithm and rule extrac-
tion, random projection (RP) dimensionality reduction is used to perform similar
tasks but with less computational complexity. HTTP logs with n-gram feature
extraction produce very sparse feature matrices, since the probability for any in-
dividual n-gram appearing in a single log file is low, due to the large number of
possible n-grams. This means that most entries in the matrix are zeros. RP works
especially well in these situations (Papadimitriou et al., 1998). Computational
times are also significantly faster than with PCA. Anomalies are detected using
a distance-based anomaly score, so that data points with score higher than the
threshold value are classified as anomalies. Out of more than a million log lines,
only 0.02% are flagged as anomalies and actual intrusion attempts are found.
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However, more experiments are needed to ensure the accuracy of the RP method.
In addition, since there is a random element apparent in the RP algorithm, the re-
sults are not always stable. This could be solved by using multiple RP mappings
and combining the results (Fern and Brodley, 2003).

Article PVII combines the RP, PCA and DM methodologies and addition of
new data points to each of them and compares the results. For RP and PCA, new
data point addition is a simple matter of matrix and vector multiplication. For
DM, we need an algorithm such as Nyström extension. This requires more calcu-
lation, but it accurately projects new points into the low-dimensional subspace.
Statistical anomaly detection is used for all the methods, and test results are ob-
tained using a simulated data set as well as a real-world one. Real intrusions are
once again found, and based on the findings it is clear that RP scales with large
data sets much better than the other methods do. Another major result is that all
the methods scale linearly with out-of-sample extension. This means the system
could be scaled up to potentially be used in big data applications.

4.2.1 New unpublished results

Some new but unpublished results have been obtained to support the findings in
Article PV. To supplement a real but undisclosed log data set, we used the pop-
ular KDD Cup 99 data (Bache and Lichman, 2013). The data set does have many
problems and limitations, e.g., the data is completely artificial and synthetic and
might not represent real network traffic, and there are many redundant records
which is problematic for machine learning algorithms (Tavallaee et al., 2009). On
the other hand, the data set is widely used and is useful for comparisons.

First, the original measurement data is input to the DM algorithm and clus-
tered to normal and anomalous sets with k-means. Since conjunctive rule extrac-
tion requires binary features and some of the measurements in KDD Cup data are
continuous, the data is binarized by dividing individual features into n bins (e.g.,
n = 10) and using the binary features to describe into which bin the value of a
specific feature falls. Some information is lost during binarization, but the binary
features are only used for rule generation.

After performing unsupervised classification and rule extraction, the sys-
tem is tested with new data. Some results for a small test set can be seen in Ta-
ble 3, including normal performance metrics with the addition of the Matthews
correlation coefficient (Matthews, 1975). The corresponding confusion matrix is
shown in Table 4.

One important notion is that the rule based classification gets slower as the
rule set size increases. The rule set growth behavior was tested using more data.
The growth of the set size is seen in Figure 9. As expected, when more and more
data is added, it seems that the rule set size converges and does not increase after
a certain point, i.e., all the new incoming data points are already covered by a
finite rule set. Regardless of the promising results, rule extraction and its accuracy
need more validation before the feasibility is confirmed in a more general setting.
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TABLE 3 Performance metrics for the testing KDD data lines.

Metric Value %

Sensitivity (TPR) 98.44
FPR 1.25

Specificity (TNR) 98.75
Accuracy 98.50
Precision 99.70

Matthews corr. coef. 95.31
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FIGURE 9 The rule set size increase with increasing number of log lines.
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TABLE 4 Confusion matrix for testing data lines.

predicted

normal attack
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ct
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l normal 947 12

attack 63 3,978

4.3 Combined overall framework

Finally, the components explained in the articles can be combined to form the
overall system framework, which is the major contribution of this thesis. Figure
10 shows the framework. The idea is that there are many “paths” that all finally
lead to real-time intrusion and anomaly detection. Based on results found in the
literature and in the included articles in this thesis, there are rules and justifica-
tions for choosing specific components. First, preprocessing is quite similar in
all the situations. Second, one of the dimensionality reduction methods must be
selected. PCA is a tried and true method and can be treated as a default option. If
the data is very sparse (contains many zero values) or high speed is required, RP
is the logical choice. On the other hand, if the data contains nonlinear dependen-
cies and other methods give unfeasible results, DM is the best choice for accurate
results. GHSOM methodology combines dimensionality reduction and cluster-
ing, and is the ideal option if the data has natural hierarchical properties. After
dimensionality reduction, there is the clustering phase. With DM, spectral clus-
tering or k-means will both work since there is justification for their use found in
the literature and their use is supported by our results as well. With RP or PCA,
k-means is a good choice, even though clustering is optional. Finally, anomalies
are detected using statistical anomaly detection or a SOM-based anomaly detec-
tion technique. Using multiplication method (RP and PCA) or Nyström extension
(DM), new data can be added after training. Rule extraction is an option that can
be used with every algorithm. The end result is a real-time anomaly detection
framework that has the capabilities to work in a variety of situations with differ-
ent kinds of data.

No matter which of the presented algorithms are selected, the overall sys-
tem follows the steps described in the KDD process mentioned in Section 3.1.
Table 5 shows how the different phases of the process are applied to intrusion
detection in this research.

The final resulting anomaly detection system contains preprocessing, di-
mensionality reduction, clustering, anomaly detection and out-of-sample exten-
sion components. The system offers choices for algorithms mentioned previously,
and the selection can be based on different rules and justifications depending on
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FIGURE 10 The entire anomaly detection framework.
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TABLE 5 A comparison of how the different phases of the KDD process are used in this
research.

KDD model step This research

Selection Data acquisition
Selecting a subset of features

Preprocessing Removal of unneeded lines
Handling of missing data

N-gram analysis
Transformation Dimensionality reduction:

RP, PCA, DM
Data mining Clustering:

K-means
Spectral clustering

SOM
Anomaly detection:

SOM
Statistical

Out-of-sample extension:
OOS for RP, PCA

Nyström extension
Interpretation/evaluation Alerts

Actions
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the data. The system also follows the KDD process, and has the following main
benefits:

– Anomalies are detected automatically
– Representative visualizations are created
– New data points can be added dynamically when new traffic is generated

in real-time
– The system supports large data sets
– Choosing the right algorithm from the overall framework is not random,

and can be based on existing theoretical and practical knowledge and justi-
fications

– The system is tested and works with real network data

The system is almost exclusively tested on real data, since it was available from
real companies and any intrusion detection system must be validated using real
data (Sommer and Paxson, 2010). The aim was not to make the system use the
most complex algorithms, but create a framework that works in a practical situ-
ation. It can be argued that the system in Figure 10 is too complex, but not all
of the algorithms are used at the same time, making the end results simpler in
a practical scenario. Currently the algorithm selection process is not automated,
which is a shortcoming since some data mining knowledge is needed to optimize
the system’s efficiency. However, the presented guidelines help in this matter.



5 CONCLUSION

The amount of network traffic has increased, giving rise to massive amounts of
data. In addition, web services and systems have become more complex, and as
a result they face new attacks threatening their security. For this reason, more in-
telligent data analysis, anomaly detection and visualization methods are needed
to facilitate dynamic online intrusion detection.

This thesis approaches the above-described problem from two main view-
points. Firstly, the knowledge discovery process is used as a theoretical back-
ground framework along with relevant data mining algorithms. Secondly, the
research is closely tied to practical situations and real-world data, including ac-
quiring real log data sets and evaluating the systems feasibility in a practical sce-
nario.

Practical experiments include evaluation of the framework with data acqui-
sition, preprocessing, dimensionality reduction and anomaly detection. The pro-
posed methods used together form a dynamic system that is capable of detecting
network anomalies from real data, as well as providing meaningful visualiza-
tions that represent the structure of the data. Different algorithms can be selected
based on the nature and characteristics of the data. The results emphasize the
practical usefulness and impact of the system instead of slightly better detection
metrics.

Despite the useful results from real data, the undisclosed nature of the data
sets makes it difficult to reproduce the results in different settings. Therefore,
more evaluation with the help of the whole framework is needed to ensure the
feasibility, even if the smaller components presented in the articles already give
good results. In addition, automatic selection of the proper algorithms should be
added to make the system easier to use for network administrators who are not
data mining experts. The automated algorithm selection could make the system
slower at least in the initial training phase. For future research, the system should
be adapted for massive big-data analysis to make it more relevant for current
needs.
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YHTEENVETO (FINNISH SUMMARY)

Tämä väitöskirja, Hyökkäysten havainnoinnin sovellutuksia käyttäen tietämyksen löy-
tämisprosessia ja tiedonlouhintaa, käsittelee automaattista hyökkäysten löytämistä
suurista tietoliikennemassoista käyttäen hyväksi tietämyksen löytämisen proses-
sin vaiheita ja ennen kaikkea tiedonlouhinta-algoritmeja. Tietoverkkojen ja verk-
kopalveluiden kasvava liikennemäärä ja monimutkaisuus ovat avanneet mah-
dollisuuksia uusille hyökkäyksille. Monet hyökkäyksistä ovat ennestään tunte-
mattomia, ja ne pystytään havaitsemaan vasta vahinkojen tapahduttua. Tämä
tutkimus esittelee ja yhdistelee tapoja löytää nämä hyökkäykset automaattises-
ti tiedonlouhintaa hyväksikäyttäen.

Tutkimus esittelee ensin teoreettisen pohjatiedon, joka sisältää tietoa hyök-
käysten havaitsemisjärjestelmistä ja hyökkäyksistä itsestään, sekä esittelee tietä-
myksenlöytämisprosessin ja erityisesti siihen olennaisena osana kuuluvia tiedon-
louhinta-algoritmeja. Analyysi sisältää datan keräämisen, sen esikäsittelyn, ulot-
tuvuuksien pienentämisen ja ryhmittelyn eli klusteroinnin sekä poikkeavuuk-
sien havaitsemisen. Nämä kaikki vaiheet alusta loppuun voidaan suorittaa täy-
sin automaattisesti siten, että liikennedataa analysoidaan sitä mukaa kun sitä ker-
tyy. Tiedonlouhintavaiheessa käytetään esimerkiksi diffuusiokarttaa, pääkompo-
nenttianalyysia, satunnaisprojektiota, k-means-klusterointia ja itseorganisoituvaa
karttaa analyysin eri vaiheissa.

Tutkimus testaa järjestelmän käytettävyyttä käyttäen oikean maailman lo-
kidataa. Esimerkkitapauksissa löydetään oikeita hyökkäysyrityksiä ja pystytään
visualisoimaan aluksi korkeaulotteista tietoa käyttäen ulottuvuuksien vähentä-
misalgoritmeja. Tuloksena ovat hälytykset uusista hyökkäyksistä sekä kaksi- tai
kolmeulotteinen kuva liikenteen rakenteesta. Käytetyt algoritmit muodostavat
käytännöllisen järjestelmän, joka lisää turvallisuutta ja tarjoaa lisää tietämystä
verkon ylläpitäjälle. Suuria datamassoja voidaan analysoida automaattisesti si-
ten, että järjestelmä toimii käytännön tasolla ja antaa lisäarvoa sen käyttäjälle.
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Abstract. The goal of this study is to detect anomalous queries from
network logs using a dimensionality reduction framework. The fequencies
of 2-grams in queries are extracted to a feature matrix. Dimensionality
reduction is done by applying diffusion maps. The method is adaptive
and thus does not need training before analysis. We tested the method
with data that includes normal and intrusive traffic to a web server. This
approach finds all intrusions in the dataset.
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1 Introduction

The goal of this paper is to present an adaptive way to detect security attacks
from network log data. All networks and systems can be vulnerable to different
types of intrusions. Such attacks can exploit e.g. legitimate features, misconfig-
urations, programming mistakes or buffer overflows [15]. This is why intrusion
detection systems are needed. An intrusion detection system gathers data from
the network, stores this data to logfiles and analyzes it to find malicious or
anomalous traffic [19]. Systems can be vulnerable to previously unknown at-
tacks. Because usually these attacks differ from the normal network traffic, they
can be found using anomaly detection [2].

In modern networks clients request and send information using queries. In
HTTP traffic these queries are strings containing arguments and values. It is easy
to manipulate such queries to include malicious attacks. These injection attacks
try to create requests that corrupt the server or collect confidential information
[18]. Therefore, it is important to analyze data collected from logfiles.

An anomaly is a pattern in data that is different from the well defined normal
data [2]. In network data, this usually means an intrusion. There are two main
approaches for detecting intrusions from network data: misuse detection and
anomaly detection [19]. Misuse detection means using predefined attack signa-
tures to detect the attacks, which is usually accurate but detecting new types of
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attacks is not possible. In anomaly detection the goal is to find actions that some-
how deviate from normal traffic. This way it is possible to detect previously un-
known attacks. However, not all anomalous traffic is intrusive. This means there
might be more false alarms. Different kinds of machine learning based methods,
such as self-organizing maps and support vector machines, have been used in
anomaly detection [20, 23]. Information about other anomaly detection methods
can be found in the literature [19]. Unsupervised anomaly detection techniques
are most usable in this case, because no normal training data is required [2].

This study takes the approach of dimensionality reduction. Diffusion map is a
manifold learning method that maps high-dimensional data to a low-dimensional
diffusion space [5]. It provides tools for visualization and clustering [6]. The
basic idea behind any manifold learning method is the eigen-decomposition of a
similarity matrix. By unfolding the manifold it reveals the underlying structure of
the data that is originally embedded in the high-dimensional space [1]. Diffusion
maps have been applied to various data mining problems. These include vehicle
classification by sound [21], music tonality [10], sensor fusion [12], radio network
problem detection [25] and detection of injection attacks [8]. Advantages of this
approach are that the dimensionality of the data is reduced and that it can be
used unsupervised [2].

2 Method

2.1 Feature extraction

First let us define an n-gram as a consecutive sequence of n characters [7]. For
example, the string ababc contains unique 2-grams ab, ba and bc. The 2-gram
ab appears twice, thus having frequency of 2. A list of tokens of text can be
represented with a vector consisting of n-gram frequencies [7]. Feature vector
describing this string would be xababc = [2, 1, 1]. The only features extracted are
n-gram frequencies. Furthermore, syntactic features of the input strings might
reveal the differences between normal and anomalous behavior. Computed n-
grams can extract features that describe these differences.

The frequencies are collected to a feature matrix X whose rows correspond to
lines in logfiles and columns to features. These n-gram frequencies are key-value
fields, variable-length by definition. Key strings are ignored and 2-grams are
produced from each parameter value. The count of occurrences of every occurring
2-gram is summed. In practice n-gram tables produced from real-life data are
very sparse, containing columns in which there are only zero occurrences. To
minimize the number of columns, the processing is done in two passes. If a
column contains no variation between entries, that column is not present in
the final numeric matrix X. That makes it reasonable to use diffusion maps to
process n-gram tables directly with no further preprocessing.

2.2 Dimensionality reduction

The number of extracted features is so large that dimensionality reduction is
performed using diffusion maps. It is a manifold learning method that embeds the
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original high-dimensional space into a low-dimensional diffusion space. Anomaly
detection and clustering are easier in this embedded space [6].

The recorded data describe the behavior of the system. Let this data be
X = {x1, x2, . . . , xN} , xi ∈ R

n. Here N is the number of samples and n the
dimension of the original data. In practice the data is a N × n matrix with
features as columns and each sample as rows.

At first, an affinity matrix W is constructed. This calculation takes most of
the computation time. The matrix describes the distances between the points.
This study uses the common Gaussian kernel with Euclidean distance measure,
as in equation 1 [6, 16].

Wij = exp

(
−||xi − xj ||2

ε

)
(1)

The affinity neighborhood is defined by ε. Choosing the parameter ε is not
trivial. It should be large enough to cover the local neighborhood but small so
that it does not cover too much of it [21].

The rows of the affinity matrix are normalized using the diagonal matrix D,
which contains the row sums of the matrix W on its diagonal.

Dii =
N∑
j=1

Wij (2)

P expresses normalization that represents the probability of transforming
from one state to another. Now the sum of each row is 1.

P = D−1W (3)

Next we need to obtain the eigenvalues of this transition probability matrix.
The eigenvalues of P are the same with the conjugate matrix in equation 4. The
eigenvectors of P can be derived from P̃ as shown later.

P̃ = D
1
2PD− 1

2 (4)

If we substitute the P in equation 4 with the one in equation 3, we get the
symmetric probability matrix P̃ in equation 5. It is called the normalized graph
Laplacian [4] and it preserves the eigenvalues [16].

P̃ = D− 1
2WD− 1

2 (5)

This symmetric matrix is then decomposed with singular value decomposi-
tion (SVD). Because P̃ is a normal matrix, spectral theorem states that such a
matrix is decomposed with SVD: P̃ = UΛU∗. The eigenvalues on the diagonal of
Λ = diag([λ1, λ2, . . . , λN ]) correspond to the eigenvalues of the same matrix P̃
because it is symmetric. Matrix U = [u1, u2, . . . , uN ] contains in its columns the
N eigenvectors uk of P̃ . Furthermore, because P̃ is conjugate with P , these two
matrices share their eigenvalues. However, to calculate the right eigenvectors vk
of P , we use equation 6 and get them in the columns of V = [v1, v2, . . . , vN ] [16].
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V = D− 1
2U (6)

The coordinates of a data point in the embedded space using eigenvalues in
Λ and eigenvectors in V are in the matrix Ψ in equation 7. The rows correspond
to the samples and the columns to the new embedded coordinates [6].

Ψ = V Λ (7)

Strictly speaking, the eigenvalues should be raised to the power of t. This
scale parameter t tells how many time steps are being considered when moving
from data point to another. Here we have set it t = 1 [6].

With suitable ε the decay of the spectrum is fast. Only d components are
needed for the diffusion map for sufficient accuracy. It should be noted that the
first eigenvector v1 is constant and is left out. Using only the next d components
the diffusion map for original data point xi is presented in equation 8. Here
vk(xi) corresponds to the ith element of kth eigenvector [6].

Ψd : xi → [λ2v2(xi), λ3v3(xi), . . . , λd+1vd+1(xi)] (8)

This diffusion map embeds the known point xi to a d-dimensional space.
Dimension of the data is reduced from n to d. If desired, the diffusion map may
be scaled by dividing the coordinates with λ1.

2.3 Anomaly detection

After obtaining the low-dimensional presentation of the data it is easier to clus-
ter the samples. Because spectral methods reveal the manifold, this clustering
is called spectral clustering. This method reveals the normal and anomalous
samples [13]. Alternatively, k-means or any other clustering method in the low-
dimensional space is also possible [17]. Another approach is the density-based
method [25].

Only the first few low-dimensional coordinates are interesting. They contain
most of the information about the manifold structure. We use only the dimension
corresponding to second eigenvector to determine the anomality of the samples.
At 0, this dimension is divided into two clusters. The cluster with more samples
is considered normal behavior. Conversely, the points in the other cluster are
considered anomalous [22, 11, 13]. The second eigenvector acts as the separating
feature for the two clusters in the low-dimensional space. The second eigenvalue
is the solution to the normalized cut problem, which finds small weights be-
tween clusters but strong internal ties. This spectral clustering has probabilistic
interpretation: grouping happens through similarity of transition probabilities
between clusters [22, 14].
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3 Results

3.1 Data acquisition

The data is acquired from a large real-life web service. The logfiles contain mostly
normal traffic, but they also include anomalities and actual intrusions. The log-
files are from several Apache servers and are stored in combined log format.
Listing below provides an example of a single logline. It includes information
about the user’s IP-address, time and timezone, the HTTP request including
used resource and parameters, Apache server response code, amount of data
sent to the user, the web page that was requested and used browser software.

127.0.0.1 - - [01/January/2011:00:00:01 +0300]

"GET /resource?parameter1=value1&parameter2=value2 HTTP/1.1"

200 2680 "http://www.address.com/webpage.html"

"Mozilla/5.0 (SymbianOS/9.2;...)"

The access log of a web site contains entries from multiple, distinct URLs.
Most of them point to static requests like images, CSS files, etc. We are not
focused to find anomalies at those requests because it is not possible to inject
code via static requests unless there are major deficiencies in the HTTP server
itself. Instead, we are focused in finding anomalies from dynamic requests be-
cause those requests are handled by the Web application, which is run behind
the HTTP server.

To reach this goal, the access log entries are grouped by the resource URL.
That is the part between host name and parameters in the HTTP URL scheme.
Those resources containing only HTTP GET requests with no parameters are
ignored. Each remaining resource is converted to a separate numerical matrix. In
this matrix, a row represents a single access log entry, and a column represents
an extracted feature.

Feature extraction is done in two passes. In the first pass the number of
features is determined, and in the second pass the resulting matrix is produced.
In our study we extracted the number of occurrences of 2-grams produced from
HTTP GET parameters. These frequencies are normalized with logarithm in
order to scale them. This ensures that the distances between the samples are
comparable.

3.2 Data analysis

To measure the effectiveness of the method the data is labeled so that classifi-
cation accuracy can be measured. However, this labeling is not used for training
the diffusion map. The class labels are not input for the method.

Diffusion map reveals the structure of the data, and all the anomalies are
detected. The n-gram features of the data are mapped to a lower dimensions.
Figure 1 shows the resulting low-dimensional diffusion space with ε = 100. The
normal behavior lies in the dense area to the lower right corner. Anomalous
points are to the left of 0.
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Fig. 1. Two-dimensional diffusion map of the dataset.
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Figure 2 shows that the eigenvalues converge rapidly with ε = 100. This
means that the first few eigenvalues and eigenvectors cover most of the differ-
ences observed in the data. The first value is 1 and corresponds to the constant
eigenvector that is left out in the analysis. Eigenvalues λ2 = 0.331 and λ3 = 0.065
cover large portions of the data when compared to the rest that have values below
0.005.
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Fig. 3. Accuracy of classification changes when the parameter ε is changed.

Classification is tested with different values of ε, which defines the neigh-
borhood for diffusion map. Accuracy of classification is defined as accuracy =
(tp+ tn)/(tp+ fp+ fn+ tn). Figure 3 shows how the accuracy of classification
changes when ε is changed. Higher values of ε result in better accuracy. Precision
of classification is defined precision = tp/(tp+fp). The precision stays at 1 once
any anomalies are detected, which means that all the anomalies detected are real
anomalies regardless of the accuracy [9, p. 361].

For comparison, principal component analysis (PCA) is performed on the
same normalized feature matrix [9, p. 79]. Results are very similar to the dif-
fusion map approach, because of the simple structure of the feature matrix.
Furthermore, PCA reaches the same accuracy and precision as diffusion map.
The low-dimensional presentation is also very similar. Figure 4 shows the first
two coordinates of PCA.

We also apply support vector machines (SVM) to the same data [9, p. 337–
344]. LIBSVM implementation is used [3]. We use one-class SVM with RBF
kernel function. A subset of the data is used in the model selection for SVM (500
lines randomly selected). Then the rest of the data is used to test the method.
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Fig. 4. PCA of the dataset, first two coordinates. The Y-axis of this figure has been
reversed for better visual comparison with diffusion map.

The data labels are unknown, so the training data is not ”clean” and contains
some intrusions as well. It is possible to find the right parameters (ν and γ) for
model selection if pre-specified true positive rate is known. The parameters which
give a similar cross-validation accuracy can be selected [3]. However, this kind of
information is not available. Fully automatic parameter selection for OC-SVM
could be achieved by using more complicated methods, such as evolving training
model method [24]. In this study the parameter selection is done manually. At
best the accuracy is 0.999 and precision 0.998.

4 Conclusion

The goal of this study is to find security attacks from network data. This goal
is met since all the known attacks are found. The proposed anomaly detection
scheme could be used for query log analysis in real situations. In practice the
boundary between normal and anomalous might not be as clear as in this exam-
ple. However, the relative strangeness of the sample could indicate how severe
an alert is.

The diffusion map framework adapts to the log data. It assumes that the
data lies on a manifold, and finds a coordinate system that describes the global
structure of the data. These coordinates could be used for further analysis of
characteristics of anomalous activities.

Because all the methods perform extremely well, the data in question is rather
sparse and the discriminating features are quite evident from the feature matrix.
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This is the merit of n-gram feature extraction which creates a feature space that
separates the normal behavior in a good manner. The features describe the data
clearly, and they are easy to process afterwards.

One advantage of the diffusion map methodology is that it has only one meta-
parameter, ε. It can be estimated with simple interval search. If for some reason
the threshold sensitivity needs to be changed, ε gives the flexibility to adapt to
the global structure. For comparison, the SVM we used has two parameters, ν
and γ. Searching the best parameters for the application gets more difficult as
the number of parameters increases.

The presented anomaly detection method performs well on real data. As
an unsupervised algorithm this approach is well suited to finding previously
unknown intrusions. This method could be applied to offline clustering as well
as extended to a real-time intrusion detection system.
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Abstract

Dynamic web services are vulnerable to a multitude of intrusions that could be pre-
viously unknown. Server logs contain vast amounts of information about network
traffic, and finding attacks from these logs improves the security of the services. In
this research features are extracted from HTTP query parameters using 2-grams.
We propose a framework that uses dimensionality reduction and clustering to iden-
tify anomalous behavior. The framework detects intrusions from log data gathered
from a real network service. This approach is adaptive, works on the application
layer and reduces the number of log lines that needs to be inspected. Furthermore,
the traffic can be visualized.

Keywords: intrusion detection, anomaly detection, n-grams, diffusion map, data
mining, machine learning

1 Introduction
The goal of this paper is to present an adaptive way to detect security attacks from

network log data. All networks and systems can be vulnerable to different types of

intrusions. Such attacks can exploit e.g. legitimate features, misconfigurations, pro-

gramming mistakes or buffer overflows [1]. This is why intrusion detection systems
are needed. An intrusion detection system gathers data from the network, stores these

data to log files and analyzes them to find malicious or anomalous traffic [2]. Sys-

tems can be vulnerable to previously unknown attacks, commonly known as zero-day

attacks [3]. Because usually these attacks differ from the normal network traffic, they

can be found using anomaly detection [4].

In modern networks clients request and send information using queries. In HTTP

traffic these queries are strings containing arguments and values. It is easy to manip-

ulate such queries to include malicious attacks. These injection attacks try to create

requests that corrupt the server or collect confidential information [5]. Therefore, it is

important to analyze the collected data in log files. Most intrusion detection systems

∗Now with C2 SmartLight Ltd.
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analyze TCP packet data. There are not many application layer IDS systems available.

Because the HTTP log data are very different from network packet data, they both need

to be analyzed. Different attacks can be performed on different layers.

An anomaly is a pattern in data that is different from the well defined normal

data [4]. In network data, this usually means an intrusion. There are two main ap-

proaches for detecting intrusions from network data: misuse detection and anomaly
detection [2]. Misuse detection means using predefined attack signatures to detect the

attacks, which is usually accurate but detecting new types of attacks is not possible. In

anomaly detection the goal is to find actions that somehow deviate from normal traf-

fic. This way it is possible to detect previously unknown attacks. However, not all

anomalous traffic is intrusive. This means there might be more false alarms. Different

kinds of machine learning based methods, such as self-organizing maps and support

vector machines, have been used in anomaly detection [6, 7]. Information about other

anomaly detection methods can be found in the literature [2]. Unsupervised anomaly
detection techniques are most usable in this case, because no normal training data are

available [4]. These techniques work without prior knowledge of attack patterns. This

kind of adaptive framework is suitable for a posteriori network log analysis.

This study takes the approach of dimensionality reduction. Because the number

of dimensions of the feature space grows large and sparse when analyzing textual in-

formation, such as log files, this is one of the most feasible techniques. Furthermore,

the sparsity of data suggests about the underlying low dimensional structure. Almost

the same amount of information can be represented with lower number of dimensions.

Diffusion map is a manifold learning method that maps high-dimensional data to a low-

dimensional diffusion space [8]. It provides tools for visualization and clustering [9].

The basic idea behind any manifold learning method is the eigendecomposition of a

similarity matrix. By unfolding the manifold it reveals the underlying structure of the

data that is originally embedded in the high-dimensional space [10]. Diffusion maps

have been applied to various data mining problems. These include vehicle classification

by sound [11], music tonality [12], sensor fusion [13], radio network problem detection

[14, 15] and detection of injection attacks [16]. In addition to the advantage of reduced

number of dimensions, the approach can be used for unsupervised learning [4].

2 Related research
Kruegel and Vigna [17] analyzed the parameter values of HTTP queries. The static

queries with no parameters were removed. The underlying assumption is that attack

patterns differ from normal traffic and that this difference can be expressed quantita-

tively. They used several different analyzing methods, such as attribute length and char-

acter distribution. The learning was based on previous data. The data were not labeled.

The analysis of character distribution is similar to our research, because essentially the

characters are n-grams with the length 1. We use 2-grams for higher detection rates,

but we will also get more dimensions in the data matrices.

Hubballi et al. [18] used layered higher order n-grams for detecting intrusions.

However, this analysis was not done on application layer data, but on the network

packet payloads. Higher order n-grams are n-grams where n > 2. This means that

the method is computationally more expensive, but rare events might be detected more

accurately. The n-grams are organized into bins based on their frequency. The anal-

ysis starts with 1-grams, and it moves to higher n-grams incrementally to get higher

accuracy. In the research the number of distinct and unique n-grams went up almost
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linearly as n increased. Therefore, using higher order n-grams might not be as complex

in practice as it could be theoretically. For example, the theoretical maximum number

for 3-grams in ascii-characters is 2563, which is considerably higher than the case with

2-grams.

Dimensionality reduction has been discussed in the context of anomaly detection

from networks. Ringberg et al. studied the IP packet data and tried to detect anomalies

using principal component analysis. They also identified the main challenges when

using principal component dimensionality reduction approach. The finding about large

anomalies contaminating the subspace is relevant also to our research. However, their

network architecture is more complex than ours [19]. Callegari et al. analyzed similar

packet data [20]. These studies used low-level IP packet datasets that need specific ag-

gregation before they can be processed. Our research concerns the application level log

data, which is text, while the IP packet datasets are numeric. In addition, we compare

the results of principal component analysis and diffusion maps.

Diffusion maps have been applied in the network security context. David explored

the use of diffusion map methods to find injection attacks in hyper-networks. His data

included SQL injection examples that used a similar feature extraction as our research.

The n-gram feature extraction was applied to tokenized SQL [16]. Our research, in

contrast, focuses on the raw textual queries. Furthermore, David and Averbuch used

a localized diffusion folder approach to classify network protocols, among other ex-

amples. Their data contains low-level features such as duration and the number of

bytes [21]. However, our data comes from the application layer of the network, specif-

ically web server logs. These are different from the low-level network features and

contain lots of textual information in the form of queries. Moreover, we use the theo-

retical framework of spectral clustering as the basis of our research.

3 Methodology
Straightforward numerical methods are difficult to apply to textual data such as log

files. Therefore, log data must be transformed into feature space. This mapping of

textual information to numerical matrix enables mathematical analysis of the original

log lines.

However, this leads to a large number of dimensions in the feature space. For

efficient analysis, classification and visualization the number of dimensions must be

reduced. This gives the opportunity to use a multitude of classification algorithms.

The proposed method consists of the following steps:

1. Removing lines that do not contain parameters.

2. Feature extraction from the log line using 2-grams.

3. Dimensionality reduction of the features.

4. Classifying the lines either as normal or attack.

After these steps the log file can be visualized as a figure where the attacks are

more easily seen than from a text file. Furthermore, the suspected attack lines can be

inspected in more depth. This facilitates finding abnormal activities because only these

suspected lines are inspected, instead of thousands in the original log.
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3.1 Feature extraction
The features include 2-grams from HTTP query parameters. The log files are simple

text files where each line represents one query sent from the client to the server. Ex-

tracting the true intention of the query is challenging, and the text needs to be converted

to a more machine-friendly format. The feature extraction essentially means converting

this textual data into numerical matrices.

First let us define an n-gram as a consecutive sequence of n characters [22]. N-

gram is a substring with length of n. For example, the string ababc contains unique

2-grams ab, ba and bc. The 2-gram ab appears twice, thus having frequency of 2. A

list of tokens of text can be represented with a vector consisting of n-gram frequen-

cies [22]. Feature vector describing this string would be xababc = [2, 1, 1]. The only

features extracted are n-gram frequencies. Furthermore, syntactic features of the input

strings might reveal the differences between normal and anomalous behavior. Com-

puted n-grams can extract features that describe these differences. It is assumed that

an anomalous query contains some text in the parameter part that differs from normal

behaviour. This means that it must contain some n-grams that appear rarely in the data.

Here is an example of constructing the feature matrix using the n-gram analysis

process with two words, anomaly and analysis. From these words we get the unique

2-grams an, no, om, ma, al, ly, na, ys, si and is. From this information we can

construct a matrix with the n-gram frequencies.

an no om ma al ly na ys si is

1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1

The feature matrix is constructed in this way, including all the different strings that

appear in the parameter fields on each query. Each log line corresponds to a row in

the matrix. From this we can see that there are 10 unique 2-grams in this example.

The logs are ascii-coded, so they can contain 256 different characters. The theoretical

maximum number for unique 2-grams using ascii-characters is 2562, but in practice

we did not get even near to that number. However, in a very varied and big dataset the

number of dimensions could get very high.

The frequencies are collected to a feature matrix X . These n-gram frequencies are

key-value fields, variable-length by definition. Key strings are ignored and 2-grams

are produced from each parameter value. The count of occurrences of every occurring

2-gram is summed. In practice n-gram tables produced from real life data are very

sparse, containing columns in which there are only zero occurrences. To minimize

the number of columns, the processing is done in two passes, first determining the

number of unique n-grams and then analyzing the frequencies. If a column contains

no variation between entries, that column is not present in the final numeric matrix X .

Therefore, only the columns that actually contain some useful information about the

features are included in the analysis.

With this preprocessing technique it is possible to use n-grams whose value of n is

higher than 2. However, the number of unique n-grams will increase and therefore the

number of dimensions will increase as well.

3.2 Dimensionality reduction
The number of extracted features is so large that dimensionality reduction is performed

using principal component analysis and diffusion map. Diffusion map is a manifold
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learning method that embeds the original high-dimensional space into a low-dimen-

sional diffusion space. Anomaly detection and clustering are easier in this embedded

space [9].

The recorded data describe the behavior of the system. Let this data be X =
{x1, . . . ,xN}, xi ∈ R

n. Here N is the number of samples and n the dimension of the

original data. In practice the data are in a N × n matrix with features as columns and

each sample as rows.

3.2.1 Principal component analysis

Principal component analysis (PCA) tries to extract orthogonal components maximiz-

ing their variance from the data. This simplifies the representation of the information

within the data and also facilitates the analysis of the structure and features in the data.

The principal components are linear combinations of the original features. The first

principal component contains the largest amount of variance. PCA reveals the most

information in terms of variance, but this does not necessarily mean that it separates

different clusters in an optimal way [23, 24, 25].

PCA performs the eigendecomposition on the covariance matrix C of the centered

data matrix Xc. The decomposition C = UΛU∗ gives the eigenvectors in U that map

the points in X to a low-dimensional space. This mapping can be calculated with

XPCA = XU . Another approach is to take the singular value decomposition (SVD) of

the original matrix X . One way to interpret this is as rotation of axes to find the most

important features. The new principal components are in the direction of most variance

in the data and thus represent the most differentiating combination of features [23, 24,

25].

As with many dimensionality reduction methods using eigendecompositions, the

number of selected components becomes a problem. One way to do this is to seek

for the eigengap, i.e. a big change of eigenvalues. This way the eigenvalues reveal the

principal components that cover most of the variance [23, 24, 25].

PCA is a linear method and has difficulties finding nonlinear dependencies between

features. It has initial assumptions that restrict its use for latent variable separation and

nonlinear dimensionality reduction [25].

3.2.2 Diffusion map

At first, an affinity matrix W is constructed. This calculation takes most of the compu-

tation time. The matrix describes the distances between the points. This study uses the

common Gaussian kernel with Euclidean distance measure, as in equation 1 [9, 26].

Wi j = exp

(
−||xi − x j||2

ε

)
(1)

The affinity neighborhood is defined by ε . Choosing the parameter ε is not trivial.

It should be large enough to cover the local neighborhood but small so that it does not

cover too much of it [11].

The rows of the affinity matrix are normalized using the diagonal matrix D, which

contains the row sums of the matrix W on its diagonal.

Dii =
N

∑
j=1

Wi j (2)
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P expresses normalization that represents the probability of transforming from one

state to another. Now the sum of each row is 1.

P = D−1W (3)

Next we need to obtain the eigenvalues of this transition probability matrix. The

eigenvalues of P are the same with the conjugate matrix in equation 4. The eigenvectors

of P can be derived from P̃ as shown later.

P̃ = D
1
2 PD− 1

2 (4)

If we substitute the P in equation 4 with the one in equation 3, we get the symmetric

probability matrix P̃ in equation 5. It is called the normalized graph Laplacian [27] and

it preserves the eigenvalues [26].

P̃ = D− 1
2 WD− 1

2 (5)

This symmetric matrix is then decomposed with singular value decomposition (SVD).

Because P̃ is a normal matrix, spectral theorem states that such a matrix is decomposed

with SVD: P̃ = UΛU∗. The singular values of this symmetric square matrix equal

to its eigenvalues, which lie on the diagonal of Λ = diag([λ1,λ2, . . . ,λN ]). Matrix

U = [u1,u2, . . . ,uN ] contains in its columns the N eigenvectors uk of P̃. Furthermore,

because P̃ is conjugate with P, these two matrices share their eigenvalues. However, to

calculate the right eigenvectors vk of P, we use equation 6 and get them in the columns

of V = [v1,v2, . . . ,vN ] [26].

V = D− 1
2 U (6)

The coordinates of a data point in the embedded space using eigenvalues in Λ and

eigenvectors in V are in the matrix Ψ in equation 7. The rows correspond to the samples

and the columns to the new embedded coordinates [9].

Ψ =V Λ (7)

Strictly speaking, the eigenvalues should be raised to the power of t. This scale

parameter t tells how many time steps are being considered when moving from data

point to another. Here we have set it t = 1 [9].

With suitable ε the decay of the spectrum is fast. Only d components are needed for

the diffusion map for sufficient accuracy. It should be noted that the first eigenvector

v1 is constant and is left out. Using only the next d components the diffusion map

for original data point xi is presented in equation 8. Here vk(xi) corresponds to the ith
element of kth eigenvector [9].

Ψd : xi → [λ2v2(xi),λ3v3(xi), . . . ,λd+1vd+1(xi)] (8)

This diffusion map embeds the known point xi to a d-dimensional space. Dimen-

sion of the data are reduced from n to d. If desired, the diffusion map may be scaled

by dividing the coordinates with λ1.
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3.3 Anomaly detection
After obtaining the low-dimensional presentation of the data it is easier to cluster the

samples. Because spectral methods reveal the manifold, this clustering is called spec-

tral clustering. This method reveals the normal and anomalous samples [28]. Alter-

natively, k-means or any other clustering method in the low-dimensional space is also

possible [29]. Another approach is the density-based method [14].

Only the first few low-dimensional coordinates are interesting. They contain most

of the information about the manifold structure. For diffusion map we use only the

dimension corresponding to second eigenvector to determine the anomality of the sam-

ples. At 0, this dimension is divided into two clusters. The cluster with more samples is

considered normal behavior. Conversely, the points in the other cluster are considered

anomalous [30, 31, 28]. The second eigenvector acts as the separating feature for the

two clusters in the low-dimensional space. The second eigenvalue is the solution to the

normalized cut problem, which finds small weights between clusters but strong internal

ties. This spectral clustering has probabilistic interpretation: grouping happens through

similarity of transition probabilities between clusters [30, 32]. For PCA we use the first

principal component in a similar way.

In practice the border between the normal and anomalous behavior might be un-

clear. This is the case especially with unsupervised learning, or when exploring the

data for the first time. The normal cluster is usually very dense, and most of the data

points lie within that cluster. The other points can be interpreted as deviating from the

normal state, and thus anomalous.

4 Case 1: Validation with labeled data

4.1 Data acquisition
The data are acquired from a large real life web service. Let us call this dataset “A”.

This case has been presented in an earlier publication [33]. The log files contain mostly

normal traffic, but they also include anomalities and actual intrusions. The log files are

from several Apache servers and are stored in combined log format. Listing below

provides an example of a single log line. It includes information about the user’s IP

address, time and timezone, the HTTP request including used resource and parameters,

Apache server response code, amount of data sent to the user, the web page that was

requested and used browser software.

127.0.0.1 - - [01/January/2011:00:00:01 +0300]

"GET /resource?parameter1=value1&parameter2=value2 HTTP/1.1"

200 2680 "http://www.address.com/webpage.html"

"Mozilla/5.0 (SymbianOS/9.2;...)"

The access log of a web site contains entries from multiple, distinct URLs. Most

of them point to static requests like images, CSS files, etc. We do not focus on finding

anomalies from those requests because it is not possible to inject code via static requests

unless there are major deficiencies in the HTTP server itself. Instead, we focus on

finding anomalies from dynamic requests because those requests are handled by the

web application, which is run behind the HTTP server.

To reach this goal, the access log entries are grouped by the resource URL. That

is the part between host name and parameters in the HTTP URL scheme. Resources

7



containing only HTTP GET requests with no parameters are ignored. Each remaining

resource is converted to a separate numerical matrix. In this matrix, a row represents a

single access log entry, and a column represents an extracted feature.

Feature extraction is done in two passes. In the first pass the number of features is

determined, and in the second pass the resulting matrix is produced. In our study we

extracted the number of occurrences of 2-grams produced from HTTP GET parame-

ters. In the example above, the parameter values form a string value1value2. This

string is then analyzed for 2-gram frequencies. These frequencies are normalized with

logarithm in order to scale them. This ensures that the distances between the samples

are comparable.

4.2 Data analysis
To measure the effectiveness of the method the data are labeled so that classification

accuracy can be measured. However, this labeling is not used for training the diffusion

map. The class labels are not input for the method.

Diffusion map reveals the structure of the data, and all the anomalies are detected.

The n-gram features of the data are mapped to lower dimensions. Figure 1 shows the re-

sulting low-dimensional diffusion space with ε = 100. The normal behavior (N=2999)

lies in the dense area to the upper left corner. Anomalous points (N=1293) are to the

right of 0.
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Figure 1: Two-dimensional diffusion map of the dataset A.

Figure 2 shows that the eigenvalues converge rapidly with ε = 100. This means

that the first few eigenvalues and eigenvectors cover most of the differences observed

in the data. The first value is 1 and corresponds to the constant eigenvector that is left

out in the analysis. Eigenvalues λ2 = 0.331 and λ3 = 0.065 cover large portions of the

data when compared to the rest that have values below 0.005.
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Figure 2: Eigenvalues of transition matrix with ε = 100 (dataset A).

Classification is tested with different values of ε , which defines the neighborhood

for diffusion map. Accuracy of classification is defined as accuracy = (t p+ tn)/(t p+
f p+ f n+ tn). Figure 3 shows how the accuracy of classification changes when ε is

changed. Higher values of ε result in better accuracy. Precision of classification is

defined precision = t p/(t p+ f p). The precision stays at 1 once any anomalies are

detected, which means that all the anomalies detected are real anomalies regardless of

the accuracy [23, p. 361].

For comparison, principal component analysis (PCA) is performed on the same

normalized feature matrix [23, p. 79]. Results are very similar to the diffusion map

approach, because of the simple structure of the feature matrix. This suggests that

data points are linearly dependent. Furthermore, PCA reaches the same accuracy and

precision as diffusion map. The low-dimensional presentation is also very similar.

Figure 4 shows the first two coordinates of PCA.

5 Case 2: Unknown data

5.1 Data acquisition
After testing the methods with known data, we now analyze data that is totally un-

known. We call this dataset “B”. This is the realistic situation with the web service

that we are trying to analyze. There is no previous information about any attacks or

other anomalies. The goal is to find a small amount of interesting lines that can then

be analyzed more accurately. The number of log lines is so big that it is impossible to

check all the lines manually. This is why anomaly detection is needed.

We start with relatively new dataset that has about 10 million lines. However, the

lines with no parameters in the HTTP queries can be filtered out, because they are
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not a big security risk. This leaves us with 2.5 million lines. These lines are then

divided into different files based on the HTTP request URI. The entire log file cannot

be analyzed at once, because different resources have very different parameters. The

normal parameters for one single URI are usually quite similar, however. It makes

more sense trying to analyze them individually. The number of different resources is

quite high, more than 80 000, but many of the resources include just a few lines. In this

case, it is sufficient to analyze some of the most frequently used resources. In addition

to finding anomalies, this will give us more information about the web service traffic

in general. The traffic can also be visualized.

After preprocessing the number of unique 2-grams in the most used resource URI

was more than 1100. This means that dimensionality reduction is definitely needed, but

the number of dimensions is not close to the theoretical maximum of 2562 2-grams.

The new log file acquired for this case is in a different format than the log file

analyzed in the first case. Some additional information, such as time in UNIX time,

is also included. However, this information is not used in this analysis. The features

extracted are the same as in the previous case. The feature matrix is calculated only

from the parameter values. In this example the string to be analyzed would be value.

1305167880 111.222.111.222 965 633 29112

GET /path/to/resource.png?parameter=value HTTP/1.1

/path/to/resource.png parameter=value

/full/path/to/resource.png 200 + -

image/png,image/*;q=0.8,*/*;q=0.5 GB2312,utf-8;q=0.7,*;q=0.7

gzip,deflate fi-fi,fi;q=0.5 http://example.com Mozilla/5.0

(Windows; U; Windows NT 5.1; fi-FI; rv:1.9.2.15)

Gecko/20110101 Firefox/3.6.15

Feature matrix is constructed and logarithmic scaling applied in the same way as

presented earlier with the dataset A. Even though the number of lines in the log file

is quite high, the preprocessing phase takes only less than 10 minutes. Everything is

written into temporary files to save memory. If more memory is available, the prepro-

cessing could be changed to use it and it would get faster.

5.2 Data analysis
We choose two commonly used resources for analysis from the whole log data B. These

resources are called “B1” and “B2”. We aim to find possible intrusion attempts from

them. Dimensionality reduction is performed with both PCA and diffusion map. The

results are then compared. Choosing ε for diffusion map is done differently than for

dataset A. The sum L = ∑i, j Wi j plotted using logarithmic scale reveals the desirable

linear region for ε [34, 35]. The value is chosen from that range, however, because

even small changes of ε in that area affect the resulting embedding drastically, some

human discretion must be used. Classification is done using spectral clustering.

Dataset B1 turns out to be a simple case where most of the data points are similar.

The few deviations are easy to find from the feature matrix. First B1 is analyzed using

PCA. Figure 5 shows that most of the normal behavior (N=14206) is concentrated

to a very dense cluster. Our classifier assumes the points (N=87) to the right of the

normal cluster to be anomalous. This clustering is feasible because the log lines contain

actual previously unknown intrusions, although not all anomalies are intrusive. The

anomalous points also seem to form clusters. These could indicate different types of
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attacks that happen frequently. This information could be used to further protect the

service in the future.
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Figure 5: PCA of dataset B1.

Dataset B1 is also analyzed with diffusion map. The classification results are simi-

lar to PCA, even though the Figure 6 looks different. The normal behavior (N=14216)

is concentrated leaving the anomalies (N=77) to the right of zero based on the first

coordinate. The most differing anomalies are very far from the normal cluster. Some

anomalies are very close to the normal data points. This means that the border between

anomalous and normal traffic is not very clear. For this reason, 10 intrusion attempts

that PCA detected were not discovered by diffusion map. This explains the difference

in the number of found anomalies. Finding an optimal ε value would improve the

result. However, this is a difficult task because of the unsupervised approach. Even

though the low dimensional picture of PCA does not look as clear as the diffusion map,

the result for PCA is better due to 10 false negatives that diffusion map fails to detect.

Dataset B2 contains more difficult and complex queries. This set is an example

where the low dimensional representation by PCA and diffusion map are clearly differ-

ent. Figure 7 shows the PCA of this dataset. The structure of the dataset is seen from

the figure but the exact location of anomalies is difficult to find. This is because even

the normal query lines include long and dynamically changing strings. The sparse left

side is actually normal traffic, but there seems to be a lot of variation in the normal traf-

fic alone. The anomalies found by diffusion map are situated in the upper right corner

of the PCA representation. Data points do not form a distinct cluster, making anomaly

detection and clustering very difficult with this representation. The used simple spec-

tral clustering clearly does not work in this case. Further clustering with more advanced

algorithms might reveal what types of queries the log file contains. Most variance is

captured by the first principal component. However, two first principal components

do not contain most of the total cumulative variance. Even this kind of visualization

12
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Figure 6: Diffusion map of dataset B1, ε = 7.

facilitates the analysis of huge text files (N=21406).

Diffusion map finds anomalies from dataset B2. The first two coordinates capture

almost all of the difference between normal and anomalous queries (Figure 8). In addi-

tion, the clusters are very clearly separated and the normal traffic is easy to distinguish.

This dataset shows a clear difference between PCA and diffusion map results. The

anomalous cluster (N=173) contains the points on the far left and the anomalous points

near the normal cluster. Again, the normal cluster (N=21233) is very dense. The found

anomalies contain 88 real intrusions. The intrusions are related to injecting malicious

SQL queries or scripts into the HTTP query. Some non-intrusive queries are also in-

cluded, but they can be manually screened afterwards. The number of log lines is small

enough so that system administrator can inspect the anomalous lines and easily find the

intrusion attempts. Anomaly detection seems to find attacks from a large and varying

dataset. The anomalous traffic forms two distinct clusters, one of which contains the

intrusions. Diffusion map with a correctly selected ε helps in finding anomalies and

automatically detecting normal cluster. Larger values of ε make the diffusion map be-

have more like PCA. These approachees are more suitable for visual inspection and

multicluster analysis.

6 Conclusion
The goal of this study is to find security attacks from network data. The proposed

anomaly detection scheme could be used for query log analysis in real life situations.

We concentrate on web server log data, which contains text queries that are the focus of

our analysis. In these kinds of practical situations the boundary between normal traffic

and intrusions is not always very clear. However, the relative strangeness of the sample

could indicate how severe an alert is.
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Figure 8: Diffusion map of dataset B2, ε = 7.
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The dimensionality reduction framework adapts to the log data. It assumes that only

few variables are needed to express the interesting information, and finds a coordinate

system that describes the global structure of the data. These coordinates could be used

for further analysis of characteristics of anomalous activities.

The main benefits of this framework include:

• The amount of log lines that needs to be inspected is reduced. This is useful for

system administrators trying to identify intrusions. The number of interesting

log lines is low compared to the total number of lines in the log file.

• The unsupervised nature and adaptiveness of the framework. The proposed

methods adapt to the structure of the data without training or previous knowl-

edge. This makes it suitable for exploration and analysis of data without prior

examples or attack signatures. This means that the framework also detects zero-

day attacks.

• It works on the application layer in the network. The attacks themselves must

in some way target the actual applications running on the computer. These logs

might be more available than pure low-level network packet data.

• Visualization of text log data. It is much easier to analyze the structure of traffic

using visualizations than it is to read raw textual log.

The data in question are rather sparse and the discriminating features are quite ev-

ident from the feature matrix. This is the merit of n-gram feature extraction which

creates a feature space that separates the normal behavior in a good manner. The

features describe the data clearly, and they are easy to process afterwards. Still, an

attacker might take advantage of the features used by the intrusion detection system. If

the n-gram frequencies of the attack query are similar enough to normal behavior, the

currently proposed system could not detect the attacks. Also, if most of the traffic in

a single log file consists of attack queries, they will be considered to be normal. This

might be a problem in rarely used services.

One advantage of the diffusion map methodology is that it has only one metapa-

rameter, ε . There exists estimation methods for finding the optimal value. If for some

reason the threshold sensitivity needs to be changed, ε gives the flexibility to adapt to

the global structure. However, the quality of the results is sensitive to changes of this

parameter. Values that are too small or large give non-desirable results.

The presented anomaly detection framework performs well on real data. Several

actual intrusions are detected. As an unsupervised algorithm this approach is well

suited for finding previously unknown intrusions. This method could be applied to

offline systems, as well as extended to a real-time intrusion detection system.

There are several points in this framework that could benefit from further research.

The feature extraction from the web log is currently done with n-grams. However,

this is only one method for it and other text-focused features might better describe

the dataset. Furthermore, the dimensionality reduction scheme could be developed to

adapt to this kind of data more efficiently, and the quality of the reduction could also be

evaluated. The classification method may be improved or changed altogether to another

algorithm. Finally, automated root cause detection would make the system more usable

in practice.
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Abstract—Information security has become a very important
topic especially during the last years. Web services are becom-
ing more complex and dynamic. This offers new possibilities
for attackers to exploit vulnerabilities by inputting malicious
queries or code. However, these attack attempts are often
recorded in server logs. Analyzing these logs could be a way
to detect intrusions either periodically or in real time. We
propose a framework that preprocesses and analyzes these log
files. HTTP queries are transformed to numerical matrices
using n-gram analysis. The dimensionality of these matrices
is reduced using principal component analysis and diffusion
map methodology. Abnormal log lines can then be analyzed in
more detail. We expand our previous work by elaborating the
cluster analysis after obtaining the low-dimensional represen-
tation. The framework was tested with actual server log data
collected from a large web service. Several previously unknown
intrusions were found. Proposed methods could be customized
to analyze any kind of log data. The system could be used as
a real-time anomaly detection system in any network where
sufficient data is available.

Keywords-intrusion detection; anomaly detection; n-grams;
diffusion map; k-means; data mining; machine learning

I. INTRODUCTION

Most web servers log their traffic. This log data is rarely

used, but it could be analyzed in order to find anomalies or

to visualize the traffic structure. Acquiring the data does not

require any modifications to the actual web service, because

data logging is usually done by default. Different kinds of

log files are created, but for this study the most interesting

log is the one containing HTTP queries.

One important application for network traffic analysis is

anomaly detection. This is done using intrusion detection
systems (IDS) [1]. Many of these analyze the transport layer,

mostly TCP packet data. However, we try to find anomalies

and other information from application layer log files. HTTP

queries include this information. Many attacks, such as SQL

injections, can be detected from this layer.

Log files are in textual form. Therefore, some prepro-

cessing is needed to transform query strings into numerical

matrices. This can be done using information about n-gram

analysis, which is described in section III-A. Calculating the

frequencies of individual substrings in the data results in a

numerical data matrix.

After preprocessing, many data mining methods can be

used to visualize and analyze the logs. We perform di-

mensionality reduction and clustering. After visualizing the

results it is possible to interpret the findings and make more

detailed analysis about the web service traffic.

We propose a framework that processes textual log files

in order to visualize them. We are trying to find patterns

and anomalies using only log files containing HTTP queries.

The framework is adaptive, and individual parts of it can

be changed. For example, the choice of dimensionality

reduction method or clustering algorithm can be done based

on current needs.

The proposed methods use data mining principles, and

they work as an IDS and network traffic visualization and

analysis tool. Using the framework, we are trying to find

whether the textual HTTP query logs actually include some

information about the traffic structure. This information

could then be used to classify users and individual queries

and to find anomalies and intrusion attempts.

II. RELATED WORK

We have previously researched log data preprocessing and

anomaly detection [2], [3]. This research focused on finding

intrusions from log data. We now extend this methodology

to further analyze and cluster the structure of the traffic. This

is done by adding more accurate clustering algorithms into

the framework.

Principal component analysis has been widely used in

network intrusion detection and traffic analysis. Xu et al.

used PCA and support vector machine to reduce dimensions

and classify network traffic in order to find intrusions [4].

Taylor et al. used PCA and clustering analysis to find

network anomalies and perform traffic screening [5].

Diffusion methods have been applied in network traffic

analysis. These studies have concentrated on low-level IP

packet features. These features are numerical and the net-

work architecture differs from our study [6] [7]. Network

server logs have also been analyzed using diffusion maps

and spectral clustering [2] [3].
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Figure 1. The data mining process

III. METHODOLOGY

Our overall approach is rooted in the data mining process

[8], [9]. This approach is method-centric as our research is

focused on the data processing and not business aspects. The

data mining process of our study flows as follows:

1) Data selection.

2) Extract n-gram features from the text data.

3) Normalize the feature matrix.

4) Reduce the number of dimensions to obtain low-

dimensional features.

5) Classify or cluster the low-dimensional data presenta-

tion.

6) Interpret the found patterns or anomalies.

The process is presented in figure 1.

A. Feature extraction

The log files are in text format. Therefore, it is necessary

to transform the log lines into numerical vectors which then

can be used in further mathematical analysis. We use n-gram

analysis to process log files into numerical matrices. It has

been used e.g. in judging similarity in text documents [10],

analyzing protein sequences [11] and detecting malicious

code [12].

N -grams are consecutive sequences of n characters [10].

Each log line corresponds to a feature vector containing the

frequencies of each individual n-gram found in the data. The

list of n-grams appearing in the data can be found using n-

character-wide sliding window moved along the string one

character at a time [10].

Let us consider the following example. Having two strings

containing the words anomaly and analysis, we can

construct the feature matrix in the following way:

an no om ma al ly na ys si is

1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1

In this study, 2-grams are used. However, it is possible

to use longer n-grams as well. This will of course results

in more dimensions in the matrix, because there are more

unique n-grams. The theoretical maximum number of in-

dividual 2-grams using ASCII-characters is 2562 = 65536,

but in practice this is usually not the case. This is due to the

fact that many characters are never actually used [10].

B. Normalization

Normalization ensures that the features of the input data

are in the same scale. We use logarithm for this purpose. To

avoid complex numbers, the input must be above zero. The

normalization function for a point xi in the dataset is

fn(xi) = log(xi −Xmin + 1),

where Xmin is the minimum of all the values in the

dataset.

C. Principal Component Analysis

Principal Component Analysis (PCA) [13] is perhaps the

best-known dimensionality reduction technique. It has many

practical applications, such as computer vision and image

compression [14].

The PCA process is explained in more detail in [14].

First we must substract the mean from the original data to

make the data have zero mean. Then the covariance matrix

must be calculated. From the covariance matrix we can then

calculate eigenvalues and the corresponding eigenvectors. If

we choose d eigenvectors that contain most of the variance,

we get a lower dimension representation of the original

data with d dimensions. This is done by choosing the

d eigenvectors as columns for a matrix, and multiplying

the mean-centered data with this matrix. For visualization

purposes it is necessary to choose either 2 or 3 dimensions,

ie. eigenvectors.

Calculating PCA is relatively simple, but it will only

work in linear cases. If the dataset is non-linear, some other

dimensionality reduction method must be used. PCA can

also give inaccurate results if there are outliers in the data.

D. Diffusion Map

Diffusion map (DM) reduces the dimensions while re-

taining the diffusion distances in the high-dimensional space

as Euclidean distances in the low-dimensional space. This

reduction is non-linear. The goal is to move from n-

dimensional space to a low-dimensional space with d di-

mensions, when d � n [15].

One measurement xi ∈ R
n in this study corresponds

to one line in the log file. Given the dataset X =
{x1, x2, x3, . . . xN} the affinity matrix W (xi, xj) =

exp
(−||xi−xj ||2

ε

)
describes the affinities between measure-

ments. Here we have used the Gaussian kernel. Matrix P =
W−1K represents the transition probabilities between the

measurements. Next, the matrix D collects the row sums to

its diagonal. Using the singular value decomposition (SVD)

of matrix P̃ = D− 1
2WD− 1

2 we obtain the eigenvectors vk
and eigenvalues λk.



The diffusion map maps the measurements

xi to low dimensions by giving each high-

dimensional point coordinates in the low dimensions:

xi → [λ1v1(xi), λ2v2(xi) . . . λdvd(xi)]. These new

coordinates lose some of the information contained in the

original dataset. However, the accuracy is usually good

enough for later classification. Even though there is loss of

information, the classification problem becomes easier.

E. Traffic clustering using k-means algorithm

We use cluster analysis to divide network traffic into

meaningful groups. In this way we can capture the natural

structure of the data [16].

K-means algorithm was introduced in 1955 and huge

number of other clustering algorithms have been introduced

since then, but k-means method is still widely used [17].

It is a prototype-based clustering technique [16]. Given the

original data X = xi, where i = 1, .., n, the goal is to

cluster the data points into k clusters. The mean of cluster

k is now μk, and the mean squared error (MSE) between a

data point and the cluster mean is ||xi−μk||2. This leads to

an optimization problem where the MSE for each datapoint

in each cluster must be minimized.

The problem can be solved following these steps [18]:

1) Select initial centers for k clusters.

2) Assign each datapoint to its closest cluster centroid.

3) Compute the new cluster centers by calculating the

mean of the datapoints in each cluster.

Steps 2 and 3 are repeated until a stopping criterion is

met. Usually this means that the partitioning has not changed

since the last iteration, and thus a local optimum solution

for the problem has been found.

Choosing the number of clusters is not trivial, but there are

many methods for calculating the number of clusters, such

as Davies-Bouldin index, described in [19]. This algorithm

takes into account both scatter within a cluster and separation

between different clusters. Davies-Bouldin index is used in

this study to determine the number of clusters for each

resource.

The algorithm can give different results depending on the

initialization, because it only finds the local optimal solution.

This can happen especially when using random initialization.

However, this problem can be overcome by running k-means

multiple times and choosing the clustering results that gives

the smallest squared error [17]. There are also many other

algorithms for choosing the initial cluster centroids.

IV. EXPERIMENTAL SETUP

Figure 2 shows the architecture of the web service that

was analyzed. It contains many servers that offer the same

service to users using load balancing. Proprietary log files

were acquired from this service. These files then need to

be preprocessed into numerical matrices. The data and this

process are described in this section.

Figure 2. Experiment architecture.

A. Data acquisition

The data have been collected from a large web service.

Apache web servers are used, and they log data using

Combined Log Format, example of a single log line:

127.0.0.1 - -
[01/January/2012:00:00:01 +0300]
"GET /resource.php?parameter1=value1
&parameter2=value2
HTTP/1.1"
200 2680
"http://www.address.com/webpage.html"
"Mozilla/5.0
(SymbianOS/9.2;...)"

For this analysis, the HTTP query part is used because

it contains the only information that a user can input. This

offers possibilities for attackers. The other information, such

as time, can be used when further analyzing individual

log lines (e.g. for finding anomalies or attacks). On the

other hand, HTTP query parameters and their values are

dynamic and changing, offering valuable information about

this dynamic web service. Analyzing this information will

explain a lot about the structure of the traffic. The parameter

values in data used in this study were dynamic and changing,

and also not always human-readable. Therefore, analyzing

these fields has to be done automatically with mathematical

methods.

B. Data preprocessing

The first step is to select the data for analysis. The original

log file contains approximately 4 million log lines. However,

most of these lines contain only static queries. Static lines

do not contain changing parameter values. These lines do

not offer a lot of information, because they are practically

identical in the used dataset. In addition, static lines do

not contain information about user input, meaning it is

not possible to detect attacks from those log lines alone.

On the other hand, dynamic web resources are changing

and also vulnerable, so dynamic lines containing parameters

and parameter values are interesting and can offer more

information about the web service. Therefore, static log lines

are filtered out, leaving only approximately 221 000 lines

to be inspected and clustered. This data selection reduces

the size considerably and creates a database of the most

interesting aspects of the log files.



After the first filtering stage, log files are divided into

smaller files according to resource URI. This is because

different resources accept different parameter values, so

they do not have much to do with each other. This makes

anomaly detection from full data very difficult and inac-

curate. However, traffic structure inside single resource is

more consistent. After this division, smaller logfiles can be

analyzed independently. It makes sense to further analyze

the largest log files, because some of the resources contain

only a few lines. These lines have to be omitted.

Finally, in order to create data matrices out of textual log

data, n-gram analysis is performed. This process is explained

in III-A.

V. RESULTS

For this research, 3 relatively large resources are selected

for further analysis and clustering. Resource 1 contains

10935 lines and 414 dimensions, and is the simplest in

terms of HTTP query parameters. Resource 2 contains only

2982 lines, but the number of dimensions is 3866, which

makes analysis challenging. Also, the parameters are clearly

not human-readable, i.e. it is impossible to say anything

about the queries by looking at the parameter string alone.

Resource 3 is the largest, including 21406 lines and 991

dimensions.

All the resources are analyzed using the proposed frame-

work. The feature data are normalized with the logarithm

function. PCA and diffusion map reduce the dimensionality

of the normalized feature matrices. Clustering then reveals

the structure of the data and facilitates the interpretation of

the log files.

Resource 1 contains 10935 lines and 414 dimensions. The

results for diffusion map and principal component analysis

are presented in figures 3 and 4, respectively. This resource

is a simple example, mainly useful in validating that the

methods do give satisfactory results. The only difference

is that DM separates the data points more clearly. Due to

this separation we get 3 clusters, instead of 2 as in PCA.

The biggest cluster contains varying parameter values. The

parameters in smaller clusters are almost the same within

that cluster. However, this behavior is easy to see directly

from the log lines. The framework visualizes the traffic well,

but in this case we do not obtain any new information about

the data.

Resource 2 is the smallest in this research, containing only

2982 requests. However, the number of dimensions is 3866.

This means that there are more dimensions than data points,

which is always a problem in classification tasks. Despite

that, we obtained clear results. The DM and PCA results

presented in figures 5 and 6. The results are essentially

identical, figures look slightly different but the clustering is

exactly the same. This might mean that variables are linearly

dependent, otherwise PCA would not work well. The log

lines themselves are not human-readable, containing error
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Figure 4. Resource 1, PCA.

tickets that have a seemingly random code as the parameter

value. However, as can be seen from the figures, there are

clearly two distinct clusters that can be seen using both

dimensionality reduction methods. This behavior was not

previously known and requires more detailed analysis with

the administrator of the web service.

Resource 3 is the largest with 21406 lines and 996

dimensions. It also shows that DM (in figure 7) and PCA (in

figure 8) can sometimes give very different results. Normal

parameter values in this resource are long and varied. This

results in PCA not being able to clearly distinguish any

clusters. For this reason, k-means clustering was not per-

formed for resource 3 PCA datapoints. However, with DM

the results are very meaningful. Normal traffic clearly forms

it’s own cluster, while 2 other groups are apparent. Cluster

2 with 5 datapoints does not contain anything malicious, but

is slightly different from other normal datapoints. The most

interesting finding in this data is cluster 3, which contains

4 lines. All of these lines contain an SQL injection attack,

where an attacker tried to include malicious SQL queries as

parameter values. The 2nd DM coordinate clearly separates

attacks from rest of the data, meaning that in this case only

one dimension is needed for anomaly detection.
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In all of the figures, except PCA for resource 3, it can

be seen that the separation of clusters is clear. A simple

clustering method such as spectral clustering or decision tree

could be used.

VI. CONCLUSION

We presented a framework for preprocessing, clustering

and visualizing web server log data. This framework was

used for anomaly detection, visualization and explorative

data analysis based only on application layer data. Individual

parts of the architecture can be changed for different results.

For example, k-means clustering can be replaced with hier-

archical linkage clustering method.

The results clearly indicate that there are traffic structures

that can be visualized from HTTP query information. The

data forms distinct clusters and contains anomalies as well.

The sensitivity for outliers creates some problems for PCA,

which means that it can be challenging to use it for anomaly

detection. Diffusion maps give good results, but more re-

search would have to be done to get more information about

performance issues. In some cases the results for PCA and

DM are nearly identical, while in other cases they differ

greatly. PCA is faster but cannot be used with non-linear
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data. DM seems to work in most situations but can be too

slow.

Traffic clustering can give new information about the

users of a web service. This information could be used to

categorize users more accurately. This gives opportunities

for more accurate advertising or offering better content for

users. Finding anomalies gives information about possible

intrusion attempts and other abnormalities.

To make the framework more usable, it should be auto-

matic and work in real-time. More research is needed to

find the most generally usable algorithms for each phase in

the architecture. In addition, log data tends to be high in

volume, so performance issues might become a problem.

For dimensionality reduction the number of dimensions is

not trivial. Also, the number of clusters must be determined

depending on the chosen clustering algorithm. Real-time

functioning requires changes in preprocessing and limits

the dimensionality reduction options. For this purpose, PCA

might be a good method, since projection of new points into

lower dimensions is simply a matter of matrix multiplication.

However, the limitations mentioned previously still apply.

Using data mining methods, underlying structure and

anomalies are found from HTTP logs and these results can

be visualized and analyzed to find patterns and anomalies.
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Abstract—Network security and intrusion detection are im-
portant in the modern world where communication happens
via information networks. Traditional signature-based intrusion
detection methods cannot find previously unknown attacks. On
the other hand, algorithms used for anomaly detection often
have black box qualities that are difficult to understand for
people who are not algorithm experts. Rule extraction methods
create interpretable rule sets that act as classifiers. They have
mostly been combined with already labeled data sets. This
paper aims to combine unsupervised anomaly detection with
rule extraction techniques to create an online anomaly detection
framework. Unsupervised anomaly detection uses diffusion maps
and clustering for labeling an unknown data set. Rule sets are
created using conjunctive rule extraction algorithm. This research
suggests that the combination of machine learning methods and
rule extraction is a feasible way to implement network intrusion
detection that is meaningful to network administrators.

Keywords—Intrusion detection, anomaly detection, n-gram, rule
extraction, diffusion map, data mining, machine learning.

I. INTRODUCTION

Web services and networks have become more and more
complex in the past years. This means that services and servers
face new threats and attacks. Intrusion detection systems (IDS)
are used to detect these attacks. An IDS works generally using
one of two detection principles, signature-based and anomaly-
based detection [1]. Signatures are predetermined attack rules
that can be used to trigger an alarm when a user’s behavior
matches the signature. Previous information about intrusions
is required for creating these rules. This leads to a low rate of
false alarms, but new and unknown threats cannot be detected.
On the other hand, anomaly-based detection systems try to
detect traffic that deviates from the normal behavior. New
attacks can be detected but this methodology will also lead
to some false alarms. Both principles can also be combined
to a so-called hybrid intrusion detection system [2]. Figure
1 shows a simplified block diagram of the different intrusion
detection approaches, demonstrating how our system relates to
other approaches.

Information security reseachers have been interested in
intrusion detection systems extensively, and surveys describing
advances in the field have been published [3], [4]. Many
machine learning methods, such as self-organizing maps [5]
and support vector machines [6] have been used to cluster data
and detect anomalies in these systems. Various hybrid systems
combining signature and anomaly-based detection have been
used [2], [7]. A two-stage adaptive hybrid system for IP
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Fig. 1. Different IDS principles.

level intrusion detection has also been recently devised. A
probabilistic classifier detects anomalies and a hidden Markov
model narrows down attacker addresses [8]. Recently genetic
algorithms have been widely used in anomaly detection and
misuse detection [9], [10]. Artificial immune systems have
raised the interest of intrusion detection researchers [11]. More
traditional methods such as k nearest neighbors are also still
researched because they can be combined with other methods,
for example Dempster-Shafer theory of evidence [12]. A
distributed environment has been proposed where intelligent
agents analyze the network connections using data mining with
association rule mining [13]. Moreover, in our previous work
we have researched intrusion detection using dimensionality
reduction and clustering to find anomalies from network traffic
[14], [15].

The problem with deploying anomaly detection systems
in the commercial sector is that some algorithms, such as
neural networks, work like a black box [16]. The systems are
automated and it is difficult to know exactly how the decisions
are made. To overcome this problem, rule extraction methods
have been proposed [17]. These rules can be directly applied to
the original data for efficient web traffic filtering. In addition,
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this symbolic knowledge can be read and inspected by humans.
This can lead to a better understanding of the data and will
aid user acceptance especially in real-life company networks.

One way of extracting these rules is taking a decomposi-
tional approach [18]. This can be achieved, e.g., by decompos-
ing a neural network architecture. However, methods of this
type are algorithm dependent and the rules themselves may not
be sufficiently comprehensible [16]. Another way to extract
rules is by using pedagogical approach [17]. This approach
takes only the input data and output results into account.
Therefore, it is not specific to any particular classification
method. Any suitable algorithm can be used to find anomalies
or cluster data. Also, the produced rules are directly related to
original data and can therefore be easily understood. Because
of these reasons, we take the pedagogical approach in our
system. Various methods have been used to create different
kinds of rule sets and trees. Recent research seems to focus on
methods based on heuristic algorithms or creating intelligent
wrapper methods [19]. A less researched option is to use
conjunctive rules [17]. These rule extraction methods should
not be confused with association rule mining [20].

We propose a framework for detecting network anomalies
and extracting rules from a data set. Figure 1 shows how it
differs from other common approaches. This framework is a
supplementary module for signature-based intrusion detection
systems, such as next generation firewalls. In this approach,
network logs or other similar data is collected and preprocessed
to extract features and form numerical matrices to be analyzed
further. The dimensionality of this data is reduced for more
efficient clustering. After clustering the data to normal and
anomalous traffic, the obtained clustering is used to create
labels for the data. Subsequently, this information is used to
create a rule set for the high-dimensional features. This rule
set can then be used to classify traffic and detect intrusions
in real time. The proposed framework enables rule creation
in an unsupervised manner for previously unknown data. Our
contribution is combining unsupervised data analysis with rule
extraction techniques to create an online anomaly detection
system.

II. METHODOLOGY

The proposed framework uses training data to create a rule
set which can then be used to classify testing data or actual
network traffic data. Thus, our approach is divided into two
phases: rule set learning and traffic classification. The first
phase takes the approach of learning the clustering of the
data using dimensionality reduction and creating conjunctive
rules to describe these clusters in the initial feature space.
These rules will then be used to classify new incoming traffic
in the second phase. This process is described in Figure 2,
which shows the needed input data sets, produced rule set and
classification results.

The rule set learning phase aims to find rules that describe
the training data. This is done by clustering and labeling the
training data set. The resulting rule set classifies data according
to the obtained clustering. Architecture of the rule set learning
process is shown in Figure 3, which shows the labeling and rule
extraction phases in more detail. The methods in individual
modules are not fixed, meaning that the specific methods
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can be changed if better alternatives are found. The rule set
learning phase consists of the following steps:

• Feature extraction from training data

• Unsupervised labeling

◦ Dimensionality reduction
◦ Clustering

• Rule extraction

In the traffic classification phase new incoming traffic
is preprocessed and classified using the generated rule set.
Because of the conjunctive nature of the rules simple matching
is sufficient. This phase validates how well the rules apply to
data that was not part of the training data set. The steps are
as follows:

• Feature extraction from testing data

• Classification by rule matching

The following subsections describe the methods used in
previously mentioned phases in detail.

A. Feature extraction

Network log files consist of text lines that need to be con-
verted to numeric feature vectors. An n-gram is a consecutive
sequence of n characters that represents extracted semantic



information [21]. Our study uses 2-gram features generated
from the network logs. This approach produces a rather sparse
feature matrix [14]. The rule extraction algorithm works with
symbolic conjunctive rules. This means that only nominal and
binarized data can be used. Converting data to this kind of
format ensures that the feature matrix may be used with the
overall learning pipeline.

The feature matrix consists of binary values representing
whether an n-gram is present in a specific log line or not.
Let us consider the following example. Having two strings
containing the words anomaly and analysis, we can
construct the feature matrix in the following way:

an no om ma al ly na ys si is
1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1

In this study, 2-grams are used. However, it is possible
to use longer n-grams as well. This will result in more
dimensions in the matrix, because there will be more unique
n-grams, slowing down the process. For the purposes of this
research, 2-grams contained enough information for separating
normal and anomalous traffic. Also, using n = 1 will give
the character distribution. Single characters may not contain
enough semantic information, and therefore higher values of
n are often used.

B. Dimensionality reduction and clustering

Clustering high-dimensional data is facilitated by dimen-
sionality reduction. We employ diffusion map training to iden-
tify the attacks in the training data set. The features describing
the dataset are numerous and sometimes hard to interpret
together. Therefore, a dimensionality reduction approach using
diffusion map is taken. Diffusion map training produces a
low-dimensional model of the data, which reveals the internal
structure of the dataset and facilitates anomaly detection. In
addition, it can cope with non-linear dependencies in the
data. Diffusion map retains the diffusion distance in the initial
feature space as the Euclidean distance in the low-dimensional
space [22], [23], [24].

One log line is represented by feature vector xi ∈ R
n. The

whole data set is X = {x1, x2, x3, . . . xN}, from which the
affinity matrix

W (xi, xj) = exp

(−||xi − xj ||2
ε

)

can be calculated. As seen, the Gaussian kernel is used for
the distance matrix and the bandwith parameter ε is selected
from the optimal region in the weight matrix sum [25]. D,
which collects W ’s row sums on its diagonal, and the transition
matrix P = D−1W form the symmetric matrix

P̃ = D
1
2PD− 1

2 = D− 1
2WD− 1

2 .

The singular value decomposition (SVD) of P̃ yields the
eigenvectors vk and eigenvalues λk. Now, the low-dimensional
coordinates corresponding each original log line are found:

xi → [λ1v1(xi), λ2v2(xi) . . . λdvd(xi)]. Most of the infor-
mation is retained in the first eigenvectors and less meaningful
ones are left out. Some information is lost because not all
eigenvectors are used, but lower dimensionality makes clus-
tering easier.

The k-means method is used to group the data points into
clusters. This method is simple and well-known clustering
algorithm and it has been used in various data mining tasks.
The algorithm description and examples of use can be found in
literature [26], [27], [28]. The k-means method relies heavily
on the parameter k which determines the number of clusters.
Silhouette expresses the quality of clustering for each data
point. The optimal number of clusters for the k-means is
determined using average silhouette value [29]. An alternative
clustering method could be used.

The obtained clustering is believed to describe behavior
of the data. If the high-dimensional features can differentiate
normal and intrusive behavior, this should be apparent from
the resulting low-dimensional clusters. The actual nature of
the clusters should be confirmed with domain area experts.

If performance becomes an issue with larger data sets,
the learning process could be expanded with out-of-sample
extension. However, representative selection of training data
is usually a more challenging problem.

C. Rule extraction

A rule is a way to determine the class of a data point
based on certain conditions. Ideally a rule would be easily
interpretable by a network administrator. All the possible rules
span such a huge space that it is not feasible to go through all
of them. This means that a sub-optimal but efficient method
needs to be used. Such systems have been applied with neural
networks [17], [16] and support vector machines [30], [31],
[32].

Conjunctive rule is a logical expression containing truth
values about the inclusion of binary features. These rules tell
whether a symbol should be included, excluded or if it does not
matter. Let us assume that we have binary features a, b, c, d, e.
Thus, the feature matrix contains five columns corresponding
to each binary feature. For the sake of example we have a rule
set containing three rules:

r1 =¬a for class c1,

r2 =a ∧ b ∧ c ∧ ¬d ∧ e for class c1,

r3 =a ∧ b ∧ ¬c for class c2.

The rule set for class c1 would be expressed in logical form
as R1 = r1 ∨ r2. In practice, there are usually multiple rules
for each class. Note that in rule r1, values of features b, c, d
and e do not matter. Similarly, for r3 values of d and e can
be anything.

For implementation purposes, the rules are expressed as
vectors. The length of these vectors is equivalent to the number
of features. The logical truth values are converted to 1 and
−1. The values that do not matter are expressed as 0. In the
previous example, the rules would be vectors of length 5. Rule
r1 is expressed as a vector (−1 0 0 0 0). It is easy to
match feature vectors to this kind of rule vectors. Note that in



this research a rule symbol corresponds to an n-gram feature
as described in II-A.

The conjunctive rule extraction algorithm [17] finds rule-
based classifier that approximates the clustering obtained in
the unsupervised labeling step. Conjunctive rule extraction is
presented in Algorithm II.1. Note that a rule r consists of
symbols r = s1 ∧ s2 ∧ s3 ∧ . . . ∧ sn.

Algorithm II.1: Conjunctive rule extraction.

Input: data points E, classes C
Output: rules Rc that cover E with classification C

repeat
e := get new training observation from E
c := get the classification of e from C
if e not covered by the rules Rc then
r := use e as basis for new rule r
for all symbols si in r do
r′ = r with symbol si dropped
if all instances covered by r are of the same class
as e then
r := r′

end if
end for
add rule r to the rule set Rc

end if
until all training data analyzed

The obtained rules separate the training data into the
clusters. These rules can now be matched to new incoming data
points. Their performance depends on how well the training
data covers the behavior of the data. If the point matches one
of the rules, the exact type of the abnormal or normal state
can be interpreted. If a data point does not fall under any of
the rules, then it can be considered abnormal.

Created rules are valid for the classification task while
the essential profile of the data remains the same. This is
often not the case for extended periods of time, especially
for network traffic or similar data. Therefore, rules can be
recreated periodically, e.g., daily.

III. RESULTS

This section contains the classification results using real-
world network log data. The goal is to perform preliminary val-
idation on real data to test the feasibility of rule extraction in a
practical IDS application. The previously described framework
was implemented and applied to this data. Data acquisition and
analysis are presented below. These results illustrate that the
rule set learning phase works on a data that comes from a
real-world source.

A. Data acquisition and processing

We use the same network log database that has been used
in our previous related research [15]. The data comes from
a real-life web server used by a company. Different kinds of
intrusion attempts and other abnormal log lines are included in
the data. We examine two log files that correspond to different
resource URIs. The servers are using Apache server software,

which logs network traffic using Combined Log Format. A
single log line contains information about the HTTP query:

127.0.0.1 - -
[01/January/2012:00:00:01 +0300]
"GET /resource.php?parameter1=value1
&parameter2=value2
HTTP/1.1"
200 2680
"http://www.address.com/webpage.html"
"Mozilla/5.0
(SymbianOS/9.2;...)"

The HTTP GET request part of the log line might contain
information about SQL injections and other kinds of attacks.
This request part is preprocessed using the methods described
in Section II-A. Consequently, we get a binary matrix rep-
resenting whether an n-gram is present in a specific log
line or not. The resulting data points are then clustered into
normal and anomalous clusters as described in Section II-B.
Because the data set is unlabeled, the unsupervised labeling is
performed for the whole data set. This is information is used
for test result validation as shown in Figure 3.

B. Data analysis

The first data set for initial testing contains 4292 log lines.
After preprocessing we find that there are 490 unique 2-grams
in the data, resulting in 4292× 490 sized feature matrix. Each
datapoint now has a label (normal or anomalous) based on the
clustering results. This information can be used to extract the
rules. We select randomly 2000 data points for rule creation.
The whole data set contains 2292 log lines that are not present
during rule set learning phase. These remaining lines are our
testing data set.

First, we discover that the used algorithm creates 6 rules,
2 for the normal traffic cluster and 4 for the anomalous one.
After testing the rules with the whole dataset, all the data
points except one match the correct rules. One anomalous data
point is not covered by any rule. All of the normal traffic data
points match one of the rules. In this case the system works
with almost 100% accuracy, which means that the training data
represents the testing data well enough.

The second data set contains 10935 log lines. In this data,
414 unique n-grams are found, resulting in a matrix of size
10935 × 414. After dimensionality reduction, the number of
clusters k is determined using the average silhouette value, as
described in Section II-B. Figure 4 shows that the data seems
to form 4 clusters that are found using k-means algorithm. For
rule set learning phase, 8000 data points are used. Other 2935
are used for traffic classification testing. Figure 5 shows all of
the data points after dimensionality reduction and clustering
used for unsupervised labeling step. As we can see from this
visualization, cluster c4 contains clearly more points than the
others.

Rule extraction from the training set produces 15 rules
describing 3 of the classes. One class is not featured in
the training data and therefore no rules were generated for
this class. The testing data set does not contain any samples
belonging to class c1. Out of the 493 data points of class c3,
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the extracted rules successfully identify 349 (71%). Test data
set contains 2742 data points of class c4, out of which 1990
are found using the rules (73%). The reason these percentage
figures are so low is that the training data differs from the
testing data too much. However, the conjunctive rule extraction
algorithm always covers the whole training data with 100%
identification rate.

IV. CONCLUSION

Using modern data mining technology in network security
context can become problematic when facing end-user needs.
Even if the technology produces tangible results, the user
rarely has understanding of the methodology. Therefore, this
so-called black box system is not a desirable end goal. Simple
conjunctive rules are easier to understand, and rule extraction
from the complex data mining techniques might facilitate user
acceptance. In this research, we have combined rule extraction
methodology with diffusion map training framework in order
to produce a rule-based network security system.

The main benefit of this framework is that the final output

is a set of rules. No black box implementation is needed
as the end result is a simple and easy to understand rule
matching system. The training data may contain intrusions and
anomalies, provided that the clustering step can differentiate
them. In addition, rule matching is a fast operation compared
to more complex algorithms.

The experimental data sets in this study are suitable for
rule generation. The number of created rules is not too high
for practical purposes and the accuracy with the first data set
is high enough. Data points that do not match any rule could
still be flagged as an anomaly in a practical intrusion detection
system. The most important thing is to recognize normal
traffic accurately. However, if new data points introduced after
rule generation are very different from the training data set,
the accuracy of classification using the rules might suffer
considerably. Periodical rule updating will solve this issue.
The second test data set demonstrates how important it is to
have a training set that corresponds to the real situation as
accurately as possible. If some types of data points are not
featured in the rule generation phase, corresponding rules are
not generated and these points will not be classified correctly.
With proper training data the generated rules give much better
accuracy. The created clustering may not represent reality
but it is convenient while actual data labels are unknown.
Another concern is overfitting of the rules, but the rules can
be generalized to mitigate this problem.

The proposed framework is useful in situations where high-
dimensional data sets need to be used as a basis for anomaly
detection and quick classification. Such data sets are common
nowadays in research environments as well as in industry,
because collecting data is wide-spread. Our example case has
been network security, which bears real benefits to anyone
using modern communication networks. The provided tools are
useful for network administrators who are trying to understand
anomalous behavior in their networks.

Future topics include dynamic rule update as systems
evolve, rule set optimization and using the rule set to filter
real-time data sets. The modular structure of the framework
enables these additions to be implemented conveniently. The
applicability of the system to a wider network security context
should also be tested, meaning cooperation with other security
systems and components such as next-generation firewalls and
other signature-based systems.

ACKNOWLEDGMENT

This research was supported by the Foundation of Nokia
Corporation. Thanks are extended to Kilosoft Group Oy.

REFERENCES

[1] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention
systems (idps),” NIST Special Publication, vol. 800, no. 2007, p. 94,
2007.

[2] M. A. Aydın, A. H. Zaim, and K. G. Ceylan, “A hybrid intrusion
detection system design for computer network security,” Computers &
Electrical Engineering, vol. 35, no. 3, pp. 517–526, 2009.

[3] A. Lazarevic, V. Kumar, and J. Srivastava, “Intrusion detection: A
survey,” Managing Cyber Threats, pp. 19–78, 2005.

[4] F. Sabahi and A. Movaghar, “Intrusion detection: A survey,” in Systems
and Networks Communications, 2008. ICSNC’08. 3rd International
Conference on. IEEE, 2008, pp. 23–26.



[5] M. Ramadas, S. Ostermann, and B. Tjaden, “Detecting anomalous net-
work traffic with self-organizing maps,” in Recent Advances in Intrusion
Detection, G. Vigna, E. Jonsson, and C. Kruegel, Eds. Springer, 2003,
pp. 36–54.

[6] Q. Tran, H. Duan, and X. Li, “One-class support vector machine for
anomaly network traffic detection,” China Education and Research
Network (CERNET), Tsinghua University, Main Building, vol. 310,
2004.

[7] H. Om and A. Kundu, “A hybrid system for reducing the false alarm
rate of anomaly intrusion detection system,” in Recent Advances in
Information Technology (RAIT), 2012 1st International Conference on,
march 2012, pp. 131–136.

[8] R. Rangadurai Karthick, V. Hattiwale, and B. Ravindran, “Adaptive net-
work intrusion detection system using a hybrid approach,” in Communi-
cation Systems and Networks (COMSNETS), 2012 Fourth International
Conference on, jan. 2012, pp. 1–7.

[9] L. Li, G. Zhang, J. Nie, Y. Niu, and A. Yao, “The application of
genetic algorithm to intrusion detection in mp2p network,” in Advances
in Swarm Intelligence, ser. Lecture Notes in Computer Science, Y. Tan,
Y. Shi, and Z. Ji, Eds. Springer Berlin Heidelberg, 2012, vol. 7331,
pp. 390–397.

[10] M. Goyal and A. Aggarwal, “Composing signatures for misuse intrusion
detection system using genetic algorithm in an offline environment,” in
Advances in Computing and Information Technology, ser. Advances in
Intelligent Systems and Computing, N. Meghanathan, D. Nagamalai,
and N. Chaki, Eds. Springer Berlin Heidelberg, 2012, vol. 176, pp.
151–157.

[11] A. Parashar, P. Saurabh, and B. Verma, “A novel approach for intrusion
detection system using artificial immune system,” in Proceedings of
All India Seminar on Biomedical Engineering 2012 (AISOBE 2012),
ser. Lecture Notes in Bioengineering, V. Kumar and M. Bhatele, Eds.
Springer India, 2013, pp. 221–229.

[12] D. Dave and S. Vashishtha, “Efficient intrusion detection with knn
classification and ds theory,” in Proceedings of All India Seminar on
Biomedical Engineering 2012 (AISOBE 2012), ser. Lecture Notes in
Bioengineering, V. Kumar and M. Bhatele, Eds. Springer India, 2013,
pp. 173–188.

[13] I. Brahmi, S. Yahia, H. Aouadi, and P. Poncelet, “Towards a multiagent-
based distributed intrusion detection system using data mining ap-
proaches,” in Agents and Data Mining Interaction, ser. Lecture Notes in
Computer Science, L. Cao, A. Bazzan, A. Symeonidis, V. Gorodetsky,
G. Weiss, and P. Yu, Eds. Springer Berlin Heidelberg, 2012, vol. 7103,
pp. 173–194.

[14] T. Sipola, A. Juvonen, and J. Lehtonen, “Anomaly detection from
network logs using diffusion maps,” in Engineering Applications of
Neural Networks, ser. IFIP Advances in Information and Communica-
tion Technology, L. Iliadis and C. Jayne, Eds. Springer Boston, 2011,
vol. 363, pp. 172–181.

[15] ——, “Dimensionality reduction framework for detecting anomalies
from network logs,” Engineering Intelligent Systems, vol. 20, pp. 87–97,
2012.

[16] N. Ryman-Tubb and A. d’Avila Garcez, “SOAR – Sparse oracle-based
adaptive rule extraction: Knowledge extraction from large-scale datasets
to detect credit card fraud,” in Neural Networks (IJCNN), The 2010
International Joint Conference on. IEEE, 2010, pp. 1–9.

[17] M. W. Craven and J. W. Shavlik, “Using sampling and queries to extract
rules from trained neural networks,” in In Proceedings of the Eleventh
International Conference on Machine Learning. Morgan Kaufmann,
1994, pp. 37–45.

[18] A. d’Avila Garcez, K. Broda, and D. Gabbay, “Symbolic knowledge
extraction from trained neural networks: A sound approach,” Artificial
Intelligence, vol. 125, no. 1, pp. 155–207, 2001.

[19] D. Martens, B. Baesens, and T. Van Gestel, “Decompositional rule
extraction from support vector machines by active learning,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 21, no. 2, pp. 178–
191, 2009.
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Abstract—Network traffic is increasing all the time and
network services are becoming more complex and vulnerable.
To protect these networks, intrusion detection systems are used.
Signature-based intrusion detection cannot find previously un-
known attacks, which is why anomaly detection is needed.
However, many new systems are slow and complicated. We
propose a log anomaly detection framework which aims to
facilitate quick anomaly detection and also provide visualizations
of the network traffic structure. The system preprocesses network
logs into a numerical data matrix, reduces the dimensionality
of this matrix using random projection and uses Mahalanobis
distance to find outliers and calculate an anomaly score for
each data point. Log lines that are too different are flagged as
anomalies. The system is tested with real-world network data, and
actual intrusion attempts are found. In addition, visualizations are
created to represent the structure of the network data. We also
perform computational time evaluation to ensure the performance
is feasible. The system is fast, finds real intrusion attempts and
does not need clean training data.

Keywords—Intrusion detection, data mining, machine learning,
random projection, mahalanobis distance.

I. INTRODUCTION

Web services have become more and more complicated
and the amount of network traffic is increasing all the time.
This makes ensuring good information security a challenge. In
order to detect network attacks and improve security, intrusion
detection systems (IDS) are used. These systems can generally
be divided into two distinct categories: signature-based and
anomaly-based systems [1].

Signature-based intrusion detection is still most commonly
used. It uses predetermined attack rules to detect intrusive
behavior. Network traffic or other actions are compared to
these rules, and if there is a match an alarm is created. The
benefits of this approach include fast operation and being able
to distinguish different types of attacks based on the rules
used to detect them. In addition, the number of false alarms is
usually low. However, the attack signatures must be manually
created. This means that the signatures can be one step behind
attackers, and new unknown vulnerabilities can be exploited
until a suitable rule is generated and the IDS rule set updated.
Anomaly-based systems are based on a different principle.
New incoming traffic or behavior is compared to the normal
profile, and if an action deviates from the norm, it is flagged
as an anomaly. Consequently, new and previously unknown

intrusion attempts can be detected. The network profile can
be updated periodically or in real-time, which means that the
system adapts to changes in network traffic. On the other hand,
some algorithms used in anomaly detection systems can be too
slow for real-time detection. In addition, the number of false
alarms can be unpractically high if the system is not configured
properly. Many possible algorithms and methods can be found
in Section II. It also possible to combine different detection
principles into a hybrid IDS (HIDS) [2].

One big issue with anomaly detection systems is the
efficiency and speed. If the amount of network traffic is
high, it might be impossible to use complicated algorithms
fast enough to detect intrusions before it’s too late. Many
advanced algorithms achieve a high detection rate but are too
computationally complex for practical use. In addition, some
intrusion detection frameworks can only do batch-analysis of
the whole data or require labeled training data.

We propose an anomaly detection framework that deals
with these problems. The system preprocesses web server log
data and extracts numerical features from it, forming a feature
matrix. Then, the dimensionality of the data is reduced using
random projection methodology, and a visualization is also
obtained to provide information to the network administrator.
Subsequently, Mahalanobis distance is used to calculate an
anomaly score for each data point. The data points (cor-
responding to log lines) that have a score higher than set
threshold will be flagged as anomalies. The system is very
fast and can function even in real-time. When new log lines
are introduced, they can be visualized and the anomaly score
calculated without starting the analysis from scratch, meaning
that new data can be added dynamically. New data points can
be added and older ones dropped from the whole dataset, so
that the system adapts to changing network traffic over time.

II. RELATED RESEARCH

Dimensionality reduction has been widely researched in
the intrusion detection context. Perhaps the most well-known
method is principal component analysis (PCA) [3], [4], [5]. It
has been researched extensively in network anomaly detection
[6], [7]. However, it has some problems, such as the fact that
it cannot handle nonlinear data. It is also not as fast as random
projection.
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Surveys describing advances in the field of intrusion de-
tection have been published [8], [9]. Many machine learn-
ing methods, such as self-organizing maps [10] and support
vector machines [11] have been used to cluster data and
detect anomalies in these systems. Various hybrid systems
combining signature and anomaly-based detection have been
used [2], [12]. A two-stage adaptive hybrid system for IP
level intrusion detection has also been recently devised. A
probabilistic classifier detects anomalies and a hidden Markov
model narrows down attacker addresses [13]. Recently, genetic
algorithms have been widely used in anomaly detection and
misuse detection [14], [15]. Another recent development is
using artificial immune systems (AIS) in intrusion detection
[16].

The authors have already been involved in developing sev-
eral network anomaly detection systems [17], [18], [19]. These
papers mainly focus on diffusion map (DM) methodology for
dimensionality reduction. The diffusion map serves the same
purpose as random projection in this paper, and DM can be
very efficient in finding anomalies and handling outliers in the
data. In addition, nonlinear data is not a problem for DM.
However, it’s main problem is computational complexity, and
this limits it’s use in real-time anomaly detection. This paper
focuses on random projection because of time constraints when
analyzing large amounts of traffic. Random projection has not
been extensively used in anomaly detection before.

Much of the research related to intrusion and anomaly
detection use publicly available datasets, such as DARPA 1998
and DARPA 1999 [20] as well as KDD Cup 99 [21]. However,
these datasets have many problems [22], [23] and therefore do
not represent real network traffic accurately. We focus on real-
world data collected from an actual network.

III. METHODOLOGY

In this section, the overall system framework and used
methods are explained. Visualization of the whole system can
be seen in Figure 1. The system consists of following phases:

• Data acquisition

• Preprocessing

• Feature extraction

• Random projection dimensionality reduction

• Mahalanobis distance score calculation

• Anomaly alerts based on threshold value

First the data must be collected from a network. In this
study, Apache HTTP server access logs are used. Data format,
preprocessing and feature extraction can vary depending on
the dataset.

After acquiring and preprocessing the data, as well as
extracting numerical feature matrix from the log files, the
dimensionality of the matrix is reduced using random pro-
jection. Subsequently, the Mahalanobis distance for each data
point from the whole dataset can be calculated. Finally, the
data points with Mahalanobis distance higher than a specified
threshold value are flagged as anomalies and can be inspected
by the network administrator.

Fig. 1. Overall system framework.

Used data, methods and algorithms are described in more
detail in the following subsections.

A. Data acquisition and preprocessing

We use the same network log database that has been used
in our previous research [19]. The data comes from a real-life
company web server. Different kinds of intrusion attempts and
other abnormal log lines are included in the data. We examine
a log file that is created in a web server using Apache server
software. A single log line uses the following format:

127.0.0.1 - -
[01/January/2012:00:00:01 +0300]
"GET /resource.php?parameter1=value1
&parameter2=value2
HTTP/1.1"
200 2680
"http://www.address.com/webpage.html"
"Mozilla/5.0
(SymbianOS/9.2;...)"

This format is called Combined Log Format [24]. The
used data is from the access logs of the server. These logs
contain various information about the network traffic, such
as timestamp, HTTP request and the amount of transferred
bytes. The logs may contain different intrusion attempts, such
as SQL injections, especially in the HTTP request part. For
this analysis, the HTTP request string was analyzed and used.

After acquiring the logs, the data is ready for feature
extraction. For this analysis, the character distribution is used.
This simply means calculating the frequencies of individual
characters in the data. These frequencies will form a feature
matrix that can be used in the other steps of the analysis.
Each row of the column corresponds to an individual log
line, and each column corresponds to in individual character.
Empty columns corresponding to characters not appearing in
the dataset are omitted. This way we get a feature matrix X
containing feature vectors x = (x1, x2, . . . , xd), where each
symbol of a vector corresponds to a log line character fre-
quency of one single character. There are d unique characters
in the dataset, forming a d-dimensional feature matrix.



B. Random Projection

In random projection (RP), the goal is to project high-
dimensional data into a lower-dimensional space using a ran-
dom matrix [25]. The idea is based on Johnson-Lindenstrauss
lemma [26]. It states that points can be projected to a randomly
generated subspace and still the distances between points are
approximately preserved.

Given the original data with d dimensions, the new sub-
space has k dimensions so that k << d. If the original data
matrix is Xd×N and the randomly generated matrix is Rk×d,
the random projection of the data can be calculated using the
following equation [25].

XRP
k×N = Rk×dXd×N

As can be seen from the equation, the random projection
method is computationally not very expensive even if the
original data have a high number of dimensions. However, the
generation and orthogonalization of the random matrix R can
be complicated, but is not a problem in this case as explained
below.

The most important phase of the method is the actual
creation of the random matrix R. Basically, R should be
orthogonal but unfortunately orthogonalization is computation-
ally expensive. However, a useful result has been presented
by Hecht-Nielsen [27]: “There exists a much larger number
of almost orthogonal than orthogonal directions in a high-
dimensional space”. Based on this result, we can assume that
orthogonalization can be left out. The practical experimental
results done in this paper also support this.

Instead of using Gaussian distributed variables, a much
simpler probability distribution has been proposed by Achliop-
tas [28]:

rij =
√
3×

⎧⎨
⎩
+1 with probability 1

6

0 with probability 2
3

−1 with probability 1
6

Computing the random matrix with this distribution is very
efficient and easy to implement. It is possible to use random
projection that is even more sparse. More generally speaking,
the items in the random matrix can be calculated using the
following probability distribution [29] :

rij =
√
s×

⎧⎨
⎩
+1 with probability 1

2s

0 with probability1− 1
s

−1 with probability 1
2s

It is possible to choose s so that s � 3. This leads to very
sparse random projections [29]. However, for this study we
use s = 3, as proposed by Achlioptas [28].

C. Mahalanobis distance

The Mahalanobis distance [30] is a distance metric that is
used for outlier detection in the proposed system. This distance
metric takes into account the correlations of the data. The

Mahalanobis distance metric is calculated for each individual
data point, taking account the distance from the whole dataset.
This creates basically an anomaly score. Setting a threshold
for this score makes it possible to flag certain data points as
anomalies.

If we have a data set X with an individual data vec-
tor being x = (x1, x2, . . . , xN )T , as well as mean μ =
(μ1, μ2, . . . , μN )T and covariance matrix S, the Mahalanobis
distance score for each data point can be formally defined as
follows [31]:

DM =
√
(x− μ)TS−1(x− μ)

The outlier detection mechanism used in this paper can be
changed, just like other components in the modular system.
How the Mahalanobis distance works in practice in this system
is described in Section IV.

D. Adding new data points

The methodology described previously is first performed on
the whole available data set. However, when new traffic occurs
in the network and therefore new data points are generated,
the whole analysis does not have to be run from scratch.
Preprocessing and character distribution are both trivial for
the new log line. Random projection is performed with simple
matrix multiplication with the same random matrix created
previously. This way the new data point is projected into the
same low-dimensional subspace as previous points. Finally,
Mahalanobis distance is calculated just like for all the other
points.

IV. EXPERIMENTAL RESULTS

Apache web server log data was acquired from a real-world
company network and preprocessed as explained previously.
The test data set that was received contains 1,244,025 lines,
and the timespan is about one week. After preprocessing we
find that 185 unique characters appear in the data, correspond-
ing to 185 dimensions in the feature matrix.

The data are projected into a 2-dimensional subspace
using random projection. Subsequently, Mahalanobis distance
is calculated for each data point to form the anomaly score.
These distances along with the chosen threshold value can be
seen from Figure 2. The values are scaled between 0 and
1 in this figure. Some of the data points seem to be highly
anomalous, while most of the points form a large normal
cluster. Setting the threshold value higher will mean that only
the most anomalous behavior is detected, setting it lower will
mean that potentially more anomalies are found but the false
alarm rate might increase as well.

Figure 3 shows the 2-dimensional RP visualization, with
anomalies highlighted with red. Normal traffic is seen as a
big cluster of points, and many queries are far away from
the normal cluster, indicating that they are highly anomalous.
Using the given threshold value, 278 log lines are flagged as
anomalous, meaning that only 0.02% of the traffic is flagged.
The other points (99.98%) represent normal traffic.

Because the used dataset is real network data, any prior
information about possible intrusions is not available. This is
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Fig. 3. Random projection visualization of the dataset.

the case in practical situations without artificially generated
training data. The 278 anomalies are manually inspected to
check if something intrusive is found. Upon inspection it is
revealed that only 8 of these loglines are normal and non-
intrusive, which equals 2.8% of all the alarms. This suggests
that lowering the threshold might reveal more anomalies, even
though they are potentially similar to the ones that were already
found. The anomalies include GoogleBot scans, as well as
several security scans using Nmap, DirBuster and Brutus AET
password cracker. The scans mainly focus on finding vulner-
abilities in phpMyAdmin software. These intrusion attempts
are not very severe for updated systems, and therefore they do
not pose a risk at this time. Still, these loglines deviate from
normal traffic in a clear way. Any similar scan attempt should
be easy to find using the proposed system.

Analyzing the whole data set is very fast. The Python im-
plementation of preprocessing for the whole dataset takes the
most time (minutes), while subsequent analysis phases done
in Matlab are completed almost instantly. As a comparison
to widely used PCA (mentioned in Section II), we calculated
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Fig. 4. Computational times for RP and PCA.

some computing times for different sized subsets of the data.
This comparison can be seen in Figure 4. The purpose was to
compare the time taken for dimensionality reduction, as well
as the effect of data size in computational times. It is apparent
that RP performs much better, the whole analysis taking less
than a second. In addition, the time increase appears to be
quite linear, meaning RP has good scalability. PCA analysis is
performed only up to 60% of the data set, because the analysis
time increases rapidly and becomes unpractically long before
even analyzing 100% of the dataset. All of the runs were
performed 5 times, and the times were averaged over these
5 runs. It must be noted that Mahalanobis distance calculation
is not included in these performance evaluations, because the
time taken would have been the same for both RP and PCA
matrices.

V. CONCLUSION

Overall security in a network could be enhanced by using
anomaly detection together with traditional signature-based
intrusion detection systems. However, anomaly detection sys-
tems often use complicated and slow algorithms, which ensures
high detection rate but impractically low speed. We propose
a framework that can be used to analyze and visualize logs
quickly, as well as find anomalous network traffic. This system
is not designed to work as the only security measure, but rather
as an addition to existing systems.

The system’s main advantage is the simplicity and speed. It
can easily analyze huge log files with relatively low-powered
hardware. In addition, when new network traffic occurs, there
is no need to perform the entire analysis from scratch. New
data points can be added dynamically and old data can be
dropped, so that the system adapts automatically to changing
network profile. Also, clean traffic data (traffic that does not
contain intrusions) are not needed. However, even though the
system was able to generate value by finding intrusion attempts
from actual real-world log files, more experiments with new
data are needed to ensure that the detection rate is acceptable.

For future research, any component of the framework can
be changed. Therefore, different dimensionality reduction and



outlier detection methods could be used. In addition, to make
the system more general and avoid overfitting, random pro-
jection and subsequent anomaly detection could be performed
several times for the same data. After this, each data point
would be either flagged as normal or anomalous several times
by the system. This is because random projection by definition
has a certain random element to it, and might sometimes give
unwanted results for individual data points. If the point is
flagged as anomalous more times than normal, it will be treated
as an anomaly. Bootstrapping is another technique that could
be combined with this, making the system even less prone
to overfitting. This way, if one random matrix gives unwanted
results, it does not lessen the performance of the whole system.
These features would make the system more automatic and
therefore easier to use for network administrators who are not
data mining experts.
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